Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evolution of Earth’s tectonic carbon conveyor belt

Abstract

Concealed deep beneath the oceans is a carbon conveyor belt, propelled by plate tectonics. Our understanding of its modern functioning is underpinned by direct observations, but its variability through time has been poorly quantified. Here we reconstruct oceanic plate carbon reservoirs and track the fate of subducted carbon using thermodynamic modelling. In the Mesozoic era, 250 to 66 million years ago, plate tectonic processes had a pivotal role in driving climate change. Triassic–Jurassic period cooling correlates with a reduction in solid Earth outgassing, whereas Cretaceous period greenhouse conditions can be linked to a doubling in outgassing, driven by high-speed plate tectonics. The associated ‘carbon subduction superflux’ into the subcontinental mantle may have sparked North American diamond formation. In the Cenozoic era, continental collisions slowed seafloor spreading, reducing tectonically driven outgassing, while deep-sea carbonate sediments emerged as the Earth’s largest carbon sink. Subduction and devolatilization of this reservoir beneath volcanic arcs led to a Cenozoic increase in carbon outgassing, surpassing mid-ocean ridges as the dominant source of carbon emissions 20 million years ago. An increase in solid Earth carbon emissions during Cenozoic cooling requires an increase in continental silicate weathering flux to draw down atmospheric carbon dioxide, challenging previous views and providing boundary conditions for future carbon cycle models.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Key global plate tectonic parameters driving the oceanic carbon conveyor belt.
Fig. 2: Carbon area density in the oceanic lithosphere through time.
Fig. 3: Carbon flux into oceanic plate reservoirs and subduction flux.
Fig. 4: Total carbon subducted into the mantle since 250 Ma.
Fig. 5: CO2 in subducting plate as a function of pressure and temperature from thermodynamic modelling.
Fig. 6: Comparison of major carbon fluxes with palaeoclimate proxies and continental arc length.

References

  1. Broecker, W. The Great Ocean Conveyor: Discovering the Trigger for Abrupt Climate Change (Princeton Univ. Press, 2010).

  2. Orcutt, B. N., Daniel, I. & Dasgupta, R. Deep Carbon: Past to Present (Cambridge Univ. Press, 2019).This book provides a review of carbon inside the Earth, including its quantities, movements, forms, origins, changes over time and impacts on planetary processes.

  3. Berner, R. A., Lasaga, A. C. & Garrels, R. M. The carbonate–silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283, 641–683 (1983).

    ADS  CAS  Article  Google Scholar 

  4. Dasgupta, R. & Hirschmann, M. M. The deep carbon cycle and melting in Earth’s interior. Earth Planet. Sci. Lett. 298, 1–13 (2010).

    ADS  CAS  Article  Google Scholar 

  5. Mills, B. J. W. et al. Modelling the long-term carbon cycle, atmospheric CO2, and Earth surface temperature from late Neoproterozoic to present day. Gondwana Res. 67, 172–186 (2019). A synthesis of estimates for global average surface temperature, atmospheric CO2 concentration and predictions of box models of the long-term carbon cycle.

    ADS  CAS  Article  Google Scholar 

  6. Werner, C. et al. in Deep Carbon: Past to Present (eds Orcutt, B. N. et al.) 188–236 (Cambridge Univ. Press, 2019).

  7. Berner, R. A. The Phanerozoic Carbon Cycle: CO2 and O2 (Oxford Univ. Press, 2004).

  8. Garrels, R. M. & MacKenzie, F. T. A quantitative model for the sedimentary rock cycle. Mar. Chem. 1, 27–41 (1972).

    Article  Google Scholar 

  9. Kelemen, P. B. & Manning, C. E. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc. Natl Acad. Sci. USA 112, E3997–E4006 (2015). This review summarizes carbon inputs and outputs to the mantle and emphasizes the potential for carbon to be efficiently recycled from the slab and potentially stored in the arc lithosphere.

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Keller, T., Katz, R. F. & Hirschmann, M. M. Volatiles beneath mid-ocean ridges: deep melting, channelised transport, focusing, and metasomatism. Earth Planet. Sci. Lett. 464, 55–68 (2017).

    ADS  CAS  Article  Google Scholar 

  11. Plank, T. & Manning, C. E. Subducting carbon. Nature 574, 343–352 (2019). A review of the present-day processes and fluxes involved in subducting and recycling carbon.

    ADS  CAS  PubMed  Article  Google Scholar 

  12. Jarrard, R. D. Subduction fluxes of water, carbon dioxide, chlorine, and potassium. Geochem. Geophys. Geosyst. 4, 8905 (2003).

    ADS  Article  CAS  Google Scholar 

  13. Bekaert, D. et al. Subduction-driven volatile recycling: a global mass balance. Ann. Rev. Earth Sci. 49, 37–70 (2021). This review provides an overview of Earth’s volatile inventory and the mechanisms by which volatiles are transferred between Earth reservoirs through subduction.

    ADS  CAS  Article  Google Scholar 

  14. Wong, K. et al. Deep carbon cycling over the past 200 million years: a review of fluxes in different tectonic settings. Front. Earth Sci. 7, 263 (2019).

    ADS  Article  Google Scholar 

  15. Müller, R. D. et al. A global plate model including lithospheric deformation along major rifts and orogens since the Triassic. Tectonics 38, 1884–1907 (2019). A global plate tectonic model for the Mesozoic and Cenozoic eras, including the evolution of plate boundaries and plate deformation along rifts and orogens, which forms the tectonic basis for computing carbon fluxes through time.

    ADS  Article  Google Scholar 

  16. Dutkiewicz, A., Müller, R. D., Cannon, J., Vaughan, S. & Zahirovic, S. Sequestration and subduction of deep-sea carbonate in the global ocean since the Early Cretaceous. Geology 47, 91–94 (2019). This paper presents a model for the spatiotemporal evolution of deep-sea carbonate accumulation and subduction through time.

    ADS  CAS  Article  Google Scholar 

  17. Gillis, K. M. & Coogan, L. A. Secular variation in carbon uptake into the ocean crust. Earth Planet. Sci. Lett. 302, 385–392 (2011). Ocean drilling data are used to model how the precipitation of carbonate minerals in hydrothermally altered ocean crust depends on crustal age and bottom-water temperature.

    ADS  CAS  Article  Google Scholar 

  18. Clift, P. D. A revised budget for Cenozoic sedimentary carbon subduction. Rev. Geophys. 55, 97–125 (2017).

    ADS  Article  Google Scholar 

  19. Faccenda, M. Water in the slab: a trilogy. Tectonophysics 614, 1–30 (2014). Numerical models, together with geological and geophysical observations, reveal how slab bending during subduction causes fracturing, faulting and serpentinization of the oceanic lithosphere.

    ADS  Article  Google Scholar 

  20. National Geophysical Data Center/World Data Service (NGDC/WDS). NCEI/WDS Global Significant Earthquake Database (NOAA National Centers for Environmental Information, accessed 2 December 2020); https://doi.org/10.7289/V5TD9V7K

  21. Buffett, B. & Heuret, A. Curvature of subducted lithosphere from earthquake locations in the Wadati–Benioff zone. Geochem. Geophys. Geosyst. 12, Q06010 (2011).

    ADS  Article  CAS  Google Scholar 

  22. Clift, P. & Vannucchi, P. Controls on tectonic accretion versus erosion in subduction zones: implications for the origin and recycling of the continental crust. Rev. Geophys. 42, RG2001 (2004). A review of the parameters controlling the tectonic accretion and erosion of sediments along subduction zones.

    ADS  Article  Google Scholar 

  23. Müller, R. D. & Dutkiewicz, A. Oceanic crustal carbon cycle drives 26-million-year atmospheric carbon dioxide periodicities. Sci. Adv. 4, eaaq0500 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  24. Merdith, A. S., Atkins, S. E. & Tetley, M. G. Tectonic controls on carbon and serpentinite storage in subducted upper oceanic lithosphere for the past 320 Ma. Front. Earth Sci. 7, 332 (2019). A model explaining how seafloor spreading rates have governed the storage and subduction of serpentinite in the oceanic lithosphere through time.

    ADS  Article  Google Scholar 

  25. Tucker, J. M., Mukhopadhyay, S. & Gonnermann, H. M. Reconstructing mantle carbon and noble gas contents from degassed mid-ocean ridge basalts. Earth Planet. Sci. Lett. 496, 108–119 (2018).

    ADS  CAS  Article  Google Scholar 

  26. Le Voyer, M., Kelley, K. A., Cottrell, E. & Hauri, E. Heterogeneity in mantle carbon content from CO2-undersaturated basalts. Nat. Commun. 8, 14062 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  27. Marty, B., Alexander, C. M. O. D. & Raymond, S. N. Primordial origins of Earth’s carbon. Rev. Mineral. Geochem. 75, 149–181 (2013).

    CAS  Article  Google Scholar 

  28. Resing, J. A., Lupton, J. E., Feely, R. A. & Lilley, M. D. CO2 and 3He in hydrothermal plumes: implications for mid-ocean ridge CO2 flux. Earth Planet. Sci. Lett. 226, 449–464 (2004).

    ADS  CAS  Article  Google Scholar 

  29. Tucholke, B. E., Lin, J. & Kleinrock, M. C. Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid‐Atlantic Ridge. J. Geophys. Res. Solid Earth 103, 9857–9866 (1998).

    Article  Google Scholar 

  30. Cannat, M., Fontaine, F. & Escartin, J. in Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges (eds Rona, P. A. et al.) 241–264 (American Geophysical Union, 2010).

  31. Alt, J. C. & Teagle, D. A. H. The uptake of carbon during alteration of ocean crust. Geochim. Cosmochim. Acta 63, 1527–1535 (1999).

    ADS  CAS  Article  Google Scholar 

  32. Hay, W. W. in Coccolithophores—From Molecular Processes to Global Impact (eds Thierstein, H. R. & Young, J. R.) 509–528 (Springer, 2004).

  33. Roth, P. H. in North Atlantic Palaeoceanography (eds Summerhayes, C. P. & Shackleton, N. J.) 299–320 (Geological Society Special Publication No. 21, 1986).

  34. Connolly, J. A. D. The geodynamic equation of state: what and how. Geochem. Geophys. Geosyst. 10, Q10014 (2009).

    ADS  Article  Google Scholar 

  35. Gonzalez, C. M., Gorczyk, W. & Gerya, T. Decarbonation of subducting slabs: Insight from petrological–thermomechanical modeling. Gondwana Res. 36, 314–332 (2016).

    ADS  CAS  Article  Google Scholar 

  36. Shilobreeva, S., Martinez, I., Busigny, V., Agrinier, P. & Laverne, C. Insights into C and H storage in the altered oceanic crust: results from ODP/IODP Hole 1256D. Geochim. Cosmochim. Acta 75, 2237–2255 (2011).

    ADS  CAS  Article  Google Scholar 

  37. Alt, J. C. et al. The role of serpentinites in cycling of carbon and sulfur: seafloor serpentinization and subduction metamorphism. Lithos 178, 40–54 (2013).

    ADS  CAS  Article  Google Scholar 

  38. Menzel, M. D., Garrido, C. J. & Sánchez-Vizcaíno, V. L. Fluid-mediated carbon release from serpentinite-hosted carbonates during dehydration of antigorite-serpentinite in subduction zones. Earth Planet. Sci. Lett. 531, 115964 (2020).

    CAS  Article  Google Scholar 

  39. Gorman, P. J., Kerrick, D. & Connolly, J. Modeling open system metamorphic decarbonation of subducting slabs. Geochem. Geophys. Geosyst. 7, Q04007 (2006).

    ADS  Article  CAS  Google Scholar 

  40. Kerrick, D. M. & Connolly, J. A. D. Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth's mantle. Nature 411, 293–296 (2001). The authors use phase equilibria to quantify the evolution of CO2 and water through subduction zone metamorphism of deep-sea carbonates, which are a major source for carbon released by arc volcanoes.

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Connolly, J. A. & Galvez, M. E. Electrolytic fluid speciation by Gibbs energy minimization and implications for subduction zone mass transfer. Earth Planet. Sci. Lett. 501, 90–102 (2018).

    ADS  CAS  Article  Google Scholar 

  42. Kerrick, D. M. & Connolly, J. A. D. Subduction of ophicarbonates and recycling of CO2 and H2O. Geology 26, 375–378 (1998).

    ADS  CAS  Article  Google Scholar 

  43. Kerrick, D. M. & Connolly, J. A. D. Metamorphic devolatilization of subducted oceanic metabasalts: implications for seismicity, arc magmatism and volatile recycling. Earth Planet. Sci. Lett. 189, 19–29 (2001).

    ADS  CAS  Article  Google Scholar 

  44. Ague, J. J. & Nicolescu, S. Carbon dioxide released from subduction zones by fluid-mediated reactions. Nat. Geosci. 7, 355–360 (2014).

    ADS  CAS  Article  Google Scholar 

  45. Farsang, S. et al. Deep carbon cycle constrained by carbonate solubility. Nat. Commun. 12, 4311 (2021).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Stewart, E. M. & Ague, J. J. Pervasive subduction zone devolatilization recycles CO2 into the forearc. Nat. Commun. 11, 6220 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Grassi, D., Schmidt, M. W. & Günther, D. Element partitioning during carbonated pelite melting at 8, 13 and 22 GPa and the sediment signature in the EM mantle components. Earth Planet. Sci. Lett. 327, 84–96 (2012).

    ADS  Article  CAS  Google Scholar 

  48. Sun, Y., Hier-Majumder, S., Xu, Y. & Walter, M. Stability and migration of slab-derived carbonate-rich melts above the transition zone. Earth Planet. Sci. Lett. 531, 116000 (2020).

    CAS  Article  Google Scholar 

  49. East, M., Müller, R. D., Williams, S., Zahirovic, S. & Heine, C. Subduction history reveals Cretaceous slab superflux as a possible cause for the mid-Cretaceous plume pulse and superswell events. Gondwana Res. 79, 125–139 (2020).

    ADS  Article  Google Scholar 

  50. Safonova, I., Litasov, K. & Maruyama, S. Triggers and sources of volatile-bearing plumes in the mantle transition zone. Geosci. Front. 6, 679–685 (2015).

    CAS  Article  Google Scholar 

  51. Li, X., Zhang, C., Li, Y., Wang, Y. & Liu, L. Refined chronostratigraphy of the late Mesozoic terrestrial strata in South China and its tectono-stratigraphic evolution. Gondwana Res. 66, 143–167 (2019).

    ADS  CAS  Article  Google Scholar 

  52. Wu, F.-Y., Lin, J.-Q., Wilde, S. A. & Yang, J.-H. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet. Sci. Lett. 233, 103–119 (2005).

    ADS  CAS  Article  Google Scholar 

  53. Cao, X., Flament, N., Li, S. & Müller, R. D. Spatio-temporal evolution and dynamic origin of Jurassic–Cretaceous magmatism in the South China Block. Earth Sci. Rev. 217, 103605 (2021).

    Article  Google Scholar 

  54. Pepper, M. B. Magmatic history and crustal genesis of South America: constraints from U–Pb ages and Hf isotopes of detrital zircons in modern rivers. Geosphere 12, 1532–1555 (2014).

    ADS  Article  Google Scholar 

  55. Paterson, S. R. & Ducea, M. N. Arc magmatic tempos: gathering the evidence. Elements 11, 91–98 (2015).

    CAS  Article  Google Scholar 

  56. Li, K., Li, L., Pearson, D. G. & Stachel, T. Diamond isotope compositions indicate altered igneous oceanic crust dominates deep carbon recycling. Earth Planet. Sci. Lett. 516, 190–201 (2019).

    ADS  CAS  Article  Google Scholar 

  57. Giuliani, A. & Pearson, D. G. Kimberlites: from deep earth to diamond mines. Elements 15, 377–380 (2019).

    CAS  Article  Google Scholar 

  58. Heaman, L. M., Kjarsgaard, B. A. & Creaser, R. A. The timing of kimberlite magmatism in North America: implications for global kimberlite genesis and diamond exploration. Lithos 71, 153–184 (2003).

    ADS  CAS  Article  Google Scholar 

  59. Currie, C. A. & Beaumont, C. Are diamond-bearing Cretaceous kimberlites related to low-angle subduction beneath western North America? Earth Planet. Sci. Lett. 303, 59–70 (2011). Low-angle subduction stabilizes hydrous minerals in the cool interior of the subducting plate over large distances from the trench and eventual partial melting of these minerals can drive diamond formation.

    ADS  CAS  Article  Google Scholar 

  60. Weiss, Y., McNeill, J., Pearson, D. G., Nowell, G. M. & Ottley, C. J. Highly saline fluids from a subducting slab as the source for fluid-rich diamonds. Nature 524, 339–342 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  61. Foley, S. F., Yaxley, G. M. & Kjarsgaard, B. A. Kimberlites from source to surface: insights from experiments. Elements 15, 393–398 (2019).

    CAS  Article  Google Scholar 

  62. Tappe, S., Smart, K., Torsvik, T., Massuyeau, M. & de Wit, M. Geodynamics of kimberlites on a cooling Earth: clues to plate tectonic evolution and deep volatile cycles. Earth Planet. Sci. Lett. 484, 1–14 (2018).

    ADS  CAS  Article  Google Scholar 

  63. Spandler, C. & Pirard, C. Element recycling from subducting slabs to arc crust: a review. Lithos 170, 208–223 (2013).

    ADS  Article  CAS  Google Scholar 

  64. Gorczyk, W., Gonzalez, C. M. & Hobbs, B. Carbon dioxide as a proxy for orogenic gold source. Ore Geol. Rev. 127, 103829 (2020).

    Article  Google Scholar 

  65. Kokh, M. A., Akinfiev, N. N., Pokrovski, G. S., Salvi, S. & Guillaume, D. The role of carbon dioxide in the transport and fractionation of metals by geological fluids. Geochim. Cosmochim. Acta 197, 433–466 (2017).

    ADS  CAS  Article  Google Scholar 

  66. Haas, J. R., Shock, E. L. & Sassani, D. C. Rare earth elements in hydrothermal systems: estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures. Geochim. Cosmochim. Acta 59, 4329–4350 (1995).

    ADS  CAS  Article  Google Scholar 

  67. Phillips, G. N. & Evans, K. A. Role of CO2 in the formation of gold deposits. Nature 429, 860–863 (2004).

    ADS  CAS  PubMed  Article  Google Scholar 

  68. Lee, C.-T. A., Jiang, H., Dasgupta, R. & Torres, M. in Deep Carbon: Past to Present (eds Orcutt, B. N. et al.) 313–357 (Cambridge Univ. Press, 2019).This paper explains the deep carbon cycle feedback loops involved in the whole Earth-system evolution and climate change.

  69. Berner, R. A. A model for atmospheric CO2 over Phanerozoic time. Am. J. Sci. 291, 339–376 (1991).

    ADS  CAS  Article  Google Scholar 

  70. Berner, R. A. GEOCARBSULF: a combined model for Phanerozoic atmospheric O2 and CO2. Geochim. Cosmochim. Acta 70, 5653–5664 (2006).

    ADS  CAS  Article  Google Scholar 

  71. Lenton, T. M., Daines, S. J. & Mills, B. J. COPSE reloaded: an improved model of biogeochemical cycling over Phanerozoic time. Earth Sci. Rev. 178, 1–28 (2018).

    ADS  CAS  Article  Google Scholar 

  72. Krissansen-Totton, J. & Catling, D. C. Constraining climate sensitivity and continental versus seafloor weathering using an inverse geological carbon cycle model. Nat. Commun. 8, 15423 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. Marcilly, C. M., Torsvik, T. H., Domeier, M. & Royer, D. L. New paleogeographic and degassing parameters for long-term carbon cycle models. Gondwana Res. 97, 176–203 (2021).

    ADS  CAS  Article  Google Scholar 

  74. Wilkinson, B. H. & Walker, J. C. Phanerozoic cycling of sedimentary carbonate. Am. J. Sci. 289, 525–548 (1989).

    ADS  CAS  Article  Google Scholar 

  75. Caldeira, K. Enhanced Cenozoic chemical weathering and the subduction of pelagic carbonate. Nature 357, 578–581 (1992). This author recognized that the gradual shift of carbonate deposition from continental to pelagic settings must have increased the subduction of carbonates and their metamorphic decarbonation, resulting in a Cenozoic increase in CO2 degassing from volcanic arcs.

    ADS  CAS  Article  Google Scholar 

  76. Foster, G. L., Royer, D. L. & Lunt, D. J. Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun. 8, 14845 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. Witkowski, C. R., Weijers, J. W., Blais, B., Schouten, S. & Damsté, J. S. S. Molecular fossils from phytoplankton reveal secular pCO2 trend over the Phanerozoic. Sci. Adv. 4, eaat4556 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. Gernon, T. et al. Global chemical weathering dominated by continental arcs since the mid-Palaeozoic. Nat. Geosci. 14, 690–696 (2021).

    ADS  CAS  Article  Google Scholar 

  79. McKenzie, N. R. et al. Continental arc volcanism as the principal driver of icehouse-greenhouse variability. Science 352, 444–447 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  80. Pall, J. et al. The influence of carbonate platform interactions with subduction zone volcanism on palaeo-atmospheric CO2 since the Devonian. 14, 857–870 (2018).

  81. Cao, W., Lee, C.-T. A. & Lackey, J. S. Episodic nature of continental arc activity since 750 Ma: a global compilation. Earth Planet. Sci. Lett. 461, 85–95 (2017).

    ADS  CAS  Article  Google Scholar 

  82. Merdith, A. S., Williams, S. E., Brune, S., Collins, A. S. & Müller, R. D. Rift and plate boundary evolution across two supercontinent cycles. Global Planet. Change 173, 1–14 (2019).

    ADS  Article  Google Scholar 

  83. Goddéris, Y. & Donnadieu, Y. A sink-or a source-driven carbon cycle at the geological timescale? Relative importance of palaeogeography versus solid Earth degassing rate in the Phanerozoic climatic evolution. Geol. Mag. 156, 355–365 (2019).

    ADS  Article  CAS  Google Scholar 

  84. Farnsworth, A. et al. Climate sensitivity on geological timescales controlled by nonlinear feedbacks and ocean circulation. Geophys. Res. Lett. 46, 9880–9889 (2019).

    ADS  Article  Google Scholar 

  85. Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

    ADS  CAS  PubMed  Article  Google Scholar 

  86. Bluth, G. J. S. & Kump, L. Phanerozoic paleogeology. Am. J. Sci. 291, 284–308 (1991).

    ADS  Article  Google Scholar 

  87. Park, Y. et al. Emergence of the Southeast Asian islands as a driver for Neogene cooling. Proc. Natl Acad. Sci. USA 117, 25319–25326 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. Caves Rugenstein, J. K., Ibarra, D. E. & von Blanckenburg, F. Neogene cooling driven by land surface reactivity rather than increased weathering fluxes. Nature 571, 99–102 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  89. Misra, S. & Froelich, P. N. Lithium isotope history of Cenozoic seawater: changes in silicate weathering and reverse weathering. Science 335, 818–823 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  90. Bernhardt, A. et al. 10Be/9Be ratios reveal marine authigenic clay formation. Geophys. Res. Lett. 47, e2019GL086061 (2020).

    ADS  CAS  Article  Google Scholar 

  91. Li, S., Goldstein, S. L. & Raymo, M. E. Neogene continental denudation and the beryllium conundrum. Proc. Natl Acad. Sci. USA 118, e2026456118 (2021).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  92. Dunlea, A. G., Murray, R. W., Ramos, D. P. S. & Higgins, J. A. Cenozoic global cooling and increased seawater Mg/Ca via reduced reverse weathering. Nat. Commun. 8, 844 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  93. Isson, T. T. & Planavsky, N. J. Reverse weathering as a long-term stabilizer of marine pH and planetary climate. Nature 560, 471–475 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  94. Seton, M. et al. Global continental and ocean basin reconstructions since 200 Ma. Earth Sci. Rev. 113, 212–270 (2012).

    ADS  Article  Google Scholar 

  95. Brune, S., Williams, S. E. & Müller, R. D. Potential links between continental rifting, CO2 degassing and climate change through time. Nat. Geosci. 10, 941–946 (2017).

    ADS  CAS  Article  Google Scholar 

  96. Syracuse, E. M., van Keken, P. E. & Abers, G. A. The global range of subduction zone thermal models. Phys. Earth Planet. Inter. 183, 73–90 (2010). Two-dimensional thermal modelling of a global set of kinematically defined subduction-zone segments provides insights into the sources of fluid and melt.

    ADS  Article  Google Scholar 

  97. Lunt, D. J. et al. DeepMIP: model intercomparison of early Eocene climatic optimum (EECO) large-scale climate features and comparison with proxy data. Clim. Past Discuss. 17, 203–227 (2021).

    Article  Google Scholar 

  98. Steinthorsdottir, M. et al. The Miocene: the future of the past. Paleoceanogr. Paleoclimatol. 36, e2020PA004037 (2020).

    Google Scholar 

  99. Penman, D. E., Rugenstein, J. K. C., Ibarra, D. E. & Winnick, M. J. Silicate weathering as a feedback and forcing in Earth’s climate and carbon cycle. Earth Sci. Rev. 209, 103298 (2020).

    CAS  Article  Google Scholar 

  100. Hausfather, Z., Drake, H. F., Abbott, T. & Schmidt, G. A. Evaluating the performance of past climate model projections. Geophys. Res. Lett. 47, e2019GL085378 (2020).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

R.D.M. and S.Z. were supported by Australian Research Council grant IH130200012. S.Z. was also funded by a University of Sydney Robinson Fellowship, and Alfred P. Sloan grants G-2017-9997 and G-2018-11296. A.D. was supported by Australian Research Council Future Fellowship FT190100829. C.M.G. and W.G. were funded by the ARC Centre of Excellence for Core to Crust Fluid Systems (CE110001017). C.M.G. also received funding from ARC Discovery Project DP190100216. PyGPlates and GPlates development is funded by the AuScope National Collaborative Research Infrastructure System (NCRIS) programme. We thank R. Hazen, M. Edmonds and the Deep Carbon Observatory (DCO) Synthesis Group for discussions, which inspired this paper.

Author information

Authors and Affiliations

Authors

Contributions

R.D.M. conceived the work, and led the interpretation and writing of the manuscript. B.M. designed the carbon flux computation workflows and generated figures and videos using Jupyter notebooks. A.D. drafted the figures and contributed to the interpretation of data and writing of the manuscript. C.M.G. contributed to writing, thermodynamic modelling and providing code to calculate slab temperatures at depth. W.G. and A.M. contributed to writing. S.Z. contributed to writing of the manuscript, as well as computing seafloor age grids and guidance on processing the plate reconstruction models. T.K. oversaw the computation of carbon fluxes out of mid-ocean ridges and into the mantle lithosphere and contributed to writing.

Corresponding author

Correspondence to R. Dietmar Müller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Yves Godderis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains the Supplementary Methods, including additional information about the methodology, model uncertainties and workflows, Supplementary Fig. 1 and References.

Supplementary Data 1

Excel spreadsheet with key inputs and outputs of our model. In terms of input, the variables listed include all relevant plate tectonic parameters through time, and the outputs include all modelled carbon reservoir fluxes discussed in the paper.

Supplementary Video 1

Spreading rates and orthogonal convergence rates through time.

Supplementary Video 2

Carbon area density in oceanic mantle lithosphere through time.

Supplementary Video 3

Carbon area density in oceanic crust through time.

Supplementary Video 4

Carbonate carbon area density in deep sea sediments through time.

Supplementary Video 5

Carbon area density in oceanic lithosphere serpentinites through time.

Supplementary Video 6

Total carbon area density in oceanic plates through time.

Supplementary Video 7

Cumulative carbon area density in the mantle, in a mantle reference frame, due to oceanic crustal carbon subduction.

Supplementary Video 8

Cumulative carbon area density in the mantle, in a mantle reference frame, due to oceanic lithospheric mantle carbon subduction.

Supplementary Video 9

Cumulative carbon area density in the mantle, in a mantle reference frame, due to oceanic sedimentary carbon subduction.

Supplementary Video 10

Cumulative carbon area density in the mantle, in a mantle reference frame, due to subduction of oceanic serpentinized lithospheric mantle carbon.

Supplementary Video 11

Cumulative carbon area density in the mantle, in a mantle reference frame, due to total oceanic plate carbon subduction.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Müller, R.D., Mather, B., Dutkiewicz, A. et al. Evolution of Earth’s tectonic carbon conveyor belt. Nature 605, 629–639 (2022). https://doi.org/10.1038/s41586-022-04420-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-04420-x

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing