Materials science

  • Article |

    Nanoscale imaging of edge currents in charge-neutral graphene shows that charge accumulation can explain various exotic nonlocal transport measurements, bringing into question some theories about their origins.

    • A. Aharon-Steinberg
    • , A. Marguerite
    •  & E. Zeldov
  • Article |

    Through precise structural engineering, perovskite nanocrystals are co-assembled with other nanocrystal materials to form a range of binary and ternary perovskite-type superlattices that exhibit superfluorescence.

    • Ihor Cherniukh
    • , Gabriele Rainò
    •  & Maksym V. Kovalenko
  • Article |

    Hydrogen and helium mixtures can be compressed to the extreme temperature and pressure conditions found in the interior of Jupiter and Saturn, and the immiscibility revealed supports models of Jupiter that invoke a layered interior.

    • S. Brygoo
    • , P. Loubeyre
    •  & G. W. Collins
  • Article |

    Mapping the operational chemical, physical and electronic structure of an oxygen evolution electrocatalyst at the nanoscale links the properties of the material with the observed oxygen evolution activity.

    • J. Tyler Mefford
    • , Andrew R. Akbashev
    •  & William C. Chueh
  • Article |

    Two-dimensional electronic systems in few-layer black arsenic show gate-tunable Rashba bands with unique spin–valley flavours and unconventional quantum Hall states due to synergetic spin–orbit coupling and the Stark effect.

    • Feng Sheng
    • , Chenqiang Hua
    •  & Yi Zheng
  • Article |

    An environmentally friendly, all-organic radical battery is demonstrated, in which redox-active polypeptides perform as both cathode and anode materials, with a metal-free organic electrolyte.

    • Tan P. Nguyen
    • , Alexandra D. Easley
    •  & Karen L. Wooley
  • Article |

    The orientation of a rotating para-xylene molecule in the nanochannel of a zeolite framework can be visualised by electron microscopy to determine the host–guest van der Waals interaction inside the channel.

    • Boyuan Shen
    • , Xiao Chen
    •  & Fei Wei
  • Article |

    Origami-inspired multistable structures that can be inflated from flat to three dimensions have been designed; a library of foldable shapes is created and then combined to build metre-scale functional structures.

    • David Melancon
    • , Benjamin Gorissen
    •  & Katia Bertoldi
  • Article |

    A two-tiered dynamic design strategy achieves topological transformations of two-dimensional polymeric cellular microstructures in a reversible and temporally controllable manner through exposure to different liquids.

    • Shucong Li
    • , Bolei Deng
    •  & Joanna Aizenberg
  • Article |

    A dynamical study shows that vortices of electrical polarization have higher frequencies and smaller size than their magnetic counterparts, properties that are promising for electric-field-driven data processing.

    • Qian Li
    • , Vladimir A. Stoica
    •  & Haidan Wen
  • Article |

    An electronic analogue of the Pomeranchuk effect is present in twisted bilayer graphene, shown by the stability of entropy in a ferromagnetic phase compared to an unpolarized Fermi liquid phase at certain high temperatures.

    • Yu Saito
    • , Fangyuan Yang
    •  & Andrea F. Young
  • Article |

    A diversity-oriented synthesis approach that yields a library of architecturally broad microporous polymers is used to develop structurally diverse polymer membranes with ion specificity and to screen their properties.

    • Miranda J. Baran
    • , Mark E. Carrington
    •  & Brett A. Helms
  • Article |

    Incorporation of the pseudo-halide anion formate during the fabrication of α-FAPbI3 perovskite films eliminates deleterious iodide vacancies, yielding solar cell devices with a certified power conversion efficiency of 25.21 per cent and long-term operational stability.

    • Jaeki Jeong
    • , Minjin Kim
    •  & Jin Young Kim
  • Article |

    Polymer-covered inorganic nanoparticles are designed to self-assemble into micrometre-sized superlattice crystallites that can subsequently be built into freestanding centimetre-scale solids with hierarchical order across seven orders of magnitude.

    • Peter J. Santos
    • , Paul A. Gabrys
    •  & Robert J. Macfarlane
  • Article |

    Highly active but durable perovskite-based solid oxide fuel cell cathodes are realized using a thermal-expansion offset, achieving full thermo-mechanical compatibility between the cathode and other cell components.

    • Yuan Zhang
    • , Bin Chen
    •  & Zongping Shao
  • Article |

    A large electronic display textile that is flexible, breathable and withstands repeated machine-washing is integrated with a keyboard and power supply to create a wearable, durable communication tool.

    • Xiang Shi
    • , Yong Zuo
    •  & Huisheng Peng
  • Article |

    The binding of multidentate ligands to the surface of lead halide perovskite nanocrystals suppresses the formation of surface defects that result in halide segregation, yielding materials with efficient and colour-stable red emission.

    • Yasser Hassan
    • , Jong Hyun Park
    •  & Henry J. Snaith
  • Article |

    A free-swimming soft robot inspired by deep-sea creatures, with artificial muscle, power and control electronics spread across a polymer matrix, successfully adapts to high pressure and operates in the deep ocean.

    • Guorui Li
    • , Xiangping Chen
    •  & Wei Yang
  • Article |

    An improved device design for perovskite-based photovoltaic cells enables a certified power conversion efficiency of 25.2 per cent, translating to 80.5 per cent of the thermodynamic limit for its bandgap, which approaches those achieved by silicon solar cells.

    • Jason J. Yoo
    • , Gabkyung Seo
    •  & Jangwon Seo
  • Article |

    Polycarbonates and polyesters with materials properties like those of high-density polyethylene can be recycled chemically by depolymerization to their constituent monomers, re-polymerization yielding material with uncompromised processing and materials properties.

    • Manuel Häußler
    • , Marcel Eck
    •  & Stefan Mecking
  • Article |

    Using lanthanide-doped nanomaterials and flexible substrates, an approach that enables flat-panel-free, high-resolution, three-dimensional imaging is demonstrated and termed X-ray luminescence extension imaging.

    • Xiangyu Ou
    • , Xian Qin
    •  & Xiaogang Liu
  • Article |

    Nano-Raman spectroscopy reveals localization of some vibrational modes in reconstructed twisted bilayer graphene and provides qualitative insights into how electron–phonon coupling affects the vibrational and electronic properties of the material.

    • Andreij C. Gadelha
    • , Douglas A. A. Ohlberg
    •  & Ado Jorio
  • Article |

    Dispersion of colloidal disks in a nematic liquid crystal reveals several low-symmetry phases, including monoclinic colloidal nematic order, with interchange between them achieved through variations in temperature, concentration and surface charge.

    • Haridas Mundoor
    • , Jin-Sheng Wu
    •  & Ivan I. Smalyukh
  • Article |

    Bulk ultrafine-grained steel is prepared by an approach that involves the rapid production of coherent, disordered nanoprecipitates, which restrict grain growth but do not interfere with twinning or dislocation motion, resulting in high strength and ductility.

    • Junheng Gao
    • , Suihe Jiang
    •  & W. Mark Rainforth
  • Perspective |

    Opportunities for the application of fibrillated cellulose materials—which can be extracted from renewable resources—and broader manufacturing issues of scale-up, sustainability and synergy with the paper-making industry are discussed.

    • Tian Li
    • , Chaoji Chen
    •  & Liangbing Hu
  • Article |

    A family of topological antiferromagnetic spin textures is realized at room temperature in α-Fe2O3, and their reversible and field-free stabilization using a Kibble–Zurek-like temperature cycling is demonstrated.

    • Hariom Jani
    • , Jheng-Cyuan Lin
    •  & Paolo G. Radaelli
  • Article |

    X-ray diffraction measurements of solid carbon compressed to pressures of about two terapascals (approximately twenty million atmospheres) find that carbon retains a diamond structure even under these extreme conditions.

    • A. Lazicki
    • , D. McGonegle
    •  & J. S. Wark
  • Article |

    A reprogrammable mechanical metamaterial constructed of bistable unit cells that can be switched independently and reversibly between two stable states with distinct mechanical properties using magnetic actuation is demonstrated.

    • Tian Chen
    • , Mark Pauly
    •  & Pedro M. Reis
  • Article |

    A theoretical model, in vitro reconstitution and in vivo experimentation show that competition between droplet surface tension and membrane sheet instability dictates the form and function of autophagosomal membranes.

    • Jaime Agudo-Canalejo
    • , Sebastian W. Schultz
    •  & Roland L. Knorr
  • Article |

    Room-temperature photon avalanching realized in single thulium-doped upconverting nanocrystals enables super-resolution imaging at near-infrared wavelengths of maximal biological transparency and provides a material platform potentially suitable for other optical technologies.

    • Changhwan Lee
    • , Emma Z. Xu
    •  & P. James Schuck
  • Article |

    Machine learning models enable atomistic simulations of phase transitions in amorphous silicon, predict electronic fingerprints, and show that the pressure-induced crystallization occurs over three distinct stages.

    • Volker L. Deringer
    • , Noam Bernstein
    •  & Stephen R. Elliott
  • Article |

    State-of-the-art electron energy-loss spectroscopy in a transmission electron microscope maps the detailed phonon spectra of single defects in silicon carbide

    • Xingxu Yan
    • , Chengyan Liu
    •  & Xiaoqing Pan
  • Article |

    Pronounced quantum oscillations in magnetoresistance, a phenomenon that was only expected in metals with highly mobile carriers, are observed in the strongly insulating state of two-dimensional WTe2.

    • Pengjie Wang
    • , Guo Yu
    •  & Sanfeng Wu