Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

COMPUTATIONAL CHEMISTRY

Accelerating quantum molecular simulations

Variational Monte Carlo is one of the most accurate methods to solve the many-electron Schrödinger equation, but suffers from high computational cost. A recent study uses a weight-sharing technique to accelerate the neural network-based variational Monte Carlo method, allowing accurate and effective simulations of molecules.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Weight-sharing technique to accelerate DNN-based VMC.

References

  1. Griffiths, D. J. & Schroeter, D. F. Introduction to Quantum Mechanics (Cambridge Univ. Press, 2018).

  2. Foulkes, W., Mitas, L., Needs, R. & Rajagopal, G. Rev. Mod. Phys. 73, 33 (2001).

    Article  Google Scholar 

  3. Carleo, G. & Troyer, M. Science 355, 602–606 (2017).

    MathSciNet  Article  Google Scholar 

  4. Kessler, J., Calcavecchia, F. & Kühne, T. D. Adv. Theory Simul. 4, 2000269 (2021).

    Article  Google Scholar 

  5. Han, J., Zhang, L. & Weinan, E. J. Comput. Phys. 399, 108929 (2019).

    MathSciNet  Article  Google Scholar 

  6. Pfau, D., Spencer, J. S., Matthews, A. G. & Foulkes, W. M. C. Phys. Rev. Res. 2, 033429 (2020).

    Article  Google Scholar 

  7. Gao, N. & Günnemann, S. Preprint at https://arxiv.org/abs/2110.05064 (2021).

  8. Hermann, J., Schätzle, Z. & Noé, F. Nat. Chem. 12, 891–897 (2020).

    Article  Google Scholar 

  9. Scherbela, M., Reisenhofer, R., Gerard, L., Marquetand, P. & Grohs, P. G. Nat. Comput. Sci. https://doi.org/10.1038/s43588-022-00228-x (2022).

  10. Bartlett, R. J. & Musiał, M. Rev. Mod. Phys. 79, 291 (2007).

    Article  Google Scholar 

  11. Huang, B. & von Lilienfeld, O. A. Chem. Rev. 121, 10001–10036 (2021).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Tran.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tran, H. Accelerating quantum molecular simulations. Nat Comput Sci 2, 292–293 (2022). https://doi.org/10.1038/s43588-022-00237-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43588-022-00237-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing