Condensed-matter physics

  • Article |

    A study demonstrates the synthesis and characterization of a two-dimensional van der Waals heterostructure hosting artificial heavy fermions, providing a tunable platform for investigations of heavy-fermion physics.

    • Viliam Vaňo
    • , Mohammad Amini
    •  & Peter Liljeroth
  • Article |

    Preparing amorphous phases of carbon with mostly sp3 bonding in bulk is challenging, but macroscopic samples that are nearly pure sp3 are synthesized here by heating fullerenes at high pressure.

    • Yuchen Shang
    • , Zhaodong Liu
    •  & Bingbing Liu
  • Article
    | Open Access

    Existing techniques for high-resolution imaging of trapped quantum gases are limited to two-dimensional systems, but the approach described here works in three dimensions by magnifying the quantum gas with matter wave optics.

    • Luca Asteria
    • , Henrik P. Zahn
    •  & Christof Weitenberg
  • Article |

    A study describes the synthesis, structural characterization and formation mechanism of a paracrystalline state of diamond, adding an unusual form of diamond to the family of carbon-based materials.

    • Hu Tang
    • , Xiaohong Yuan
    •  & Huiyang Gou
  • Article |

    Four-dimensional electron energy-loss spectroscopy measurements of the vibrational spectra and the phonon dispersion at a heterointerface show localized modes that are predicted to affect the thermal conductance and electron mobility.

    • Ruishi Qi
    • , Ruochen Shi
    •  & Peng Gao
  • Article |

    An optical lattice for trapping a Bose–Einstein condensate reported here includes photon-mediated atom–atom interactions that replicate acoustic modes in real crystals.

    • Yudan Guo
    • , Ronen M. Kroeze
    •  & Benjamin L. Lev
  • Article |

    Amorphous–amorphous phase transitions in silicon dioxide are shown to proceed through a sequence of percolation transitions, a process that has relevance to a range of important liquid and glassy systems.

    • A. Hasmy
    • , S. Ispas
    •  & B. Hehlen
  • Article |

    Bloch wavefunctions of two types of hole in gallium arsenide are reconstructed by measuring the polarization of light emitted by collisions of electrons and holes accelerated by a terahertz laser.

    • J. B. Costello
    • , S. D. O’Hara
    •  & M. S. Sherwin
  • Article |

    So far only signatures of excitonic insulators have been reported, but here direct thermodynamic evidence is provided for a strongly correlated excitonic insulating state in transition metal dichalcogenide semiconductor double layers.

    • Liguo Ma
    • , Phuong X. Nguyen
    •  & Jie Shan
  • Article |

    Using scanning tunnelling microscopy and spectroscopy, fractional edge excitations are observed in nanographene spin chains, enabling the potential to study strongly correlated phases in purely organic materials.

    • Shantanu Mishra
    • , Gonçalo Catarina
    •  & Roman Fasel
  • Article
    | Open Access

    The physics of oriented topological graphs produces anomalous non-reciprocal topological edge states that have greater robustness to disorder and defects than the best performers at present: namely, Chern states.

    • Zhe Zhang
    • , Pierre Delplace
    •  & Romain Fleury
  • Article |

    Experiments using two coupled optical ring resonators and based on the concept of synthetic dimension reveal non-Hermitian energy band structures exhibiting topologically non-trivial knots and links.

    • Kai Wang
    • , Avik Dutt
    •  & Shanhui Fan
  • Article |

    So far, only indirect evidence of Wigner crystals has been reported, but a specially designed scanning tunnelling microscope is used here to directly image them in a moiré heterostructure.

    • Hongyuan Li
    • , Shaowei Li
    •  & Feng Wang
  • Article |

    A study reveals a temperature-dependent cascade of different symmetry-broken electronic states in the kagome superconductor CsV3Sb5, and highlights intriguing parallels between vanadium-based kagome metals and materials exhibiting similar electronic phases.

    • He Zhao
    • , Hong Li
    •  & Ilija Zeljkovic
  • Article |

    A study reports unconventional superconductivity and a pair density wave in the kagome superconductor CsV3Sb5, and provides a basis for understanding the microscopic origin of correlated electronic states and superconductivity in vanadium-based kagome metals.

    • Hui Chen
    • , Haitao Yang
    •  & Hong-Jun Gao
  • Article |

    An acoustic topological gallery insulator constructed from sonic crystals made of thermoplastic rods decorated with carbon nanotube films enables the out-coupling of amplified and focused sound at audible frequencies.

    • Bolun Hu
    • , Zhiwang Zhang
    •  & Johan Christensen
  • Article |

    Nonlinearity induced by a single photon is desirable because it can drive power consumption of optical devices to their fundamental quantum limit, and is demonstrated here at room temperature.

    • Anton V. Zasedatelev
    • , Anton V. Baranikov
    •  & Pavlos G. Lagoudakis
  • Review Article |

    This Review discusses the state of the art of interface optics—including refractive optics, meta-optics and moiré engineering—for the control of van der Waals polaritons.

    • Qing Zhang
    • , Guangwei Hu
    •  & Cheng-Wei Qiu
  • Article |

    Superconductivity is observed in rhombohedral trilayer graphene in the absence of a moiré superlattice, with two distinct superconducting states both occurring at a symmetry-breaking transition where the Fermi surface degeneracy changes.

    • Haoxin Zhou
    • , Tian Xie
    •  & Andrea F. Young
  • Article |

    A study shows that rhombohedral graphene is an ideal platform for well-controlled tests of many-body theory and reveals that magnetism in moiré materials is fundamentally itinerant in nature.

    • Haoxin Zhou
    • , Tian Xie
    •  & Andrea F. Young
  • Article |

    Model patchy colloids with directional bonding are designed that assemble into icosahedral quasicrystals through the propagation of an icosahedral network of bonds and may be realized using DNA origami particles.

    • Eva G. Noya
    • , Chak Kui Wong
    •  & Jonathan P. K. Doye
  • Article
    | Open Access

    A globally chiral atomic superfluid is induced by time-reversal symmetry breaking in an optical lattice and exhibits global angular momentum, which is expected to lead to topological excitations and the demonstration of a topological superfluid.

    • Xiao-Qiong Wang
    • , Guang-Quan Luo
    •  & Zhi-Fang Xu
  • Article |

    Nonlinearity is shown to induce quantized topological transport via soliton motion; specifically, we demonstrate nonlinear Thouless pumping of photons in waveguide arrays with a non-uniformly occupied energy band.

    • Marius Jürgensen
    • , Sebabrata Mukherjee
    •  & Mikael C. Rechtsman
  • Article |

    A large violation of the Pauli limit and re-entrant superconductivity in a magnetic field is reported for magic-angle twisted trilayer graphene, suggesting that the spin configuration of the superconducting state of this material is unlikely to consist of spin singlets.

    • Yuan Cao
    • , Jeong Min Park
    •  & Pablo Jarillo-Herrero
  • Article |

    A programmable quantum simulator with 256 qubits is created using neutral atoms in two-dimensional optical tweezer arrays, demonstrating a quantum phase transition and revealing new quantum phases of matter.

    • Sepehr Ebadi
    • , Tout T. Wang
    •  & Mikhail D. Lukin
  • Article |

    Fizeau drag of plasmon polaritons by an electron flow in strongly biased monolayer graphene is directly observed by exploiting the high electron mobility and slow plasmon propagation of Dirac electrons.

    • Wenyu Zhao
    • , Sihan Zhao
    •  & Feng Wang
  • Article |

    Direct infrared nano-imaging of plasmonic waves in graphene carrying high current density reveals the Fizeau drag of plasmon polaritons by fast-moving quasi-relativistic electrons.

    • Y. Dong
    • , L. Xiong
    •  & D. N. Basov
  • Article |

    First and second sound are experimentally observed in a two-dimensional superfluid, and the temperature-dependent sound speeds reveal the predicted jump in the superfluid density at the infinite-order Berezinskii–Kosterlitz–Thouless transition.

    • Panagiotis Christodoulou
    • , Maciej Gałka
    •  & Zoran Hadzibabic
  • Article |

    Optical experiments on WSe2/MoSe2 heterobilayers reveal signatures of moiré trions, including interlayer emission with sharp lines and a complex charge-density dependence, features that differ markedly from those of conventional trions.

    • Erfu Liu
    • , Elyse Barré
    •  & Chun Hung Lui
  • Article |

    Experimental measurements of vibrational sum-frequency generation spectra indicate that the dielectric response of water near an electrode may be strongly asymmetric, with different responses to positive and negative electrode charge.

    • Angelo Montenegro
    • , Chayan Dutta
    •  & Alexander V. Benderskii