Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Two-dimensional materials prospects for non-volatile spintronic memories

Abstract

Non-volatile magnetic random-access memories (MRAMs), such as spin-transfer torque MRAM and next-generation spin–orbit torque MRAM, are emerging as key to enabling low-power technologies, which are expected to spread over large markets from embedded memories to the Internet of Things. Concurrently, the development and performances of devices based on two-dimensional van der Waals heterostructures bring ultracompact multilayer compounds with unprecedented material-engineering capabilities. Here we provide an overview of the current developments and challenges in regard to MRAM, and then outline the opportunities that can arise by incorporating two-dimensional material technologies. We highlight the fundamental properties of atomically smooth interfaces, the reduced material intermixing, the crystal symmetries and the proximity effects as the key drivers for possible disruptive improvements for MRAM at advanced technology nodes.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: State-of-the-art MRAM technologies.
Fig. 2: Fundamental phenomena of MRAM cells and 2DM prospects.
Fig. 3: Challenges for integration of 2DMs into MRAM technologies.
Fig. 4: Spin-torque memory technology roadmap.

References

  1. Yinug, F. The rise of the flash memory market: its impact on firm behavior and global semiconductor trade patterns. J. Int. Commer. Econ. 1, 137 (2008).

    Google Scholar 

  2. Park, K.-T., Byeon, D.-S. & Kim, D.-H. A world's first product of three-dimensional vertical NAND flash memory and beyond. In 14th Annual Non-Volatile Memory Technology Symposium 1–5 (IEEE, 2014).

  3. DRAM leads in revenue, NAND with top percentage growth in 2020. IC Insights https://www.icinsights.com/news/bulletins/DRAM-Leads-In-Revenue-NAND-With-Top-Percentage-Growth-In-2020/ (2020).

  4. Dieny, B. et al. Opportunities and challenges for spintronics in the microelectronics industry. Nat. Electron. 3, 446–459 (2020).

    Article  Google Scholar 

  5. Ikegawa, S., Mancoff, F. B., Janesky, J. & Aggarwal, S. Magnetoresistive random access memory: present and future. IEEE Trans. Electron Devices 67, 1407–1419 (2020).

    ADS  CAS  Article  Google Scholar 

  6. Emerging Non-Volatile Memory 2021 (Yole Développement, 2021); https://www.i-micronews.com/products/emerging-non-volatile-memory-2021/?utm_source=PR&utm_medium=email&utm_campaign=PR_EMERGING_NON_VOLATILE_MEMORY_YOLE_Market_Update_Feb2021

  7. Ferrari, A. C. et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  8. Roche, S. et al. Graphene spintronics: the European flagship perspective. 2D Mater. 2, 030202 (2015).

    Article  CAS  Google Scholar 

  9. Sierra, J. F., Fabian, J., Kawakami, R. K., Roche, S. & Valenzuela, S. O. Van der Waals heterostructures for spintronics and opto-spintronics. Nat. Nanotechnol. 16, 856–868 (2021).

    ADS  CAS  PubMed  Article  Google Scholar 

  10. Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  11. Asselberghs, I. et al. Wafer-scale integration of double gated WS2-transistors in 300mm Si CMOS fab. In IEEE International Electron Devices Meeting 40.2.1–40.2.4 (IEEE, 2020).

  12. Ralph, D. C. & Stiles, M. D. Spin transfer torques. J. Magn. Magn. Mater. 320, 1190–1216 (2008).

    ADS  CAS  Article  Google Scholar 

  13. Manchon, A. et al. Current-induced spin–orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  14. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    ADS  CAS  Article  Google Scholar 

  15. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

    ADS  CAS  Article  Google Scholar 

  16. Hosomi, M. et al. A novel nonvolatile memory with spin torque transfer magnetization switching: spin-RAM. In IEEE International Electron Devices Meeting 459–462 (IEEE, 2005).

  17. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    ADS  CAS  PubMed  Article  Google Scholar 

  18. Liu, L. et al. Spin–torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012). The above two papers demonstrated SOT-induced magnetization switching.

    ADS  CAS  PubMed  Article  Google Scholar 

  19. Pesin, D. & MacDonald, A. H. Spintronics and pseudospintronics in graphene and topological insulators. Nat. Mater. 11, 409–416 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  20. Fukami, S., Anekawa, T., Zhang, C. & Ohno, H. A spin–orbit torque switching scheme with collinear magnetic easy axis and current configuration. Nat. Nanotechnol. 11, 621–625 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  21. Jhuria, K. et al. Spin–orbit torque switching of a ferromagnet with picosecond electrical pulses. Nat. Electron. 3, 680–686 (2020).

    Article  Google Scholar 

  22. Aggarwal, S. et al. Demonstration of a reliable 1 Gb standalone spin-transfer torque MRAM for industrial applications. In IEEE International Electron Devices Meeting 2.1.1–2.1.4 (IEEE, 2019).

  23. Dieny, B. & Chshiev, M. Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications. Rev. Mod. Phys. 89, 025008 (2017).

    ADS  MathSciNet  Article  Google Scholar 

  24. Ikeda, S. et al. A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Nat. Mater. 9, 721–724 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  25. Worledge, D. et al. Spin torque switching of perpendicular Ta | CoFeB | MgO-based magnetic tunnel junctions. Appl. Phys. Lett. 98, 022501 (2011).

    ADS  Article  CAS  Google Scholar 

  26. Butler, W., Zhang, X.-G., Schulthess, T. & MacLaren, J. Spin-dependent tunneling conductance of Fe | MgO | Fe sandwiches. Phys. Rev. B 63, 054416 (2001).

    ADS  Article  CAS  Google Scholar 

  27. Apalkov, D., Dieny, B. & Slaughter, J. Magnetoresistive random access memory. Proc. IEEE 104, 16317085 (2016).

    Article  Google Scholar 

  28. Rodmacq, B., Auffret, S., Dieny, B. & Nistor, L. E. Three-layer magnetic element, magnetic field sensor, magnetic memory and magnetic logic gate using such an element. US patent 8,513,944B2 (2013).

  29. Sato, H. et al. Comprehensive study of CoFeB–MgO magnetic tunnel junction characteristics with single-and double-interface scaling down to 1X nm. In IEEE International Electron Devices Meeting 3.2.1–3.2.4 (IEEE, 2013).

  30. Gajek, M. et al. Spin torque switching of 20 nm magnetic tunnel junctions with perpendicular anisotropy. Appl. Phys. Lett. 100, 132408 (2012).

    ADS  Article  CAS  Google Scholar 

  31. Watanabe, K., Jinnai, B., Fukami, S., Sato, H. & Ohno, H. Shape anisotropy revisited in single-digit nanometer magnetic tunnel junctions. Nat. Commun. 9, 663 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Perrissin, N. et al. A highly thermally stable sub-20 nm magnetic random-access memory based on perpendicular shape anisotropy. Nanoscale 10, 12187–12195 (2018).

    CAS  PubMed  Article  Google Scholar 

  33. Maruyama, T. et al. Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat. Nanotechnol. 4, 158–161 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  34. Wang, W.-G., Li, M., Hageman, S. & Chien, C. Electric-field-assisted switching in magnetic tunnel junctions. Nat. Mater. 11, 64–68 (2012).

    ADS  CAS  Article  Google Scholar 

  35. Shiota, Y. et al. Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nat. Mater. 11, 39–43 (2012).

    ADS  CAS  Article  Google Scholar 

  36. Ohsawa, Y. et al. Precise damage observation in ion-beam etched MTJ. IEEE Trans. Magn. 52, 16105047 (2016).

    Article  Google Scholar 

  37. Safeer, C. et al. Spin–orbit torque magnetization switching controlled by geometry. Nat. Nanotechnol. 11, 143–146 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  38. Lee, J. M. et al. Field-free spin–orbit torque switching from geometrical domain-wall pinning. Nano Lett. 18, 4669–4674 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  39. Aradhya, S. V., Rowlands, G. E., Oh, J., Ralph, D. C. & Buhrman, R. A. Nanosecond-timescale low energy switching of in-plane magnetic tunnel junctions through dynamic Oersted-field-assisted spin Hall effect. Nano Lett. 16, 5987–5992 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  40. Oh, Y.-W. et al. Field-free switching of perpendicular magnetization through spin–orbit torque in antiferromagnet/ferromagnet/oxide structures. Nat. Nanotechnol. 11, 878–884 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  41. Fukami, S., Zhang, C., DuttaGupta, S., Kurenkov, A. & Ohno, H. Magnetization switching by spin–orbit torque in an antiferromagnet–ferromagnet bilayer system. Nat. Mater. 15, 535–541 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  42. Garello, K. et al. Manufacturable 300mm platform solution for field-free switching SOT-MRAM. In Symposium on VLSI Circuits T194–T195 (IEEE, 2019).

  43. Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  44. Mak, K. F., Shan, J. & Ralph, D. C. Probing and controlling magnetic states in 2D layered magnetic materials. Nat. Rev. Phys. 1, 646–661 (2019).

    Article  Google Scholar 

  45. Zhang, L., Zhou, J., Li, H., Shen, L. & Feng, Y. P. Recent progress and challenges in magnetic tunnel junctions with 2D materials for spintronic applications. Appl. Phys. Rev. 8, 021308 (2021).

    ADS  CAS  Article  Google Scholar 

  46. Och, M., Martin, M.-B., Dlubak, B., Seneor, P. & Mattevi, C. Synthesis of emerging 2D layered magnetic materials. Nanoscale 13, 2157–2180 (2021).

    CAS  PubMed  Article  Google Scholar 

  47. Lee, K. et al. 22-nm FD-SOI embedded MRAM technology for low-power automotive-grade-l MCU applications. In IEEE International Electron Devices Meeting 27.1.1–27.1.4 (IEEE, 2018).

  48. Djayaprawira, D. D. et al. 230% room-temperature magnetoresistance in CoFeB/MgO/CoFeB magnetic tunnel junctions. Appl. Phys. Lett. 86, 092502 (2005).

    ADS  Article  CAS  Google Scholar 

  49. Vo-Van, C. et al. Ultrathin epitaxial cobalt films on graphene for spintronic investigations and applications. New J. Phys. 12, 103040 (2010). This work reports PMA of cobalt on graphene.

    ADS  Article  CAS  Google Scholar 

  50. Rougemaille, N. et al. Perpendicular magnetic anisotropy of cobalt films intercalated under graphene. Appl. Phys. Lett. 101, 142403 (2012).

    ADS  Article  CAS  Google Scholar 

  51. Yang, H. et al. Anatomy and giant enhancement of the perpendicular magnetic anisotropy of cobalt–graphene heterostructures. Nano Lett. 16, 145–151 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  52. Coraux, J. et al. Air-protected epitaxial graphene/ferromagnet hybrids prepared by chemical vapor deposition and intercalation. J. Phys. Chem. Lett. 3, 2059–2063 (2012).

  53. Gargiani, P., Cuadrado, R., Vasili, H. B., Pruneda, M. & Valvidares, M. Graphene-based synthetic antiferromagnets and ferrimagnets. Nat. Commun. 8, 699 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Naganuma, H. et al. A perpendicular graphene/ferromagnet electrode for spintronics. Appl. Phys. Lett. 116, 173101 (2020).

    ADS  Article  CAS  Google Scholar 

  55. Naganuma, H. et al. Unveiling a chemisorbed crystallographically heterogeneous graphene/L10-FePd interface with a robust and perpendicular orbital moment. ACS Nano 16, 4139–4151 (2022).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. Li, W., Xue, L., Abruña, H. & Ralph, D. Magnetic tunnel junctions with single-layer-graphene tunnel barriers. Phys. Rev. B 89, 184418 (2014).

    ADS  Article  CAS  Google Scholar 

  57. Yang, H. et al. Significant Dzyaloshinskii–Moriya interaction at graphene–ferromagnet interfaces due to the Rashba effect. Nat. Mater. 17, 605–609 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  58. Jang, P.-H., Song, K., Lee, S.-J., Lee, S.-W. & Lee, K.-J. Detrimental effect of interfacial Dzyaloshinskii–Moriya interaction on perpendicular spin-transfer-torque magnetic random access memory. Appl. Phys. Lett. 107, 202401 (2015).

    ADS  Article  CAS  Google Scholar 

  59. Legrand, W., Ramaswamy, R., Mishra, R. & Yang, H. Coherent subnanosecond switching of perpendicular magnetization by the fieldlike spin–orbit torque without an external magnetic field. Phys. Rev. Appl. 3, 064012 (2015).

    ADS  Article  CAS  Google Scholar 

  60. Sampaio, J. et al. Disruptive effect of Dzyaloshinskii–Moriya interaction on the magnetic memory cell performance. Appl. Phys. Lett. 108, 112403 (2016).

    ADS  Article  CAS  Google Scholar 

  61. Lee, O. et al. Central role of domain wall depinning for perpendicular magnetization switching driven by spin torque from the spin Hall effect. Phys. Rev. B 89, 024418 (2014).

    ADS  Article  CAS  Google Scholar 

  62. Karpan, V. M., Khomyakov, P. A., Giovannetti, G., Starikov, A. A. & Kelly, P. J. Ni (111) | graphene | h-BN junctions as ideal spin injectors. Phys. Rev. B 84, 153406 (2011).

    ADS  Article  CAS  Google Scholar 

  63. Bunch, J. S. et al. Impermeable atomic membranes from graphene sheets. Nano Lett. 8, 2458–2462 (2008).

    ADS  CAS  PubMed  Article  Google Scholar 

  64. Berry, V. Impermeability of graphene and its applications. Carbon 62, 1–10 (2013).

    CAS  Article  Google Scholar 

  65. Chen, S. et al. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano 5, 1321–1327 (2011).

    CAS  PubMed  Article  Google Scholar 

  66. Hsieh, Y.-P. et al. Complete corrosion inhibition through graphene defect passivation. ACS Nano 8, 443–448 (2014).

    PubMed  Article  CAS  Google Scholar 

  67. Dlubak, B. et al. Graphene-passivated nickel as an oxidation-resistant electrode for spintronics. ACS Nano 6, 10930–10934 (2012).

    CAS  PubMed  Article  Google Scholar 

  68. Martin, M.-B. et al. Protecting nickel with graphene spin-filtering membranes: a single layer is enough. Appl. Phys. Lett. 107, 012408 (2015).

    ADS  Article  CAS  Google Scholar 

  69. Galbiati, M. et al. Spinterface: crafting spintronics at the molecular scale. MRS Bull. 39, 602–607 (2014).

    CAS  Article  Google Scholar 

  70. Cuchet, L. et al. Influence of a Ta spacer on the magnetic and transport properties of perpendicular magnetic tunnel junctions. Appl. Phys. Lett. 103, 052402 (2013).

    ADS  Article  CAS  Google Scholar 

  71. Lee, T. Y., Won, Y. C., Lim, S. H. & Lee, S.-R. Formation of a bcc (001)-textured CoFe layer by the insertion of an FeZr layer in multilayer-based stacks with perpendicular magnetic anisotropy. Appl. Phys. Exp. 7, 063002 (2014).

    ADS  CAS  Article  Google Scholar 

  72. Weatherup, R. S., Dlubak, B. & Hofmann, S. Kinetic control of catalytic CVD for high-quality graphene at low temperatures. ACS Nano 6, 9996–10003 (2012).

    CAS  PubMed  Article  Google Scholar 

  73. Dahal, A. & Batzill, M. Graphene–nickel interfaces: a review. Nanoscale 6, 2548–2562 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  74. Caneva, S. et al. Nucleation control for large, single crystalline domains of monolayer hexagonal boron nitride via Si-doped Fe catalysts. Nano Lett. 15, 1867–1875 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. Piquemal-Banci, M. et al. Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers. Appl. Phys. Lett. 108, 102404 (2016).

    ADS  Article  CAS  Google Scholar 

  76. Dedkov, Y. S., Fonin, M. & Laubschat, C. A possible source of spin-polarized electrons: the inert graphene/Ni (111) system. Appl. Phys. Lett. 92, 052506 (2008).

    ADS  Article  CAS  Google Scholar 

  77. Piquemal-Banci, M. L. et al. Insulator-to-metallic spin-filtering in 2D-magnetic tunnel junctions based on hexagonal boron nitride. ACS Nano 12, 4712–4718 (2018). This work demonstrated a magnetoresistance of >50% from 2DM hybridized MTJs.

    CAS  PubMed  Article  Google Scholar 

  78. Piquemal-Banci, M. et al. Spin filtering by proximity effects at hybridized interfaces in spin-valves with 2D graphene barriers. Nat. Commun. 11, 5670 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. Mistry, K. et al. A 45nm logic technology with high-k+ metal gate transistors, strained silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% Pb-free packaging. In IEEE International Electron Devices Meeting 247–250 (IEEE, 2007).

  80. Chau, R., Doyle, B., Datta, S., Kavalieros, J. & Zhang, K. Integrated nanoelectronics for the future. Nat. Mater. 6, 810–812 (2007).

    ADS  CAS  PubMed  Article  Google Scholar 

  81. Martin, M.-B. et al. Sub-nanometer atomic layer deposition for spintronics in magnetic tunnel junctions based on graphene spin-filtering membranes. ACS Nano 8, 7890–7895 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. Kern, L.-M. et al. Atomic layer deposition of a MgO barrier for a passivated black phosphorus spintronics platform. Appl. Phys. Lett. 114, 053107 (2019).

    ADS  Article  CAS  Google Scholar 

  83. Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  84. Sun, Y., Wu, S.-C., Ali, M. N., Felser, C. & Yan, B. Prediction of Weyl semimetal in orthorhombic MoTe2. Phys. Rev. B 92, 161107 (2015).

    ADS  Article  CAS  Google Scholar 

  85. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    ADS  CAS  Article  Google Scholar 

  86. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  87. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017). The above two papers reported 2D vdW ferromagnets.

    ADS  CAS  PubMed  Article  Google Scholar 

  88. Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018). This work showed gate-tunable room-temperature ferromagnetism in 2D Fe3GeTe2.

    ADS  CAS  PubMed  Article  Google Scholar 

  89. Freitas, D. C. et al. Ferromagnetism in layered metastable 1T-CrTe2. J. Phys. Condens. Matter 27, 176002 (2015).

    ADS  PubMed  Article  CAS  Google Scholar 

  90. Costa, J. et al. Impact of MgO thickness on the performance of spin-transfer torque nano-oscillators. IEEE Trans. Magn. 51, 15552723 (2015).

    Google Scholar 

  91. Sato, S. et al. Study on initial current leakage spots in CoFeB-capped MgO tunnel barrier by conductive atomic force microscopy. Jpn J. Appl. Phys. 55, 04EE05 (2016).

    ADS  Article  CAS  Google Scholar 

  92. Karpan, V. et al. Graphite and graphene as perfect spin filters. Phys. Rev. Lett. 99, 176602 (2007). A seminal paper on the potential of 2D materials (here graphene) for spin filtering in MTJs.

    ADS  CAS  PubMed  Article  Google Scholar 

  93. Piquemal-Banci, M. et al. 2D-MTJs: introducing 2D materials in magnetic tunnel junctions. J. Phys. D 50, 203002 (2017).

    ADS  Article  CAS  Google Scholar 

  94. Novoselov, K., Mishchenko, A., Carvalho, A. & Neto, A. C. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    CAS  PubMed  Article  Google Scholar 

  95. Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017).

    ADS  PubMed  Article  CAS  Google Scholar 

  96. Yazyev, O. V. & Pasquarello, A. Magnetoresistive junctions based on epitaxial graphene and hexagonal boron nitride. Phys. Rev. B 80, 035408 (2009).

    ADS  Article  CAS  Google Scholar 

  97. Lazić, P., Sipahi, G., Kawakami, R. & Žutić, I. Graphene spintronics: spin injection and proximity effects from first principles. Phys. Rev. B 90, 085429 (2014).

    ADS  Article  CAS  Google Scholar 

  98. Cobas, E., Friedman, A. L., van’t Erve, O. M., Robinson, J. T. & Jonker, B. T. Graphene as a tunnel barrier: graphene-based magnetic tunnel junctions. Nano Lett. 12, 3000–3004 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  99. Asshoff, P. U. et al. Magnetoresistance in Co–hBN–NiFe tunnel junctions enhanced by resonant tunneling through single defects in ultrathin hBN barriers. Nano Lett. 18, 6954–6960 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  100. Wang, Z. et al. Tunneling spin valves based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals heterostructures. Nano Lett. 18, 4303–4308 (2018). This work reported the realization of an MTJ based on vdW heterostructures.

    ADS  CAS  PubMed  Article  Google Scholar 

  101. Dankert, A. & Dash, S. P. Electrical gate control of spin current in van der Waals heterostructures at room temperature. Nat. Commun. 8, 16093 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. Zatko, V. et al. Band-structure spin-filtering in vertical spin valves based on chemical vapor deposited WS2. ACS Nano 13, 14468–14476 (2019).

    CAS  PubMed  Article  Google Scholar 

  103. Yan, Z., Zhang, R., Dong, X., Qi, S. & Xu, X. Significant tunneling magnetoresistance and excellent filtering effect in CrI3-based van der Waals magnetic tunnel junctions. Phys. Chem. Chem. Phys. 22, 14773–14780 (2020).

    CAS  PubMed  Article  Google Scholar 

  104. Mohiuddin, T. M. et al. Graphene in multilayered CPP spin valves. IEEE Trans. Magn. 44, 10362084 (2008).

    Article  CAS  Google Scholar 

  105. Godel, F. et al. Voltage-controlled inversion of tunnel magnetoresistance in epitaxial nickel/graphene/MgO/cobalt junctions. Appl. Phys. Lett. 105, 152407 (2014).

    ADS  Article  CAS  Google Scholar 

  106. Iqbal, M. Z., Iqbal, M. W., Siddique, S., Khan, M. F. & Ramay, S. M. Room temperature spin valve effect in NiFe/WS2/Co junctions. Sci Rep. 6, 21038 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. Dankert, A. et al. Spin-polarized tunneling through chemical vapor deposited multilayer molybdenum disulfide. ACS Nano 11, 6389–6395 (2017).

    CAS  PubMed  Article  Google Scholar 

  108. Entani, S. et al. Magnetoresistance effect in Fe20Ni80/graphene/Fe20Ni80 vertical spin valves. Appl. Phys. Lett. 109, 082406 (2016).

    ADS  Article  CAS  Google Scholar 

  109. Caneva, S. et al. Controlling catalyst bulk reservoir effects for monolayer hexagonal boron nitride CVD. Nano Lett. 16, 1250–1261 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. Reale, F. et al. High-mobility and high-optical quality atomically thin WS2. Sci Rep. 7, 14911 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  111. Zhou, J. et al. A library of atomically thin metal chalcogenides. Nature 556, 355–359 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  112. Loh, T. A., Chua, D. H. & Wee, A. T. One-step synthesis of few-layer WS2 by pulsed laser deposition. Sci Rep. 5, 18116 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  113. Nakano, M., Wang, Y., Kashiwabara, Y., Matsuoka, H. & Iwasa, Y. Layer-by-layer epitaxial growth of scalable WSe2 on sapphire by molecular beam epitaxy. Nano Lett. 17, 5595–5599 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  114. Godel, F. et al. WS2 2D semiconductor down to monolayers by pulsed-laser deposition for large-scale integration in electronics and spintronics circuits. ACS Appl. Nano Mater. 3, 7908–7916 (2020).

    CAS  Article  Google Scholar 

  115. Zatko, V. et al. Band-gap landscape engineering in large-scale 2D semiconductor van der Waals heterostructures. ACS Nano 15, 7279–7289 (2021). This work demonstrated tunnelling barrier bandgap engineering for MTJs.

    CAS  PubMed  Article  Google Scholar 

  116. Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. & Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868–871 (2004).

    ADS  CAS  PubMed  Article  Google Scholar 

  117. Parkin, S. S. et al. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3, 862–867 (2004).

    ADS  CAS  PubMed  Article  Google Scholar 

  118. Li, X. et al. Spin-dependent transport in van der Waals magnetic tunnel junctions with Fe3GeTe2 electrodes. Nano Lett. 19, 5133–5139 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  119. Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, 1218–1222 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  120. Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018). The above two studies reported MTJs based on vdW heterostructures in which atomically thin CrI3 acts as a spin-filter tunnel barrier.

    ADS  CAS  PubMed  Article  Google Scholar 

  121. Yang, W. et al. Spin-filter induced large magnetoresistance in 2D van der Waals magnetic tunnel junctions. Nanoscale 13, 862–868 (2021).

    CAS  PubMed  Article  Google Scholar 

  122. Grimaldi, E. et al. Single-shot dynamics of spin–orbit torque and spin transfer torque switching in three-terminal magnetic tunnel junctions. Nat. Nanotechnol. 15, 111–117 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  123. Gupta, M. et al. High-density SOT-MRAM technology and design specifications for the embedded domain at 5nm node. In IEEE International Electron Devices Meeting 24.5.1–24.5.4 (IEEE, 2020).

  124. Ramaswamy, R., Lee, J. M., Cai, K. & Yang, H. Recent advances in spin-orbit torques: moving towards device applications. Appl. Phys. Rev. 5, 031107 (2018).

    ADS  Article  CAS  Google Scholar 

  125. Shao, Q. et al. Roadmap of spin-orbit torques. IEEE Trans. Magn. 57, 800439 (2021).

    CAS  Article  Google Scholar 

  126. Han, J. et al. Room-temperature spin-orbit torque switching induced by a topological insulator. Phys. Rev. Lett. 119, 077702 (2017).

    ADS  PubMed  Article  Google Scholar 

  127. Wang, Y. et al. Room temperature magnetization switching in topological insulator–ferromagnet heterostructures by spin–orbit torques. Nat. Commun. 8, 1364 (2017). The above two papers reported room-temperature SOT switching by a topological insulator.

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  128. Shi, S. et al. All-electric magnetization switching and Dzyaloshinskii–Moriya interaction in WTe2/ferromagnet heterostructures. Nat. Nanotechnol. 14, 945–949 (2019). The study reported SOT switching by a Weyl semimetal spin-current source.

    ADS  CAS  PubMed  Article  Google Scholar 

  129. MacNeill, D. et al. Control of spin–orbit torques through crystal symmetry in WTe2/ferromagnet bilayers. Nat. Phys. 13, 300–305 (2017). An experimental report of the generation of an out-of-plane antidamping torque using a TMDC.

    CAS  Article  Google Scholar 

  130. Li, X. et al. Large and robust charge-to-spin conversion in sputtered Weyl semimetal WTex with structural disorder. Matter 4, 1639–1653 (2021).

  131. Shi, S. et al. Observation of the out‐of‐plane polarized spin current from CVD grown WTe2. Adv. Quantum Technol. 4, 2100038 (2021).

    CAS  Article  Google Scholar 

  132. Alghamdi, M. et al. Highly efficient spin–orbit torque and switching of layered ferromagnet Fe3GeTe2. Nano Lett. 19, 4400–4405 (2019).

    ADS  MathSciNet  CAS  PubMed  Article  Google Scholar 

  133. Wang, X. et al. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2. Sci. Adv. 5, eaaw8904 (2019). The above two studies demonstrated spin-current-induced magnetization switching in a vdW ferromagnet.

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  134. Gupta, V. et al. Manipulation of the van der Waals magnet Cr2Ge2Te6 by spin–orbit torques. Nano Lett. 20, 7482–7488 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  135. Ostwal, V., Shen, T. & Appenzeller, J. Efficient spin–orbit torque switching of the semiconducting van der Waals ferromagnet Cr2Ge2Te6. Adv. Mater. 32, 1906021 (2020).

    CAS  Article  Google Scholar 

  136. Lv, W. et al. Electric-field control of spin–orbit torques in WS2/permalloy bilayers. ACS Appl. Mater. Inter. 10, 2843–2849 (2018).

    CAS  Article  Google Scholar 

  137. Shao, Q. et al. Strong Rashba–Edelstein effect-induced spin–orbit torques in monolayer transition metal dichalcogenide/ferromagnet bilayers. Nano Lett. 16, 7514–7520 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  138. Shao, Y. et al. The current modulation of anomalous Hall effect in van der Waals Fe3GeTe2/WTe2 heterostructures. Appl. Phys. Lett. 116, 092401 (2020).

    ADS  CAS  Article  Google Scholar 

  139. Shin, I. et al. Spin–orbit torque switching in an all-van der Waals heterostructure. Adv. Mater. 34, 2101730 (2022).

    CAS  Article  Google Scholar 

  140. Loong, L. M. et al. Strain-enhanced tunneling magnetoresistance in MgO magnetic tunnel junctions. Sci. Rep. 4, 6505 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  141. Dai, Z., Liu, L. & Zhang, Z. Strain engineering of 2D materials: issues and opportunities at the interface. Adv. Mater. 31, 1805417 (2019).

    CAS  Article  Google Scholar 

  142. Loong, L. M. et al. Flexible MgO barrier magnetic tunnel junctions. Adv. Mater. 28, 4983–4990 (2016).

    CAS  PubMed  Article  Google Scholar 

  143. Sahadevan, A. M. et al. Biaxial strain effect of spin dependent tunneling in MgO magnetic tunnel junctions. Appl. Phys. Lett. 101, 042407 (2012).

    ADS  Article  CAS  Google Scholar 

  144. Žutić, I., Matos-Abiague, A., Scharf, B., Dery, H. & Belashchenko, K. Proximitized materials. Mater. Today 22, 85–107 (2019).

    Article  CAS  Google Scholar 

  145. Benítez, L. A. et al. Tunable room-temperature spin galvanic and spin Hall effects in van der Waals heterostructures. Nat. Mater. 19, 170–175 (2020). This work demonstrated gate-tunable spin Hall and spin galvanic effects at room temperature.

    ADS  PubMed  Article  CAS  Google Scholar 

  146. Jung, S. et al. A crossbar array of magnetoresistive memory devices for in-memory computing. Nature 601, 211–216 (2022). This work reported in-memory computing using MRAM devices.

    ADS  CAS  PubMed  Article  Google Scholar 

  147. Choi, S. H. et al. Large-scale synthesis of graphene and other 2D materials towards industrialization. Nat. Commun. 13, 1484 (2022).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  148. Lemme, M. C., Akinwande, D., Huyghebaert, C. & Stampfer, C. 2D materials for future heterogeneous electronics. Nat. Commun. 13, 1392 (2022).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  149. Ren, Y., Qiao, Z. & Niu, Q. Topological phases in two-dimensional materials: a review. Rep. Prog. Phys. 79, 066501 (2016).

    ADS  PubMed  Article  Google Scholar 

  150. Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  151. Xu, M., Liang, T., Shi, M. & Chen, H. Graphene-like two-dimensional materials. Chem. Rev. 113, 3766–3798 (2013).

    CAS  PubMed  Article  Google Scholar 

  152. Bowen, M. et al. Large magnetoresistance in Fe/MgO/FeCo(001) epitaxial tunnel junctions on GaAs(001). Appl. Phys. Lett. 79, 1655–1657 (2001).

    ADS  CAS  Article  Google Scholar 

  153. Wang, Q. H. et al. The magnetic genome of two-dimensional van der Waals materials. ACS Nano 16, 6960–7079 (2022).

  154. O’Hara, D. J. et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett. 18, 3125–3131 (2018).

    ADS  PubMed  Article  CAS  Google Scholar 

  155. Li, B. et al. A two-dimensional Fe-doped SnS2 magnetic semiconductor. Nat. Commun. 8, 1958 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  156. Dau, M. et al. van der Waals epitaxy of Mn-doped MoSe2 on mica. APL Mater. 7, 051111 (2019).

    ADS  Article  CAS  Google Scholar 

  157. Bonilla, M. et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 13, 289–293 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  158. Lopes, J. M. J. et al. Large-area van der Waals epitaxy and magnetic characterization of Fe3GeTe2 films on graphene. 2D Mater. 8, 041001 (2021).

    CAS  Article  Google Scholar 

  159. Ribeiro, M. et al. Large-scale epitaxy of two-dimensional van der Waals room-temperature ferromagnet Fe5GeTe2. npj 2D Mater. Appl 6, 10 (2022).

    CAS  Article  Google Scholar 

  160. Walsh, L. A. et al. Interface chemistry of contact metals and ferromagnets on the topological insulator Bi2Se3. J. Phys. Chem. C 121, 23551–23563 (2017).

    CAS  Article  Google Scholar 

  161. Galbiati, M. et al. Path to overcome material and fundamental obstacles in spin valves based on MoS2 and other transition-metal dichalcogenides. Phys. Rev. Appl. 12, 044022 (2019).

    ADS  CAS  Article  Google Scholar 

  162. Bonell, F. et al. Control of spin–orbit torques by interface engineering in topological insulator heterostructures. Nano Lett. 20, 5893–5899 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  163. Zhu, D. et al. Highly efficient charge-to-spin conversion from in situ Bi2Se3/Fe heterostructures. Appl. Phys. Lett. 118, 062403 (2021).

    ADS  CAS  Article  Google Scholar 

  164. Dau, M. T. et al. Beyond van der Waals interaction: the case of MoSe2 epitaxially grown on few-layer graphene. ACS Nano 12, 2319–2331 (2018).

    CAS  PubMed  Article  Google Scholar 

  165. Dau, M. T. et al. The valley Nernst effect in WSe2. Nat. Commun. 10, 5796 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  166. Mallet, P. et al. Bound hole states associated to individual vanadium atoms incorporated into monolayer WSe2. Phys. Rev. Lett. 125, 036802 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  167. Cai, Z., Liu, B., Zou, X. & Cheng, H.-M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 118, 6091–6133 (2018).

    CAS  PubMed  Article  Google Scholar 

  168. Nicolosi, V., Chhowalla, M., Kanatzidis, M. G., Strano, M. S. & Coleman, J. N. Liquid exfoliation of layered materials. Science 340, 1226419 (2013).

    Article  CAS  Google Scholar 

  169. Yao, J., Zheng, Z. & Yang, G. Production of large-area 2D materials for high-performance photodetectors by pulsed-laser deposition. Prog. Mater Sci. 106, 100573 (2019).

    CAS  Article  Google Scholar 

  170. Yang, Z. & Hao, J. Progress in pulsed laser deposited two-dimensional layered materials for device applications. J. Mater. Chem. C 4, 8859–8878 (2016).

    CAS  Article  Google Scholar 

  171. Tao, J. et al. Growth of wafer-scale MoS2 monolayer by magnetron sputtering. Nanoscale 7, 2497–2503 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  172. Lee, J.-H. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344, 286–289 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  173. Lee, J. S. et al. Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science 362, 817–821 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  174. Wang, L. et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 570, 91–95 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  175. Kim, J., Sakakita, H. & Itagaki, H. J. N. L. Low-temperature graphene growth by forced convection of plasma-excited radicals. Nano Lett. 19, 739–746 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  176. Lee, C. S. et al. Fabrication of metal/graphene hybrid interconnects by direct graphene growth and their integration properties. Adv. Electron. Mater. 4, 1700624 (2018).

    Article  CAS  Google Scholar 

  177. Seol, M. et al. High‐throughput growth of wafer‐scale monolayer transition metal dichalcogenide via vertical Ostwald ripening. Adv. Mater. 32, 2003542 (2020).

    CAS  Article  Google Scholar 

  178. Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  179. Delabie, A. et al. Low temperature deposition of 2D WS2 layers from WF6 and H2S precursors: impact of reducing agents. Chem. Commun. 51, 15692–15695 (2015).

    CAS  Article  Google Scholar 

  180. Reina, A. et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009). This work reported polymer-assisted transfer.

    ADS  CAS  PubMed  Article  Google Scholar 

  181. Lee, Y. et al. Wafer-scale synthesis and transfer of graphene films. Nano Lett. 10, 490–493 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  182. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010). The above two papers showed a wafer-scale transfer of 2DM using polymer and thermal release tape.

    ADS  CAS  PubMed  Article  Google Scholar 

  183. Shim, J. et al. Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science 362, 665–670 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  184. Liu, F. et al. Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices. Science 367, 903–906 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  185. Shin, Y. J. et al. Surface-energy engineering of graphene. Langmuir 26, 3798–3802 (2010).

    CAS  PubMed  Article  Google Scholar 

  186. Brennan, C. J., Nguyen, J., Yu, E. T. & Lu, N. Interface adhesion between 2D materials and elastomers measured by buckle delaminations. Adv. Mater. Interfaces 2, 1500176 (2015).

    Article  CAS  Google Scholar 

  187. Chen, P. Y., Liu, M., Wang, Z., Hurt, R. H. & Wong, I. Y. From flatland to spaceland: higher dimensional patterning with two‐dimensional materials. Adv. Mater. 29, 1605096 (2017).

    Article  CAS  Google Scholar 

  188. He, T. et al. Etching techniques in 2D materials. Adv. Mater. Technol. 4, 1900064 (2019).

    CAS  Article  Google Scholar 

  189. Cai, X., Luo, Y., Liu, B. & Cheng, H.-M. Preparation of 2D material dispersions and their applications. Chem. Soc. Rev. 47, 6224–6266 (2018).

    CAS  PubMed  Article  Google Scholar 

  190. Qiu, X. P. et al. Disorder-free sputtering method on graphene. AIP Adv. 2, 032121 (2012).

    ADS  Article  CAS  Google Scholar 

  191. Lee, T. Y. et al. Magnetic immunity guideline for embedded MRAM reliability to realize mass production. In IEEE International Reliability Physics Symposium 1–4 (IEEE, 2020).

  192. Srivastava, S. et al. Magnetic immunity of spin-transfer-torque MRAM. Appl. Phys. Lett. 114, 172405 (2019).

    ADS  Article  CAS  Google Scholar 

  193. Lee, T. Y. et al. Fast switching of STT-MRAM to realize high speed applications. In IEEE Symposium on VSLI Technology 1–2 (IEEE, 2020).

  194. Cubukcu, M. et al. Ultra-fast perpendicular spin–orbit torque MRAM. IEEE Trans. Magn. 54, 17618500 (2018).

    Article  Google Scholar 

  195. Lee, J. M. et al. Oscillatory spin–orbit torque switching induced by field-like torques. Commun. Phys. 1, 2 (2018).

    Article  Google Scholar 

  196. Krizakova, V., Garello, K., Grimaldi, E., Kar, G. S. & Gambardella, P. J. A. P. L. Field-free switching of magnetic tunnel junctions driven by spin–orbit torques at sub-ns timescales. Appl. Phys. Lett. 116, 232406 (2020).

    ADS  CAS  Article  Google Scholar 

  197. Kato, Y. et al. Improvement of write efficiency in voltage-controlled spintronic memory by development of a Ta−B spin Hall electrode. Phys. Rev. Appl. 10, 044011 (2018).

    ADS  CAS  Article  Google Scholar 

  198. The 2D Experimental Pilot Line is an initiative launched by the Graphene Flagship. Graphene Flagship https://www.graphene-flagship.eu/innovation/pilot-line/ (2020).

  199. Mishra, R. & Yang, H. Emerging spintronics phenomena and applications. IEEE Trans. Magn. 57, 0800134 (2020).

    Google Scholar 

  200. Huyghebaert, C. et al. 2D materials: roadmap to CMOS integration. In IEEE International Electron Devices Meeting 22.1.1–22.1.4 (IEEE, 2018).

  201. Microcontrollers (MCU) market trend 2021, industry size, company share, leading top countries with recent development, manufacturing cost analysis, revenues, estimates and forecast to 2027. MarketWatch https://www.marketwatch.com/press-release/microcontrollers-mcu-market-trend-2021-industry-size-company-share-leading-top-countries-with-recent-development-manufacturing-cost-analysis-revenues-estimates-and-forecast-to-2027-2021-08-11 (2021).

  202. Jabeur, K., Di Pendina, G. & Prenat, G. Ultra-energy-efficient CMOS/magnetic non-volatile flip-flop based on spin–orbit torque device. Electron. Lett. 50, 585–587 (2014).

    ADS  Article  Google Scholar 

  203. Moradi, F. et al. Spin–orbit-torque-based devices, circuits and architectures. Preprint at https://arxiv.org/abs/1912.01347 (2019).

  204. He, Z., Angizi, S., Parveen, F. & Fan, D. High performance and energy-efficient in-memory computing architecture based on SOT-MRAM. In IEEE/ACM International Symposium on Nanoscale Architectures 97–102 (IEEE, 2017).

  205. Bertolazzi, S. MRAM Technology and Market Trends (2019); Flash Memory Summit https://www.flashmemorysummit.com/Proceedings2019/08-05-Monday/20190805_MRAMDD_Plenary_Bertolazzi.pdf

  206. Everspin begins 40 nm STT-MRAM volume production. Markets Insider https://markets.businessinsider.com/news/stocks/everspin-begins-40nm-stt-mram-volume-production-1013155489 (2018).

  207. Everspin enters pilot production phase for the world’s first 28 nm 1 Gb STT-MRAM component. Everspin Technologies https://www.everspin.com/news/everspin-enters-pilot-production-phase-world%E2%80%99s-first-28-nm-1-gb-stt-mram-component (2019).

  208. Samsung ships first commercial embedded MRAM (eMRAM) product. AnandTech https://www.anandtech.com/show/14056/samsung-ships-first-commercial-emram-product (2019).

  209. GLOBALFOUNDRIES delivers industry’s first production-ready eMRAM on 22FDX platform for IoT and automotive applications. GLOBALFOUNDRIES https://www.globalfoundries.com/news-events/press-releases/globalfoundries-delivers-industrys-first-production-ready-emram-22fdx (2020).

  210. Golonzka, O. et al. MRAM as embedded non-volatile memory solution for 22FFL FinFET technology. In IEEE International Electron Devices Meeting 18.1.1–18.1.4 (IEEE, 2018).

Download references

Acknowledgements

M.C., S.C., B.D., A.F., K.G., M.-B. M., P.S., S.O.V. and S.R. acknowledge the European Union Horizon 2020 research and innovation programme for grant number 881603 (Graphene Flagship). The Catalan Institute of Nanoscience and Nanotechnology is supported by the Severo Ochoa Centres of Excellence programme, funded by the Spanish Research Agency (AEI, grant number SEV-2017-0706). S.O.V. thanks the European Research Council (ERC) under grant agreements 306652 SPINBOUND and 899896 SOTMEM, and the Spanish Research Agency (AEI), Ministry of Science and Innovation (PID2019-111773RB-I00/AEI/10.13039/501100011033). H.Y. is supported by SpOT-LITE programme (A*STAR grant, A18A6b0057) through RIE2020 funds, Singapore Ministry of Education (MOE) Tier 2 (R-263-000-E29-112), National Research Foundation (NRF) Singapore Investigatorship (NRFI06-2020-0015) and Samsung Electronics’ University R&D programme. S.C. and G.S.K. acknowledge IMEC’s Industrial Affiliation Program on MRAM devices. M.C. and M.J. acknowledge the French National Research Agency through the MAGICVALLEY project (ANR-18-CE24-0007). B. Dieny acknowledges ERC MAGICAL 669204. M.C. acknowledges H. X. Yang, A. Hallal and F. Ibrahim. P.S. and B. Dlubak acknowledge the French National Research Agency through the SoGraphMem project (ANR-18-CE24-0007).

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote and commented on the manuscript.

Corresponding authors

Correspondence to Hyunsoo Yang, Sergio O. Valenzuela or Stephan Roche.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Valenzuela, S.O., Chshiev, M. et al. Two-dimensional materials prospects for non-volatile spintronic memories. Nature 606, 663–673 (2022). https://doi.org/10.1038/s41586-022-04768-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-04768-0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing