Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum convolutional neural networks

Abstract

Neural network-based machine learning has recently proven successful for many complex applications ranging from image recognition to precision medicine. However, its direct application to problems in quantum physics is challenging due to the exponential complexity of many-body systems. Motivated by recent advances in realizing quantum information processors, we introduce and analyse a quantum circuit-based algorithm inspired by convolutional neural networks, a highly effective model in machine learning. Our quantum convolutional neural network (QCNN) uses only O(log(N)) variational parameters for input sizes of N qubits, allowing for its efficient training and implementation on realistic, near-term quantum devices. To explicitly illustrate its capabilities, we show that QCNNs can accurately recognize quantum states associated with a one-dimensional symmetry-protected topological phase, with performance surpassing existing approaches. We further demonstrate that QCNNs can be used to devise a quantum error correction scheme optimized for a given, unknown error model that substantially outperforms known quantum codes of comparable complexity. The potential experimental realizations and generalizations of QCNNs are also discussed.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: The concept of QCNNs.
Fig. 2: Application to quantum phase recognition.
Fig. 3: MERA and QEC in the QCNN circuit.
Fig. 4: Output of a trained QCNN.
Fig. 5: QCNN for optimizing quantum error correction.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request.

References

  1. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Article  ADS  Google Scholar 

  2. Lin, H. W., Tegmark, M. & Rolnick, D. Why does deep and cheap learning work so well? J. Stat. Phys. 168, 1223–1247 (2017).

    MathSciNet  MATH  Article  ADS  Google Scholar 

  3. Mehta, P. & Schwab, D. J. An exact mapping between the variational renormalization group and deep learning. Preprint at https://arxiv.org/abs/1410.3831 (2014).

  4. Carleo, G. & Troyer, M. Solving the quantum many-body problem with artificial neural networks. Science 355, 602–606 (2017).

    MathSciNet  MATH  Article  ADS  Google Scholar 

  5. van Nieuwenburg, E. P. L., Liu, Y. H. & Huber, S. D. Learning phase transitions by confusion. Nat. Phys. 13, 435–439 (2017).

    Article  Google Scholar 

  6. Carrasquilla, J. & Melko, R. G. Machine learning phases of matter. Nat. Phys. 13, 431–434 (2017).

    Article  Google Scholar 

  7. Wang, L. Discovering phase transitions with unsupervised learning. Phys. Rev. B 94, 195105 (2016).

    Article  ADS  Google Scholar 

  8. Levine, Y., Cohen, N. & Shashua, A. Quantum entanglement in deep learning architectures. Phys. Rev. Lett. 122, 065301 (2019).

    MathSciNet  Article  ADS  Google Scholar 

  9. Zhang, Y. & Kim, E.-A. Quantum loop topography for machine learning. Phys. Rev. Lett. 118, 216401 (2017).

    MathSciNet  Article  ADS  Google Scholar 

  10. Maskara, N., Kubica, A. & Jochym-O’Connor, T. Advantages of versatile neural-network decoding for topological codes. Phys. Rev. A 99, 052351 (2019).

    Article  ADS  Google Scholar 

  11. Haah, J., Harrow, A. W., Ji, Z., Wu, X. & Yu, N. Sample-optimal tomography of quantum states. IEEE Trans. Inform. Theory 63, 5628–5641 (2017).

    MathSciNet  MATH  Google Scholar 

  12. Lee, J. Y. & Landon-Cardinal, O. Practical variational tomography for critical one-dimensional systems. Phys. Rev. A 91, 062128 (2019).

    Article  ADS  Google Scholar 

  13. Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010).

    Article  ADS  Google Scholar 

  14. Monroe, C. & Kim, J. Scaling the ion trap quantum processor. Science 339, 1164–1169 (2013).

    Article  ADS  Google Scholar 

  15. Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013).

    Article  ADS  Google Scholar 

  16. Awschalom, D. D., Bassett, L. C., Dzurak, A. S., Hu, E. L. & Petta, J. R. Quantum spintronics: engineering and manipulating atom-like spins in semiconductors. Science 339, 1174–1179 (2013).

    Article  ADS  Google Scholar 

  17. Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202 (2017).

    Article  ADS  Google Scholar 

  18. Dunjko, V., Taylor, J. M. & Briegel, H. J. Quantum-enhanced machine learning. Phys. Rev. Lett. 117, 130501 (2016).

    MathSciNet  Article  ADS  Google Scholar 

  19. Farhi, E. & Neven, H. Classification with quantum neural networks on near term processors. Preprint at https://arxiv.org/abs/1802.06002 (2018).

  20. Huggins, W., Patil, P., Mitchell, B., Whaley, K. B. & Stoudenmire, E. M. Towards quantum machine learning with tensor networks. Quantum Sci. Technol. 4, 024001 (2018).

    Article  ADS  Google Scholar 

  21. Huang, C.-Y., Chen, X. & Lin, F.-L. Symmetry-protected quantum state renormalization. Phys. Rev. B 88, 205124 (2013).

    Article  ADS  Google Scholar 

  22. Singh, S. & Vidal, G. Symmetry-protected entanglement renormalization. Phys. Rev. B 88, 121108(R) (2013).

    Article  ADS  Google Scholar 

  23. Kim, I. & Swingle, B. Robust entanglement renormalization on a noisy quantum computer. Preprint at https://arxiv.org/abs/1711.07500 (2017).

  24. LeCun, Y. & Bengio, Y. in The Handbook of Brain Theory and Neural Networks 255–258 (MIT Press, 1995).

  25. Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. In Proc. 25th Int. Conf. Neural Information Processing Systems Vol. 1, 1097–1105 (2012).

  26. Vidal, G. Class of many-body states that can be efficiently simulated. Phys. Rev. Lett. 101, 110501 (2008).

    Article  ADS  Google Scholar 

  27. Aguado, M. & Vidal, G. Entanglement renormalization and topological order. Phys. Rev. Lett. 100, 070404 (2008).

    Article  ADS  Google Scholar 

  28. Pfeifer, R. N. C., Evenbly, G. & Vidal, G. Entanglement renormalization, scale invariance, and quantum criticality. Phys. Rev. A 79, 040301 (2009).

    MathSciNet  Article  ADS  Google Scholar 

  29. Preskill, J. Lecture Notes for Physics 229: Quantum Information and Computation. (California Institute of Technology, 1998).

  30. Sachdev, S. Quantum Phase Transitions (Cambridge University Press, 2011).

  31. Haldane, F. D. M. Nonlinear field theory of large-spin Heisenberg antiferromagnets: semiclassically quantized solitons of the one-dimensional easy-axis Néel state. Phys. Rev. Lett. 50, 1153 (1983).

    MathSciNet  Article  ADS  Google Scholar 

  32. Haegeman, J., Pérez-García, D., Cirac, I. & Schuch, N. Order parameter for symmetry-protected topological phases in one dimension. Phys. Rev. Lett. 109, 050402 (2012).

    Article  ADS  Google Scholar 

  33. Pollmann, F. & Turner, A. M. Detection of symmetry-protected topological phases in one dimension. Phys. Rev. B 86, 125441 (2012).

    Article  ADS  Google Scholar 

  34. Brown, L. D., Cai, T. T. & DasGupta, A. Interval estimation for a binomial proportion. Stat. Sci. 16, 101 (2001).

    MathSciNet  MATH  Google Scholar 

  35. Zeng, B. & Zhou, D. L. Topological and error-correcting properties for symmetry-protected topological order. Eur. Phys. Lett. 113, 56001 (2016).

    Article  ADS  Google Scholar 

  36. Schwarz, M., Temme, K. & Verstraete, F. Preparing projected entangled pair states on a quantum computer. Phys. Rev. Lett. 108, 110502 (2012).

    Article  ADS  Google Scholar 

  37. Ge, Y., Molnar, A. & Cirac, J. I. Rapid adiabatic preparation of injective projected entangled pair states and Gibbs states. Phys. Rev. Lett. 116, 080503 (2016).

    Article  ADS  Google Scholar 

  38. Shor, P. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493(R) (1995).

    Article  ADS  Google Scholar 

  39. Bernien, H. et al. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017).

    Article  ADS  Google Scholar 

  40. Zhang, J. et al. Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator. Nature 551, 601–604 (2017).

    Article  ADS  Google Scholar 

  41. Brydges, T. et al. Probing Rényi entanglement entropy via randomized measurements. Science 364, 260–263 (2019).

    ADS  Google Scholar 

  42. Harris, R. et al. Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018).

    MathSciNet  Article  ADS  Google Scholar 

  43. Labuhn, H. et al. Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum ising models. Nature 534, 667–670 (2016).

    Article  ADS  Google Scholar 

  44. Levine, H. et al. High-fidelity control and entanglement of Rydberg atom qubits. Phys. Rev. Lett. 121, 123603 (2018).

    Article  ADS  Google Scholar 

  45. Freeman, R. Shaped radiofrequency pulses in high resolution NMR. Progr. Nucl. Magn. Reson. Spectrosc. 32, 59–106 (1998).

    Article  Google Scholar 

  46. Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

    MathSciNet  MATH  Article  ADS  Google Scholar 

  47. Levin, M. A. & Wen, X.-G. String-net condensation: a physical mechanism for topological phases. Phys. Rev. B. 71, 045110 (2005).

    Article  ADS  Google Scholar 

  48. Schuch, N., Pérez-García, D. & Cirac, J. I. PEPS as ground states: degeneracy and topology. Ann. Phys. 325, 2153 (2010).

    MathSciNet  MATH  Article  ADS  Google Scholar 

  49. Savary, L. & Balents, L. Quantum spin liquids: a review. Rep. Prog. Phys. 80, 016502 (2017).

    Article  ADS  Google Scholar 

  50. Feiguin, A. et al. Interacting anyons in topological quantum liquids: the golden chain. Phys. Rev. Lett. 98, 160409 (2007).

    Article  ADS  Google Scholar 

  51. McCulloch, I. P. Infinite size density matrix renormalization group, revisited. Preprint at https://arxiv.org/abs/0804.2509 (2008).

  52. Vidal, G. Efficient classical simulation of slightly entangled quantum computations. Phys. Rev. Lett. 91, 147902 (2003).

    Article  ADS  Google Scholar 

  53. Nielsen, M. A. & Chuang, I. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

  54. Verresen, R., Moessner, R. & Pollman, F. One-dimensional symmetry-protected topological phases and their transitions. Phys. Rev. B 96, 165124 (2017).

    Article  ADS  Google Scholar 

  55. Bertlmann, R. A. & Krammer, P. Bloch vectors for qudits. J. Phys. A 41,, 235303 (2008).

    MathSciNet  MATH  Article  ADS  Google Scholar 

  56. Hinton, G. Lecture notes for CSC2515: Introduction to machine learning (Univ. Toronto, 2007).

  57. Schuch, N., Pérez-García, D. & Cirac, J. I. Classifying quantum phases using matrix product states and projected entangled pair states. Phys. Rev. B 84, 165139 (2011).

    Article  ADS  Google Scholar 

  58. Chen, X., Gu, Z.-C. & Wen, X.-G. Classification of gapped symmetric phases in one-dimensional spin systems. Phys. Rev. B 83, 035107 (2011).

    Article  ADS  Google Scholar 

  59. Aharonov, D. & Ben-Or, M. in Proc. 29th Annu. ACM Symp. on the Theory of Computing 176–188 (ACM, 1997).

  60. Saffman, M., Walker, T. & Molmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank I. Cirac, E. Farhi, W. W. Ho, C. Nayak, H. Pichler, J. Preskill, X. Qi, A. Vishwanath, Z. Wang and X.-G. Wen for insightful discussions. I.C. acknowledges support from the Paul and Daisy Soros Fellowship, the Alfred Spector and Rhonda Kost Fellowship of the Hertz Foundation, and the Department of Defense through the National Defense Science and Engineering Graduate Fellowship Program. S.C. acknowledges support from the Miller Institute for Basic Research in Science. This work was supported through the National Science Foundation, the Center for Ultracold Atoms, the Vannevar Bush Faculty Fellowship and Google Research Award.

Author information

Affiliations

Authors

Contributions

All authors contributed extensively to the work presented in this paper.

Corresponding author

Correspondence to Soonwon Choi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Physics thanks Zohar Ringel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cong, I., Choi, S. & Lukin, M.D. Quantum convolutional neural networks. Nat. Phys. 15, 1273–1278 (2019). https://doi.org/10.1038/s41567-019-0648-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-019-0648-8

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing