Physical sciences

  • Article |

    The partial oxidation of CH4 to CH3OH is challenging to perform in artificial systems due to ready over-oxidation to CO and CO2. Here by confining mono-iron hydroxyl sites in a metal–organic framework, photo-oxidation of CH4 to CH3OH is achieved with high selectivity and time yield.

    • Bing An
    • , Zhe Li
    •  & Martin Schröder
  • Review Article |

    This Review discusses the development of electronanotribology, its intersection with room-temperature ionic liquids and how such collaboration can be used to electrically control friction at the nanoscale.

    • Fernando Bresme
    • , Alexei A. Kornyshev
    •  & Michael Urbakh
  • Article |

    Hafnium dioxide is of technological interest as it is compatible with silicon; however, previous work indicates that a nanometre grain size is required to generate ferroelectricity. Here ferroelectric Y-doped HfO2 thin films with high crystallinity are grown with large crystal grain sizes, indicating that ferroelectricity is intrinsic.

    • Yu Yun
    • , Pratyush Buragohain
    •  & Xiaoshan Xu
  • Article
    | Open Access

    Distinct electronic and optical properties emerge from quantum confinement in low-dimensional materials. Here, combining optical characterization and ab initio calculations, the authors report an unconventional excitonic state and bound phonon sideband in layered silicon diphosphide.

    • Ling Zhou
    • , Junwei Huang
    •  & Hongtao Yuan
  • Article |

    The realization of large-scale exciton–polariton platforms operating at room temperature and exhibiting long-lived, strongly interacting excitons has been elusive. Here, the authors demonstrate a room-temperature perovskite-based polaritonic platform with a polariton lattice size of up to 10 × 10.

    • Renjie Tao
    • , Kai Peng
    •  & Wei Bao
  • Article
    | Open Access

    A design paradigm to create robust robotic metamaterials using versatile gear clusters is demonstrated. It enables intriguing programmability of elastic properties and shape while preserving stability for intelligent machines.

    • Xin Fang
    • , Jihong Wen
    •  & Peter Gumbsch
  • Article |

    Electrostatic capacitors can enable ultrafast energy storage and release, but advances in energy density and efficiency need to be made. Here, by doping equimolar Zr, Hf and Sn into Bi4Ti3O12 thin films, a high-entropy stabilized Bi2Ti2O7 pyrochlore phase forms with an energy density of 182 J cm−3 and 78% efficiency.

    • Bingbing Yang
    • , Yang Zhang
    •  & Yuan-Hua Lin
  • Article |

    Thin films of BaTiO3 do not possess the same small switching fields and energies as the single-crystal form, hindering applications. Here, thin films are synthesized that enable switching for voltages <100 mV and fields <10 kV cm–1, and a pathway to subnanosecond switching is presented.

    • Y. Jiang
    • , E. Parsonnet
    •  & L. W. Martin
  • Article |

    Fabrication of semiconductor heterojunctions typically involves a complex process and often leads to bioincompatibility. Here, the authors propose a porous heterojunction in p-type silicon via simple stain etching at ambient conditions, and apply it in optically induced biomodulation.

    • Aleksander Prominski
    • , Jiuyun Shi
    •  & Menahem Y. Rotenberg
  • Letter |

    Photoelectrochemical devices are used for direct solar fuel production, but the stability of light absorbers can hamper their commercial prospects. Integrating a BiOI light absorber into a robust oxide-based architecture with a graphite paste conductive encapsulant results in photocathodes with long-term H2 evolution activity.

    • Virgil Andrei
    • , Robert A. Jagt
    •  & Erwin Reisner
  • Article
    | Open Access

    Here the authors investigate lipid nanodiscs as drug carriers for antitumour immunotherapy. They demonstrate that flexible lipid nanodiscs functionalized with STING-activating cyclic dinucleotides exhibit superior tumour penetration and tumour cell uptake compared with spherical liposomes, resulting in improved antitumour T-cell priming and tumour regression.

    • Eric L. Dane
    • , Alexis Belessiotis-Richards
    •  & Darrell J. Irvine
  • Article |

    Extreme mechanical deformation processes can lead to nanograins in many metals, but the underlying mechanism remains unclear. Nanotwinning-assisted dynamic recrystallization is shown to facilitate grain refinement to the nanoscale at high strains and strain rates.

    • Ahmed A. Tiamiyu
    • , Edward L. Pang
    •  & Christopher A. Schuh
  • Article |

    A multiscale modelling platform combining nanoscale resonant scattering, mesoscale multiple scattering and macroscale light transport effectively predicts the macroscopic visual effects created by optical metamaterials with disordered nanostructures.

    • Kevin Vynck
    • , Romain Pacanowski
    •  & Philippe Lalanne
  • Article
    | Open Access

    Volatile organic compounds such as benzene are toxic pollutants that cause health issues even at trace concentrations. Here, a double-walled metal–organic framework is presented that demonstrates high uptake at very low pressures (<10 Pa), allowing the removal of benzene to below acceptable indoor limits.

    • Tao He
    • , Xiang-Jing Kong
    •  & Jian-Rong Li
  • Article |

    Departing from common approaches to designing Floquet topological insulators, here the authors present a photonic realization of Floquet topological insulators revealing topological phases that simultaneously support Chern and anomalous topological states.

    • Georgios G. Pyrialakos
    • , Julius Beck
    •  & Demetrios N. Christodoulides
  • Article |

    Slit-like nanochannels of pristine graphite and activated carbon, fabricated by van der Waals assembly of pristine or sculpted graphite crystals, enable comprehensive ionic response measurements and the systematic realization of their ion transport properties. These are attributed to optimal combinations of (mobile) surface charge and slippage effects at the channel wall surface in both pristine and activated nanochannels.

    • Theo Emmerich
    • , Kalangi S. Vasu
    •  & Lydéric Bocquet
  • Article |

    Nanometre-sized clusters can self-organize into centimetre-scale hierarchical structures, mimicking the complex constructions seen in nature and providing a platform to design synthetically directed advanced materials with sophisticated functions.

    • Haixiang Han
    • , Shantanu Kallakuri
    •  & Richard D. Robinson
  • Article |

    Cu2O is a promising platform to host Rydberg exciton–polaritons, where excitons strongly couple to cavity photons, however their realization has been elusive. Here, the authors report Rydberg exciton–polaritons with principal quantum numbers up to n = 6.

    • Konstantinos Orfanakis
    • , Sai Kiran Rajendran
    •  & Hamid Ohadi
  • Article |

    Superionic lithium conductivity has only been observed in a few classes of materials, mostly in thiophosphates but rarely in oxides. Corner-sharing connectivity in an oxide crystal structure framework is now shown to promote superionic conductivity.

    • KyuJung Jun
    • , Yingzhi Sun
    •  & Gerbrand Ceder
  • Perspective |

    This Perspective reviews the complementary developments in synthetic biology and biomaterials and discusses how convergence of these two fields creates a promising design strategy for the fabrication of tailored living materials for medicine and biotechnology.

    • Allen P. Liu
    • , Eric A. Appel
    •  & Ovijit Chaudhuri
  • Article |

    Precise manipulation of colloids and cells is desired for material and life sciences. However, such control remains challenging without material modifications. Here, the authors achieve reversible single-particle manipulation with subwavelength resolution and high throughput using harmonic acoustics.

    • Shujie Yang
    • , Zhenhua Tian
    •  & Tony Jun Huang
  • Article |

    Semipermeable polymeric anion exchange membranes are essential for separation, filtration and energy conversion technologies such as fuel cells. Quasi-elastic neutron scattering is now used to disentangle water, polymer relaxation and OH diffusional dynamics in a commercially available membrane.

    • Fabrizia Foglia
    • , Quentin Berrod
    •  & Paul F. McMillan
  • Article |

    Wiring photosynthetic biomachineries to electrodes is promising for sustainable bio-electricity and fuel generation, but designing such interfaces is challenging. Aerosol jet printing is now used to generate hierarchical pillar array electrodes using indium tin oxide nanoparticles for high-performance semi-artificial photosynthesis.

    • Xiaolong Chen
    • , Joshua M. Lawrence
    •  & Jenny Z. Zhang
  • Article |

    Understanding exciton dynamics in quantum dots is important for realizing their potential in optoelectronics. Here, the authors use femtosecond transient absorption microscopy to reveal ultrafast exciton transport, enhanced at larger interdot distance and taking place within hundreds of femtoseconds after generation.

    • Zhilong Zhang
    • , Jooyoung Sung
    •  & Akshay Rao
  • Article |

    Measuring three-dimensional dielectric tensors is desired for applications in material and soft matter physics. Here, the authors use a tomographic approach and inversely solve the vectorial wave equation to directly reconstruct dielectric tensors of anisotropic structures.

    • Seungwoo Shin
    • , Jonghee Eun
    •  & YongKeun Park
  • Article
    | Open Access

    High-pressure synthesis is used to stabilize superconducting (Ba,K)SbO3, whose properties provide a fresh perspective on the origin of superconductivity in these types of materials.

    • Minu Kim
    • , Graham M. McNally
    •  & Hidenori Takagi