Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Computational design of quantum defects in two-dimensional materials

Abstract

Missing atoms or atom substitutions (point defects) in crystal lattices in two-dimensional (2D) materials are potential hosts for emerging quantum technologies, such as single-photon emitters and spin quantum bits (qubits). First-principles-guided design of quantum defects in 2D materials is paving the way for rational spin qubit discovery. Here we discuss the frontier of first-principles theory development and the challenges in predicting the critical physical properties of point defects in 2D materials for quantum information technology, in particular for optoelectronic and spin-optotronic properties. Strong many-body interactions at reduced dimensionality require advanced electronic structure methods beyond mean-field theory. The great challenges for developing theoretical methods that are appropriate for strongly correlated defect states, as well as general approaches for predicting spin relaxation and the decoherence time of spin defects, are yet to be addressed.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: A proposed feedback loop between theory and experiments for new spin defect discovery in 2D materials.
Fig. 2: Reduced dielectric screening in 2D systems leads to strong many-body interactions, profoundly affecting defect properties.
Fig. 3: Calculation of the CTLs of defects in 2D systems.
Fig. 4: Defect-induced optical properties in monolayer MoSe2.
Fig. 5: Photoluminescence spectra and excited-state decay rates at quantum defects in 2D systems.

References

  1. Exarhos, A. L., Hopper, D. A., Grote, R. R., Alkauskas, A. & Bassett, L. C. Optical signatures of quantum emitters in suspended hexagonal boron nitride. ACS Nano 11, 3328–3336 (2017).

    Article  Google Scholar 

  2. He, Y. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497–502 (2015).

    Article  Google Scholar 

  3. Chakraborty, C., Kinnischtzke, L., Goodfellow, K. M., Beams, R. & Vamivakas, A. N. Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 10, 507–511 (2015).

    Article  Google Scholar 

  4. Koperski, M. et al. Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. 10, 503–506 (2015).

    Article  Google Scholar 

  5. Aharonovich, I. & Toth, M. Quantum emitters in two dimensions. Science 358, 170–171 (2017).

    MathSciNet  MATH  Article  Google Scholar 

  6. Refaely-Abramson, S., Qiu, D. Y., Louie, S. G. & Neaton, J. B. Defect-induced modification of low-lying excitons and valley selectivity in monolayer transition metal dichalcogenides. Phys. Rev. Lett. 121, 167402 (2018).

    Article  Google Scholar 

  7. Sajid, A., Ford, M. J. & Reimers, J. R. Single-photon emitters in hexagonal boron nitride: a review of progress. Rep. Prog. Phys. 83, 044501 (2020).

    Article  Google Scholar 

  8. Exarhos, A., Hopper, D., Patel, R., Doherty, M. & Bassett, L. Magnetic-field-dependent quantum emission in hexagonal boron nitride at room temperature. Nat. Commun. 10, 222 (2019).

    Article  Google Scholar 

  9. Weber, J. R. et al. Quantum computing with defects. Proc. Natl Acad. Sci. USA 107, 8513–8518 (2010).

    Article  Google Scholar 

  10. Ivady, V., Abrikosov, I. A. & Gali, A. First principles calculation of spin-related quantities for point defect qubit research. npj Comput. Mater. 4, 76 (2018).

    Article  Google Scholar 

  11. Mackoit-Sinkeviciene, M., Maciaszek, M., Van de Walle, C. G. & Alkauskas, A. Carbon dimer defect as a source of the 4.1-eV luminescence in hexagonal boron nitride. Appl. Phys. Lett. 115, 212101 (2019).

    Article  Google Scholar 

  12. Mendelson, N. et al. Identifying carbon as the source of visible single-photon emission from hexagonal boron nitride. Nat. Mater. 20, 321–328 (2021).

    Article  Google Scholar 

  13. Sajid, A. & Thygesen, K. S. VNCB defect as source of single photon emission from hexagonal boron nitride. 2D Mater. 7, 031007 (2020).

    Article  Google Scholar 

  14. Turiansky, M. E., Alkauskas, A., Bassett, L. C. & Van de Walle, C. G. Dangling bonds in hexagonal boron nitride as single-photon emitters. Phys. Rev. Lett. 123, 127401 (2019).

    Article  Google Scholar 

  15. Turiansky, M. E. & Van de Walle, C. G. Impact of dangling bonds on properties of h-BN. 2D Mater. 8, 024002 (2021).

    Article  Google Scholar 

  16. Li, S. et al. Giant shift upon strain on the fluorescence spectrum of VNNB color centers in h-BN. npj Quantum Inf. 6, 85 (2020).

    Article  Google Scholar 

  17. Wu, F., Smart, T. J., Xu, J. Q. & Ping, Y. Carrier recombination mechanism at defects in wide band gap two-dimensional materials from first principles. Phys. Rev. B 100, 081407 (2019).

    Article  Google Scholar 

  18. Sajid, A., Reimers, J. R., Kobayashi, R. & Ford, M. J. Theoretical spectroscopy of the VNNB defect in hexagonal boron nitride. Phys. Rev. B 102, 144104 (2020).

    Article  Google Scholar 

  19. Gupta, S., Yang, J. H. & Yakobson, B. I. Two-level quantum systems in two-dimensional materials for single photon emission. Nano Lett. 19, 408–414 (2019).

    Article  Google Scholar 

  20. Klein, J. et al. Engineering the luminescence and generation of individual defect emitters in atomically thin MoS2. ACS Photon. 8, 669–677 (2021).

    Article  Google Scholar 

  21. Zhou, X. C., Zhang, Z. H. & Guo, W. L. Dislocations as single photon sources in two-dimensional semiconductors. Nano Lett. 20, 4136–4143 (2020).

    Article  Google Scholar 

  22. Hamdi, H., Thiering, G., Bodrog, Z., Ivady, V. & Gali, A. Stone-Wales defects in hexagonal boron nitride as ultraviolet emitters. npj Comput. Mater. 6, 178 (2020).

    Article  Google Scholar 

  23. Ivady, V. et al. Ab initio theory of the negatively charged boron vacancy qubit in hexagonal boron nitride. npj Comput. Mater. 6, 41 (2020).

    Article  Google Scholar 

  24. Reimers, J. R. et al. Photoluminescence, photophysics and photochemistry of the VB-defect in hexagonal boron nitride. Phys. Rev. B 102, 144105 (2020).

    Article  Google Scholar 

  25. Gottscholl, A. et al. Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature. Nat. Mater. 19, 540–545 (2020).

    Article  Google Scholar 

  26. Manson, N. B., Harrison, J. P. & Sellars, M. J. Nitrogen-vacancy center in diamond: model of the electronic structure and associated dynamics. Phys. Rev. B 74, 104303 (2006).

    Article  Google Scholar 

  27. Lany, S. & Zunger, A. Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: case studies for ZnO and GaAs. Phys. Rev. B 78, 235104 (2008).

    Article  Google Scholar 

  28. Wang, D. et al. Determination of formation and ionization energies of charged defects in two-dimensional materials. Phys. Rev. Lett. 114, 196801 (2015).

    Article  Google Scholar 

  29. Freysoldt, C. et al. First-principles calculations for point defects in solids. Rev. Mod. Phys. 86, 253–305 (2014).

    Article  Google Scholar 

  30. Freysoldt, C., Neugebauer, J. & Van de Walle, C. G. Fully ab initio finite-size corrections for charged-defect supercell calculations. Phys. Rev. Lett. 102, 016402 (2009).

    Article  Google Scholar 

  31. Komsa, H. P., Berseneva, N., Krasheninnikov, A. V. & Nieminen, R. M. Charged point defects in the flatland: accurate formation energy calculations in two-dimensional materials. Phys. Rev. X 4, 031044 (2014).

    Google Scholar 

  32. Komsa, H. P. & Pasquarello, A. Finite-size supercell correction for charged defects at surfaces and interfaces. Phys. Rev. Lett. 110, 095505 (2013).

    Article  Google Scholar 

  33. Wu, F., Galatas, A., Sundararaman, R., Rocca, D. & Ping, Y. First-principles engineering of charged defects for two-dimensional quantum technologies. Phys. Rev. Mater. 1, 071001 (2017).

    Article  Google Scholar 

  34. Smart, T. J., Wu, F., Govoni, M. & Ping, Y. Fundamental principles for calculating charged defect ionization energies in ultrathin two-dimensional materials. Phys. Rev. Mater. 2, 124002 (2018).

    Article  Google Scholar 

  35. Sundararaman, R. & Ping, Y. First-principles electrostatic potentials for reliable alignment at interfaces and defects. J. Chem. Phys. 146, 104109 (2017).

    Article  Google Scholar 

  36. Zhu, G. J., Yang, J. H. & Gong, X. G. Self-consistently determining structures of charged defects and defect ionization energies in low-dimensional semiconductors. Phys. Rev. B 102, 035202 (2020).

    Article  Google Scholar 

  37. Xia, S. et al. Evaluation of charged defect energy in two-dimensional semiconductors for nanoelectronics: the WLZ extrapolation method. Ann. Phys. 532, 1900318 (2020).

    MathSciNet  Article  Google Scholar 

  38. da Silva, M. et al. Self-consistent potential correction for charged periodic systems. Phys. Rev. Lett. 126, 076401 (2021).

    Article  Google Scholar 

  39. Elliott, J. D., Colonna, N., Marsili, M., Marzari, N. & Umari, P. Koopmans meets Bethe-Salpeter: excitonic optical spectra without GW. J. Chem. Theory Comput. 15, 3710–3720 (2019).

    Article  Google Scholar 

  40. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article  Google Scholar 

  41. Miceli, G., Chen, W., Reshetnyak, I. & Pasquarello, A. Nonempirical hybrid functionals for band gaps and polaronic distortions in solids. Phys. Rev. B 97, 121112 (2018).

    Article  Google Scholar 

  42. Nguyen, N. L., Colonna, N., Ferretti, A. & Marzari, N. Koopmans-compliant spectral functionals for extended systems. Phys. Rev. X 8, 021051 (2018).

    Google Scholar 

  43. Brawand, N. P., Govoni, M., Voros, M. & Galli, G. Performance and self-consistency of the generalized dielectric dependent hybrid functional. J. Chem. Theory Comput. 13, 3318–3325 (2017).

    Article  Google Scholar 

  44. Chen, W., Miceli, G., Rignanese, G. M. & Pasquarello, A. Nonempirical dielectric-dependent hybrid functional with range separation for semiconductors and insulators. Phys. Rev. Mater. 2, 073803 (2018).

    Article  Google Scholar 

  45. Zheng, H. H., Govoni, M. & Galli, G. Dielectric-dependent hybrid functionals for heterogeneous materials. Phys. Rev. Mater. 3, 073803 (2019).

    Article  Google Scholar 

  46. Zhao, B. et al. High-order superlattices by rolling up van der Waals heterostructures. Nature 591, 385–390 (2021).

    Article  Google Scholar 

  47. Qiu, D. Y., da Jornada, F. H. & Louie, S. G. Optical spectrum of MoS2: many-body effects and diversity of exciton states. Phys. Rev. Lett. 111, 216805 (2013).

    Article  Google Scholar 

  48. Govoni, M. & Galli, G. Large scale GW calculations. J. Chem. Theory Comput. 11, 2680–2696 (2015).

    Article  Google Scholar 

  49. Nguyen, H., Pham, T., Rocca, D. & Galli, G. Improving accuracy and efficiency of calculations of photoemission spectra within the many-body perturbation theory. Phys. Rev. B 85, 081101(R) (2012).

    Article  Google Scholar 

  50. Pham, T., Nguyen, H., Rocca, D. & Galli, G. GW calculations using the spectral decomposition of the dielectric matrix: verification, validation and comparison of methods. Phys. Rev. B 87, 155148 (2013).

    Article  Google Scholar 

  51. Schuler, B. et al. Large spin–orbit splitting of deep in-gap defect states of engineered sulfur vacancies in monolayer WS2. Phys. Rev. Lett. 123, 076801 (2019).

    Article  Google Scholar 

  52. Liu, Y. P. et al. Valleytronics in transition metal dichalcogenides materials. Nano Res. 12, 2695–2711 (2019).

    Article  Google Scholar 

  53. Srivastava, A. et al. Valley Zeeman effect in elementary optical excitations of monolayer WSe2. Nat. Phys. 11, 141–147 (2015).

    Article  Google Scholar 

  54. da Jornada, F. H., Qiu, D. Y. & Louie, S. G. Nonuniform sampling schemes of the Brillouin zone for many-electron perturbation-theory calculations in reduced dimensionality. Phys. Rev. B 95, 035109 (2017).

    Article  Google Scholar 

  55. Ping, Y., Rocca, D., Lu, D. & Galli, G. Ab initio calculations of absorption spectra of semiconducting nanowires within many-body perturbation theory. Phys. Rev. B 85, 035316 (2012).

    Article  Google Scholar 

  56. Ping, Y., Rocca, D. & Galli, G. Electronic excitations in light absorbers for photoelectrochemical energy conversion: first principles calculations based on many body perturbation theory. Chem. Soc. Rev. 42, 2437–2469 (2013).

    Article  Google Scholar 

  57. Rocca, D., Ping, Y., Gebauer, R. & Galli, G. Solution of the Bethe-Salpeter equation without empty electronic states: application to the absorption spectra of bulk systems. Phys. Rev. B 85, 045116 (2012).

    Article  Google Scholar 

  58. Rocca, D., Lu, D. & Galli, G. Ab initio calculations of optical absorption spectra: solution of the Bethe-Salpeter equation within density matrix perturbation theory. J. Chem. Phys. 133, 164109 (2010).

    Article  Google Scholar 

  59. Nguyen, N., Ma, H., Govoni, M., Gygi, F. & Galli, G. Finite-field approach to solving the Bethe-Salpeter equation. Phys. Rev. Lett. 122, 237402 (2019).

    MathSciNet  Article  Google Scholar 

  60. Stoughton, S. et al. Adsorption-controlled growth of BiVO4 by molecular-beam epitaxy. APL Mater. 1, 042112 (2013).

    Article  Google Scholar 

  61. Lischner, J., Deslippe, J., Jain, M. & Louie, S. G. First-principles calculations of quasiparticle excitations of open-shell condensed matter systems. Phys. Rev. Lett. 109, 036406 (2012).

    Article  Google Scholar 

  62. Spataru, C. D., Ismail-Beigi, S., Capaz, R. B. & Louie, S. G. Theory and ab initio calculation of radiative lifetime of excitons in semiconducting carbon nanotubes. Phys. Rev. Lett. 95, 247402 (2005).

    Article  Google Scholar 

  63. Wu, F., Rocca, D. & Ping, Y. Dimensionality and anisotropicity dependence of radiative recombination in nanostructured phosphorene. J. Mater. Chem. C 7, 12891–12897 (2019).

    Article  Google Scholar 

  64. Chen, H. Y., Jhalani, V. A., Palummo, M. & Bernardi, M. Ab initio calculations of exciton radiative lifetimes in bulk crystals, nanostructures and molecules. Phys. Rev. B 100, 075135 (2019).

    Article  Google Scholar 

  65. Palummo, M., Bernardi, M. & Grossman, J. C. Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides. Nano Lett. 15, 2794–2800 (2015).

    Article  Google Scholar 

  66. Smart, T., Li, K., Xu, J. & Ping, Y. Intersystem crossing and exciton-defect coupling of spin defects in hexagonal boron nitride. npj Comput. Mater. 7, 59 (2021).

    Article  Google Scholar 

  67. Gao, S., Chen, H.-Y. & Bernardi, M. Radiative properties of quantum emitters in boron nitride from excited state calculations and Bayesian analysis. npj Comput. Mater. 7, 85 (2021).

    Article  Google Scholar 

  68. Tran, T. T. et al. Robust multicolor single photon emission from point defects in hexagonal boron nitride. ACS Nano 10, 7331–7338 (2016).

    Article  Google Scholar 

  69. Schell, A. W., Takashima, H., Tran, T. T., Aharonovich, I. & Takeuchi, S. Coupling quantum emitters in 2D materials with tapered fibers. ACS Photon. 4, 761–767 (2017).

    Article  Google Scholar 

  70. Antonius, G. & Louie, S. G. Theory of the exciton-phonon coupling. Preprint at https://arxiv.org/abs/1705.04245 (2017).

  71. Alkauskas, A., Yan, Q. M. & Van de Walle, C. G. First-principles theory of nonradiative carrier capture via multiphonon emission. Phys. Rev. B 90, 075202 (2014).

    Article  Google Scholar 

  72. Shi, L., Xu, K. & Wang, L. W. Comparative study of ab initio nonradiative recombination rate calculations under different formalisms. Phys. Rev. B 91, 205315 (2015).

    Article  Google Scholar 

  73. Giustino, F. Electron-phonon interactions from first principles. Rev. Mod. Phys. 89, 015003 (2017).

    MathSciNet  Article  Google Scholar 

  74. Shi, L. & Wang, L. Ab initio calculations of deep-level carrier nonradiative recombination rates in bulk semiconductors. Phys. Rev. Lett. 109, 245501 (2012).

    Article  Google Scholar 

  75. Zhang, X., Shen, J., Turiansky, M. & Van de Walle, C. Minimizing hydrogen vacancies to enable highly efficient hybrid perovskites. Nat. Mater. 20, 971–976 (2021).

    Article  Google Scholar 

  76. Xiao, Y. et al. Anharmonic multi-phonon nonradiative transition: an ab initio calculation approach. Sci. China Phys. Mech. Astron. 63, 277312 (2020).

    Article  Google Scholar 

  77. Mendelson, N., Doherty, M., Toth, M., Aharonovich, I. & Tran, T. T. Strain-induced modification of the optical characteristics of quantum emitters in hexagonal boron nitride. Adv. Mater. 32, 1908316 (2020).

    Article  Google Scholar 

  78. de Souza, B., Farias, G., Neese, F. & Izsak, R. Predicting phosphorescence rates of light organic molecules using time-dependent density functional theory and the path integral approach to dynamics. J. Chem. Theory Comput. 15, 1896–1904 (2019).

    Article  Google Scholar 

  79. Thiering, G. & Gali, A. Ab initio calculation of spin-orbit coupling for an NV center in diamond exhibiting dynamic Jahn-Teller effect. Phys. Rev. B 96, 081115(R) (2017).

    Article  Google Scholar 

  80. Alkauskas, A., Buckley, B., Awschalom, D. & Van de Walle, C. First-principles theory of the luminescence lineshape for the triplet transition in diamond NV centres. N. J. Phys. 16, 073026 (2014).

    Article  Google Scholar 

  81. Marini, A. Ab initio finite-temperature excitons. Phys. Rev. Lett. 101, 106405 (2008).

    MathSciNet  Article  Google Scholar 

  82. Wong, J. C., Li, L. S. & Kauai, Y. Size dependence and role of decoherence in hot electron relaxation within fluorinated silicon quantum dots: a first-principles study. J. Phys. Chem. C 122, 29526–29536 (2018).

    Article  Google Scholar 

  83. Stier, W. & Prezhdo, O. Nonadiabatic molecular dynamics simulation of light-induced, electron transfer from an anchored molecular electron donor to a semiconductor acceptor. J. Phys. Chem. B 106, 8047–8054 (2002).

    Article  Google Scholar 

  84. Rego, L. & Batista, V. Quantum dynamics simulations of interfacial electron transfer in sensitized TiO2 semiconductors. J. Am. Chem. Soc. 125, 7989–7997 (2003).

    Article  Google Scholar 

  85. Parandekar, P. & Tully, J. Mixed quantum-classical equilibrium. J. Chem. Phys. 122, 094102 (2005).

    Article  Google Scholar 

  86. Tully, J. Molecular-dynamics with electronic transitions. J. Chem. Phys. 93, 1061–1071 (1990).

    Article  Google Scholar 

  87. Li, L. S. & Carter, E. A. Defect-mediated charge-carrier trapping and nonradiative recombination in WSe2 monolayers. J. Am. Chem. Soc. 141, 10451–10461 (2019).

    Article  Google Scholar 

  88. Zhang, L. L. et al. Suppression of electron-hole recombination by intrinsic defects in 2D monoelemental material. J. Phys. Chem. Lett. 10, 6151–6158 (2019).

    Article  Google Scholar 

  89. Ismail-Beigi, S. & Louie, S. Excited-state forces within a first-principles Green’s function formalism. Phys. Rev. Lett. 90, 076401 (2003).

    Article  Google Scholar 

  90. Cannuccia, E., Monserrat, B. & Attaccalite, C. Theory of phonon-assisted luminescence in solids: application to hexagonal boron nitride. Phys. Rev. B 99, 081109(R) (2019).

    Article  Google Scholar 

  91. Zacharias, M., Patrick, C. & Giustino, F. Stochastic approach to phonon-assisted optical absorption. Phys. Rev. Lett. 115, 177401 (2015).

    Article  Google Scholar 

  92. Chen, H.-Y., Sangalli, D. & Bernadi, M. Exciton-phonon interaction and relaxation times from first principles. Phys. Rev. Lett. 125, 107401 (2020).

    Article  Google Scholar 

  93. Caylak, O. & Baumeier, B. Excited-state geometry optimization of small molecules with many-body Green’s functions theory. J. Chem. Theory Comput. 17, 879–888 (2021).

    Article  Google Scholar 

  94. Molina-Sanchez, A., Palummo, M., Marini, A. & Wirtz, L. Temperature-dependent excitonic effects in the optical properties of single-layer MoS2. Phys. Rev. B 93, 155435 (2016).

    Article  Google Scholar 

  95. Nery, J. et al. Quasiparticles and phonon satellites in spectral functions of semiconductors and insulators: cumulants applied to the full first-principles theory and the Frohlich polaron. Phys. Rev. B 97, 115145 (2018).

    Article  Google Scholar 

  96. Ma, H., Sheng, N., Govoni, M. & Galli, G. Quantum embedding theory for strongly correlated states in materials. J. Chem. Theory Comput. 17, 2116–2125 (2021).

    Article  Google Scholar 

  97. Barcza, G. et al. DMRG on top of plane-wave Kohn-Sham orbitals: a case study of defected boron nitride. J. Chem. Theory Comput. 17, 1143–1154 (2021).

    Article  Google Scholar 

  98. Ma, H., Govoni, M. & Galli, G. Quantum simulations of materials on near-term quantum computers. npj Comput. Mater. 6, 85 (2020).

    Article  Google Scholar 

  99. Ma, H., Sheng, N., Govoni, M. & Galli, G. First-principles studies of strongly correlated states in defect spin qubits in diamond. Phys. Chem. Chem. Phys. 22, 25522–25527 (2020).

    Article  Google Scholar 

  100. Hu, W. & Chan, G. Excited-state geometry optimization with the density matrix renormalization group, as applied to polyenes. J. Chem. Theory Comput. 11, 3000–3009 (2015).

    Article  Google Scholar 

  101. Gali, A. Ab initio theory of the nitrogen-vacancy center in diamond. Nanophotonics 8, 1907–1943 (2019).

    Article  Google Scholar 

  102. Seo, H. et al. Quantum decoherence dynamics of divacancy spins in silicon carbide. Nat. Commun. 7, 12935 (2016).

    Article  Google Scholar 

  103. Ye, M., Seo, H. & Galli, G. Spin coherence in two-dimensional materials. npj Comput. Mater. 5, 44 (2019).

    Article  Google Scholar 

  104. Xu, J. Q. et al. Spin–phonon relaxation from a universal ab initio density-matrix approach. Nat. Commun. 11, 2780 (2020).

    Article  Google Scholar 

  105. Gugler, J. et al. Ab initio calculation of the spin lattice relaxation time T1 for nitrogen-vacancy centers in diamond. Phys. Rev. B 98, 214442 (2018).

    Article  Google Scholar 

  106. Jaeger, H. M., Fischer, S. & Prezhdo, O. V. Decoherence-induced surface hopping. J. Chem. Phys. 137, 22A545 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This material is based on work supported by the Air Force Office of Scientific Research under AFOSR award no. FA9550-YR-1-XYZQ and National Science Foundation under grant no. DMR-1760260. T.J.S. acknowledges support from the LLNL Graduate Research Scholar Program and funding support from LLNL LDRD 20-SI-004.

Author information

Authors and Affiliations

Authors

Contributions

Y.P. was in charge of the overall direction, planning and writing. T.J.S. contributed to the figures and partially to writing the manuscript.

Corresponding author

Correspondence to Yuan Ping.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Computational Science thanks the anonymous reviewers for their contribution to the peer review of this work. Handling editor: Jie Pan, in collaboration with the Nature Computational Science team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ping, Y., Smart, T.J. Computational design of quantum defects in two-dimensional materials. Nat Comput Sci 1, 646–654 (2021). https://doi.org/10.1038/s43588-021-00140-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43588-021-00140-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing