Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The causes of sea-level rise since 1900


The rate of global-mean sea-level rise since 1900 has varied over time, but the contributing factors are still poorly understood1. Previous assessments found that the summed contributions of ice-mass loss, terrestrial water storage and thermal expansion of the ocean could not be reconciled with observed changes in global-mean sea level, implying that changes in sea level or some contributions to those changes were poorly constrained2,3. Recent improvements to observational data, our understanding of the main contributing processes to sea-level change and methods for estimating the individual contributions, mean another attempt at reconciliation is warranted. Here we present a probabilistic framework to reconstruct sea level since 1900 using independent observations and their inherent uncertainties. The sum of the contributions to sea-level change from thermal expansion of the ocean, ice-mass loss and changes in terrestrial water storage is consistent with the trends and multidecadal variability in observed sea level on both global and basin scales, which we reconstruct from tide-gauge records. Ice-mass loss—predominantly from glaciers—has caused twice as much sea-level rise since 1900 as has thermal expansion. Mass loss from glaciers and the Greenland Ice Sheet explains the high rates of global sea-level rise during the 1940s, while a sharp increase in water impoundment by artificial reservoirs is the main cause of the lower-than-average rates during the 1970s. The acceleration in sea-level rise since the 1970s is caused by the combination of thermal expansion of the ocean and increased ice-mass loss from Greenland. Our results reconcile the magnitude of observed global-mean sea-level rise since 1900 with estimates based on the underlying processes, implying that no additional processes are required to explain the observed changes in sea level since 1900.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Observed GMSL and contributing processes.
Fig. 2: Fraction of the 40-year-average summed rate explained by each contributor.
Fig. 3: Observed basin-mean sea level and contributing processes.

Data availability

The resulting global and basin-scale reconstructions, the time series of global and basin sea-level changes and its contributors, grids with local sea-level and solid-Earth deformation due to contemporary GRD effects, and the individual ensemble members are available at

Code availability

The codes to compute the ensemble of observed sea-level changes and contributing processes, and the post-processing routines to compute statistics and to generate the figures are available at


  1. 1.

    Oppenheimer, M. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) Ch.4 (in the press).

  2. 2.

    Moore, J., Jevrejeva, S. & Grinsted, A. The historical global sea-level budget. Ann. Glaciol. 52, 8–14 (2011).

    ADS  Google Scholar 

  3. 3.

    Gregory, J. M. et al. Twentieth-century global-mean sea level rise: is the whole greater than the sum of the parts? J. Clim. 26, 4476–4499 (2013).

    ADS  Google Scholar 

  4. 4.

    Hay, C. C., Morrow, E., Kopp, R. E. & Mitrovica, J. X. Probabilistic reanalysis of twentieth-century sea-level rise. Nature 517, 481–484 (2015); erratum 552, 278 (2017).

    ADS  CAS  PubMed  Google Scholar 

  5. 5.

    Dangendorf, S. et al. Persistent acceleration in global sea-level rise since the 1960s. Nat. Clim. Change 9, 705–710 (2019).

  6. 6.

    Chambers, D. P., Merrifield, M. A. & Nerem, R. S. Is there a 60-year oscillation in global mean sea level? Geophys. Res. Lett. 39, L18607 (2012).

    ADS  Google Scholar 

  7. 7.

    Munk, W. Twentieth century sea level: an enigma. Proc. Natl Acad. Sci. USA 99, 6550–6555 (2002).

    ADS  CAS  PubMed  Google Scholar 

  8. 8.

    Church, J. A. et al. Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophys. Res. Lett. 38, L18601 (2011); erratum 40, 4066 (2013).

    ADS  Google Scholar 

  9. 9.

    Frederikse, T., Jevrejeva, S., Riva, R. E. M. & Dangendorf, S. A consistent sea-level reconstruction and its budget on basin and global scales over 1958–2014. J. Clim. 31, 1267–1280 (2018).

    ADS  Google Scholar 

  10. 10.

    WCRP Global Sea Level Budget Group. Global sea-level budget 1993–present. Earth Syst. Sci. Data 10, 1551–1590 (2018).

    ADS  Google Scholar 

  11. 11.

    Cabanes, C. Sea level rise during past 40 years determined from satellite and in situ observations. Science 294, 840–842 (2001).

    ADS  CAS  PubMed  Google Scholar 

  12. 12.

    Miller, L. & Douglas, B. C. Mass and volume contributions to twentieth-century global sea level rise. Nature 428, 406–409 (2004).

    ADS  CAS  PubMed  Google Scholar 

  13. 13.

    Jevrejeva, S., Matthews, A. & Slangen, A. The twentieth-century sea level budget: recent progress and challenges. Surv. Geophys. 38, 295–307 (2017).

    ADS  Google Scholar 

  14. 14.

    Kjeldsen, K. K. et al. Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since ad 1900. Nature 528, 396–400 (2015).

    ADS  CAS  PubMed  Google Scholar 

  15. 15.

    Zanna, L., Khatiwala, S., Gregory, J. M., Ison, J. & Heimbach, P. Global reconstruction of historical ocean heat storage and transport. Proc. Natl Acad. Sci. USA 116, 1126–1131 (2019).

    ADS  CAS  PubMed  Google Scholar 

  16. 16.

    Parkes, D. & Marzeion, B. Twentieth-century contribution to sea-level rise from uncharted glaciers. Nature 563, 551–554 (2018).

    ADS  CAS  PubMed  Google Scholar 

  17. 17.

    Humphrey, V. & Gudmundsson, L. GRACE-REC: a reconstruction of climate-driven water storage changes over the last century. Earth Syst. Sci. Data 11, 1153–1170 (2019).

    ADS  Google Scholar 

  18. 18.

    Marzeion, B., Leclercq, P. W., Cogley, J. G. & Jarosch, A. H. Brief Communication: Global reconstructions of glacier mass change during the 20th century are consistent. Cryosphere 9, 2399–2404 (2015).

    ADS  Google Scholar 

  19. 19.

    Cheng, L., Abraham, J., Hausfather, Z. & Trenberth, K. E. How fast are the oceans warming? Science 363, 128–129 (2019).

    ADS  CAS  PubMed  Google Scholar 

  20. 20.

    Dangendorf, S. et al. Reassessment of 20th century global mean sea level rise. Proc. Natl Acad. Sci. USA 114, 5946–5951 (2017).

    ADS  CAS  PubMed  Google Scholar 

  21. 21.

    Zemp, M. et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 568, 382–386 (2019); erratum 577, E9 (2020).

    ADS  CAS  PubMed  Google Scholar 

  22. 22.

    Adhikari, S. et al. What drives 20th century polar motion? Earth Planet. Sci. Lett. 502, 126–132 (2018).

    ADS  CAS  Google Scholar 

  23. 23.

    The IMBIE team. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature 558, 219–222 (2018).

    ADS  Google Scholar 

  24. 24.

    Bamber, J. L., Westaway, R. M., Marzeion, B. & Wouters, B. The land ice contribution to sea level during the satellite era. Environ. Res. Lett. 13, 063008 (2018); corrigendum 13, 099502 (2018).

    ADS  Google Scholar 

  25. 25.

    Mouginot, J. et al. Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proc. Natl Acad. Sci. USA 116, 9239–9244 (2019).

    ADS  CAS  PubMed  Google Scholar 

  26. 26.

    Chao, B. F., Wu, Y. H. & Li, Y. S. Impact of artificial reservoir water impoundment on global sea level. Science 320, 212–214 (2008).

    ADS  CAS  PubMed  Google Scholar 

  27. 27.

    Döll, P., Müller Schmied, H., Schuh, C., Portmann, F. T. & Eicker, A. Global-scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Wat. Resour. Res. 50, 5698–5720 (2014).

    ADS  Google Scholar 

  28. 28.

    Wada, Y. et al. Fate of water pumped from underground and contributions to sea-level rise. Nat. Clim. Change 6, 777–780 (2016).

    ADS  Google Scholar 

  29. 29.

    Watkins, M. M., Wiese, D. N., Yuan, D.-N., Boening, C. & Landerer, F. W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth 120, 2648–2671 (2015).

    ADS  Google Scholar 

  30. 30.

    Levitus, S. et al. World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett. 39, L10603 (2012).

    ADS  Google Scholar 

  31. 31.

    Ishii, M. et al. Accuracy of global upper ocean heat content estimation expected from present observational data sets. Sci. Online Lett. Atmos. 13, 163–167 (2017).

    Google Scholar 

  32. 32.

    Cheng, L. & Zhu, J. Benefits of CMIP5 multimodel ensemble in reconstructing historical ocean subsurface temperature variations. J. Clim. 29, 5393–5416 (2016).

    ADS  Google Scholar 

  33. 33.

    Thompson, P. R., Hamlington, B. D., Landerer, F. W. & Adhikari, S. Are long tide gauge records in the wrong place to measure global mean sea level rise? Geophys. Res. Lett. 43, 10403–10411 (2016).

    ADS  Google Scholar 

  34. 34.

    Beckley, B. D., Callahan, P. S., Hancock, D. W., Mitchum, G. T. & Ray, R. D. On the “cal-mode” correction to TOPEX satellite altimetry and its effect on the global mean sea level time series. J. Geophys. Res. Oceans 122, 8371–8384 (2017).

    ADS  Google Scholar 

  35. 35.

    Gregory, J. M. et al. Concepts and terminology for sea level: mean, variability and change, both local and global. Surv. Geophys. 40, 1251–1289 (2019).

    ADS  Google Scholar 

  36. 36.

    Durack, P. J., Wijffels, S. E. & Gleckler, P. J. Long-term sea-level change revisited: the role of salinity. Environ. Res. Lett. 9, 114017 (2014).

    ADS  Google Scholar 

  37. 37.

    Mengel, M. et al. Future sea level rise constrained by observations and long-term commitment. Proc. Natl Acad. Sci. USA 113, 2597–2602 (2016).

    ADS  CAS  PubMed  Google Scholar 

  38. 38.

    Thompson, P. R. & Merrifield, M. A. A unique asymmetry in the pattern of recent sea level change. Geophys. Res. Lett. 41, 7675–7683 (2014).

    ADS  Google Scholar 

  39. 39.

    Tamisiea, M. E. Ongoing glacial isostatic contributions to observations of sea level change. Geophys. J. Int. 186, 1036–1044 (2011).

    ADS  Google Scholar 

  40. 40.

    Melini, D. & Spada, G. Some remarks on glacial isostatic adjustment modelling uncertainties. Geophys. J. Int. 218, 401–413 (2019).

    ADS  Google Scholar 

  41. 41.

    Caron, L. et al. GIA model statistics for GRACE hydrology, cryosphere, and ocean science. Geophys. Res. Lett. 45, 2203–2212 (2018).

    ADS  Google Scholar 

  42. 42.

    Peltier, W. R., Argus, D. F. & Drummond, R. Comment on “An assessment of the ICE-6G_C (VM5a) glacial isostatic adjustment model” by Purcell et al. J. Geophys. Res. Solid Earth 123, 2019–2028 (2018).

    ADS  Google Scholar 

  43. 43.

    Wiese, D. N., Landerer, F. W. & Watkins, M. M. Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution. Wat. Resour. Res. 52, 7490–7502 (2016).

    ADS  Google Scholar 

  44. 44.

    Loomis, B. D., Rachlin, K. E., Wiese, D. N., Landerer, F. W. & Luthcke, S. B. Replacing GRACE/GRACE-FO C 30 with satellite laser ranging: impacts on Antarctic Ice Sheet mass change. Geophys. Res. Lett. 47, e2019GL085488 (2020).

    ADS  Google Scholar 

  45. 45.

    Frederikse, T., Landerer, F. W. & Caron, L. The imprints of contemporary mass redistribution on local sea level and vertical land motion observations. Solid Earth 10, 1971–1987 (2019).

    ADS  Google Scholar 

  46. 46.

    Pfeffer, W. T. et al. The Randolph Glacier Inventory: a globally complete inventory of glaciers. J. Glaciol. 60, 537–552 (2014).

    ADS  Google Scholar 

  47. 47.

    Marzeion, B., Jarosch, A. H. & Hofer, M. Past and future sea-level change from the surface mass balance of glaciers. Cryosphere 6, 1295–1322 (2012).

    ADS  Google Scholar 

  48. 48.

    Gardner, A. S. et al. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340, 852–857 (2013).

    ADS  CAS  PubMed  Google Scholar 

  49. 49.

    Cook, A. J., Fox, A. J., Vaughan, D. G. & Ferrigno, J. G. Retreating glacier fronts on the Antarctic peninsula over the past half-century. Science 308, 541–544 (2005).

    ADS  CAS  PubMed  Google Scholar 

  50. 50.

    Smith, J. A. et al. Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier. Nature 541, 77–80 (2017).

    ADS  CAS  PubMed  Google Scholar 

  51. 51.

    Lehner, B. et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 9, 494–502 (2011).

    Google Scholar 

  52. 52.

    Lettenmaier, D. P. & Milly, P. C. D. Land waters and sea level. Nat. Geosci. 2, 452–454 (2009).

    ADS  CAS  Google Scholar 

  53. 53.

    Wada, Y. et al. Past and future contribution of global groundwater depletion to sea-level rise. Geophys. Res. Lett. 39, L09402 (2012).

    ADS  Google Scholar 

  54. 54.

    Wada, Y. et al. Recent changes in land water storage and its contribution to sea level variations. Surv. Geophys. 38, 131–152 (2017).

    ADS  PubMed  Google Scholar 

  55. 55.

    Tamisiea, M. E. et al. Impact of self-attraction and loading on the annual cycle in sea level. J. Geophys. Res. 115, C07004 (2010).

    ADS  Google Scholar 

  56. 56.

    Adhikari, S., Ivins, E. R., Frederikse, T., Landerer, F. W. & Caron, L. Sea-level fingerprints emergent from GRACE mission data. Earth Syst. Sci. Data 11, 629–646 (2019).

    ADS  Google Scholar 

  57. 57.

    Schaeffer, N. Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations. Geochem. Geophys. Geosyst. 14, 751–758 (2013).

    ADS  Google Scholar 

  58. 58.

    Milne, G. A. & Mitrovica, J. X. Postglacial sea-level change on a rotating Earth. Geophys. J. Int. 133, 1–19 (1998).

    ADS  Google Scholar 

  59. 59.

    Wang, H. et al. Load Love numbers and Green’s functions for elastic Earth models PREM, iasp91, ak135, and modified models with refined crustal structure from Crust 2.0. Comput. Geosci. 49, 190–199 (2012).

    ADS  Google Scholar 

  60. 60.

    Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

    ADS  Google Scholar 

  61. 61.

    McDougall, T. J. & Barker, P. M. Getting Started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox (SCOR/IAPSO WG127, 2011).

  62. 62.

    Cheng, L. et al. Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv. 3, e1601545 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Roemmich, D. et al. On the future of Argo: a global, full-depth, multi-disciplinary array. Front. Mar. Sci. 6, 439 (2019).

    Google Scholar 

  64. 64.

    Holgate, S. J. et al. New data systems and products at the permanent service for mean sea level. J. Coast. Res. 29, 493–504 (2013).

    Google Scholar 

  65. 65.

    Permanent Service for Mean Sea Level (PSMSL). Tide Gauge Data (retrieved 29 April 2019);

  66. 66.

    Hogarth, P. Preliminary analysis of acceleration of sea level rise through the twentieth century using extended tide gauge data sets (August 2014). J. Geophys. Res. Oceans 119, 7645–7659 (2014).

    ADS  Google Scholar 

  67. 67.

    Woodworth, P. L. A note on the nodal tide in sea level records. J. Coast. Res. 280, 316–323 (2012).

    Google Scholar 

  68. 68.

    Poli, P. et al. ERA-20C: an atmospheric reanalysis of the twentieth century. J. Clim. 29, 4083–4097 (2016).

    ADS  Google Scholar 

  69. 69.

    Copernicus Climate Change Service (C3S). ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate (2019);

  70. 70.

    Frederikse, T. & Gerkema, T. Multi-decadal variability in seasonal mean sea level along the North Sea coast. Ocean Sci. 14, 1491–1501 (2018).

    ADS  Google Scholar 

  71. 71.

    Wöppelmann, G. & Marcos, M. Vertical land motion as a key to understanding sea level change and variability. Rev. Geophys. 54, 64–92 (2016).

    ADS  Google Scholar 

  72. 72.

    Wöppelmann, G. et al. Evidence for a differential sea level rise between hemispheres over the twentieth century. Geophys. Res. Lett. 41, 1639–1643 (2014).

    ADS  Google Scholar 

  73. 73.

    Kleinherenbrink, M., Riva, R. & Frederikse, T. A comparison of methods to estimate vertical land motion trends from GNSS and altimetry at tide gauge stations. Ocean Sci. 14, 187–204 (2018).

    ADS  Google Scholar 

  74. 74.

    Blewitt, G., Hammond, W. & Kreemer, C. Harnessing the GPS data explosion for interdisciplinary science. Eos 99, (2018).

  75. 75.

    Blewitt, G., Kreemer, C., Hammond, W. C. & Gazeaux, J. MIDAS robust trend estimator for accurate GPS station velocities without step detection. J. Geophys. Res. Solid Earth 121, 2054–2068 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Zlotnicki, V., Qu, Z. & Willis, J. MEaSUREs Gridded Sea Surface Height Anomalies Version 1812 (PODAAC, 2019);

  77. 77.

    Bos, M. S., Fernandes, R. M. S., Williams, S. D. P. & Bastos, L. Fast error analysis of continuous GNSS observations with missing data. J. Geod. 87, 351–360 (2013).

    ADS  Google Scholar 

  78. 78.

    Jevrejeva, S., Moore, J., Grinsted, A., Matthews, A. & Spada, G. Trends and acceleration in global and regional sea levels since 1807. Global Planet. Change 113, 11–22 (2014).

    ADS  Google Scholar 

  79. 79.

    Church, J. A. & White, N. J. Sea-level rise from the late 19th to the early 21st century. Surv. Geophys. 32, 585–602 (2011).

    ADS  Google Scholar 

  80. 80.

    Church, J. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. et al.) Ch. 13, 1137–1216 (Cambridge Univ. Press, 2013).

  81. 81.

    Frederikse, T., Riva, R. E. M. & King, M. A. Ocean bottom deformation due to present-day mass redistribution and its impact on sea level observations. Geophys. Res. Lett. 44, 12306–12314 (2017).

    ADS  Google Scholar 

  82. 82.

    Langbein, J. Noise in two-color electronic distance meter measurements revisited. J. Geophys. Res. Solid Earth 109, B04406 (2004).

    ADS  Google Scholar 

Download references


All figures were made using Generic Mapping Tools (GMT). Parts of this research (T.F., F.L., S.A., L. Caron) were conducted at the Jet Propulsion Laboratory, which is operated for NASA under contract with the California Institute of Technology. S.D. acknowledges the University of Siegen for funding a research stay at JPL. L. Cheng is supported by National Key R&D Program of China (2017YFA0603200).

Author information




T.F. and F.L. conceived and designed the study. L. Caron and S.A. provided the GIA data and provided guidance on the solid-Earth processes. D.P. provided glacier datasets and helped interpret the underlying uncertainties. V.W.H. provided the TWS reconstruction. P.H. prepared the tide-gauge dataset. L.Z. and L. Cheng helped analyse the steric datasets. Y.-H.W. created the reservoir databases. S.D. provided guidance on the sea-level reconstruction approach. T.F. performed the analysis and wrote the manuscript. All authors contributed to the discussion and helped write the manuscript.

Corresponding author

Correspondence to Thomas Frederikse.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Benoît Meyssignac and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Schematic overview of the computation of reconstructed sea level and the contributors.

Steps with a shaded background involve steps where each ensemble member is perturbed: for steps shown in bold, the estimate is drawn from a probability density function; for steps in italic, the estimate is randomly chosen from a pool of estimates. All the steps are repeated for each of the 5,000 ensemble members, until the final step, where all ensemble members are combined to estimate the mean and confidence interval of the global-mean and basin-mean sea-level budget and its components. Steps and arrows in orange refer to estimates of steric sea level, red refers to estimates of ocean mass, dark blue refers to GIA, light blue refers to tide-gauge observations, yellow refers to VLM, turquoise refers to satellite altimetry, and purple refers to the budget analysis. The global-mean steric reconstruction for 1900–2018 is from ref. 15.

Extended Data Fig. 2 Comparison with other recent sea-level reconstructions.

All panels show observed GMSL and the sum of contributors from this study and other recent GMSL reconstructions4,5,8,20. a, Annual time series and their 90% confidence intervals. b, 30-year-average rates of the GMSL reconstructions. c, Linear trends over the time intervals indicated. The shaded regions denote the 90% confidence interval. The values are relative to the 2002–2018 mean.

Extended Data Fig. 3 Map of the regions and basins.

a, The ocean basins (shading) and the regions (symbols) that belong to each basin. The shape of the region symbols denotes how the station is corrected for VLM; the size denotes the number of years for which the region provides data. The percentages in the legend show the relative size of the basin as a fraction of the sum of all basins. Each region consists of one tide-gauge station or multiple stations within a 10-km radius. b, The number of regions that provide data in a given year for each basin.

Extended Data Fig. 4 Linear trends in regional RSL due to ocean-mass changes, GIA and steric changes over three periods.

a, c, e, Local RSL trends due to contemporary GRD effects, for 1900–2018 (a), 1957–2018 (c) and 1993–2018 (e). b, RSL changes due to GIA. d, f, Local steric sea-level changes over 1957–2018 (d) and 1993–2018 (f). All trends show the ensemble-mean values. The colour scale varies between panels.

Extended Data Fig. 5 Comparison of two GIA models.

Each panel shows observed sea level, the sum of contributors and the basin-mean sea-level trend due to GIA, using the model used in this study41 (solid lines) and using the ICE6G D (VM5a) model42. Shaded areas indicate 90% confidence intervals. a, GMSL. bg, Basin-mean sea level.

Extended Data Fig. 6 Central values of individual estimates and our composite final estimate of each barystatic contributor.

a, The glacier estimates; data from this study and refs. 16,18,21. M&D, missing and disappeared glaciers (as determined by ref. 16). b, The Greenland Ice Sheet estimates; data from refs. 14,18,21,24,25. GP, contribution from Greenland peripheral glaciers. c, The Antarctic Ice Sheet estimates; data from refs. 23,24. d, The TWS estimates; data from refs. 17,26,27,28,53. All estimates are shown relative to the average height over 2003–2005. The inset in each panel shows all the estimates over 2002–2018. Shaded areas indicate 90% confidence intervals.

Extended Data Fig. 7 Individual estimates of global-mean steric sea-level changes.

The coloured time series show global-mean steric sea-level changes of each individual estimate15,30,31,32 and the averaged estimate used here (black). The shaded areas indicate 90% confidence intervals.

Extended Data Table 1 Trends in observed basin-mean sea level and its contributors

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Frederikse, T., Landerer, F., Caron, L. et al. The causes of sea-level rise since 1900. Nature 584, 393–397 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing