Organocatalysis

Organocatalysis is a type of catalysis where the catalyst in the chemical reaction is an organic (non-metallic) compound. The catalysts operate both through the transient formation of covalent bonds, such as in enamine and imminium catalysis, as well as through non-covalent interactions, such as in hydrogen bonding catalysis.

Latest Research and Reviews

News and Comment

  • News & Views |

    Plastics that are developed from renewable resources and can be recycled are highly environmentally desirable alternatives to current petroleum-based non-degradable polymers. Now, an effective and robust industrially relevant strategy towards high-performance biomass-derived degradable poly(γ-thiobutyrolactone)s has been developed.

    • Sophie M. Guillaume
    Nature Chemistry 14, 245-246
  • Comments & Opinion
    | Open Access

    Organocatalysis has become a major pillar of (asymmetric) catalysis. Here, the authors discuss recent trends in organocatalytic activation modes for challenging stereoselective transformations and the emerging integration with other fields, such as photoredox catalysis and electrosynthesis.

    • Shao-Hua Xiang
    •  & Bin Tan
  • Comments & Opinion
    | Open Access

    After two decades of steady growing, symbiotic merger of organocatalysis with emerging electrochemical and photochemical tools are envisioned as hot topics in the coming decade. Here, these trends are discussed in parallel to the implementation of artificial intelligence-based technologies, which anticipate a paradigm shift in catalyst design.

    • José M. Lassaletta
  • News & Views |

    The widespread application of quinone methides — reactive intermediates in a variety of reactions — is limited by their tedious synthesis. Now, hypoiodite catalysis allows the efficient generation and use of these species in a plethora of tandem processes for the functionalization and synthesis of biologically active compounds.

    • Boris J. Nachtsheim
    Nature Chemistry 12, 326-328
  • News & Views |

    Simple methods to incorporate deuterium into organic compounds are highly sought after as deuteration can enable mechanistic studies or improve the metabolic stability of pharmaceuticals. Now, a catalytic hydrogen–deuterium exchange reaction using deuterated water allows convenient access to deuterated aldehyde building blocks.

    • Sarah M. Anthony
    • , Andrew V. Kelleghan
    •  & Neil K. Garg
    Nature Catalysis 2, 1058-1059