Reviews & Analysis

Filter By:

  • The physics of large systems is often understood as the outcome of the local operations among its components. Now, it is shown that this picture may be incomplete in quantum systems whose interactions are constrained by symmetries.

    • Álvaro M. Alhambra
    News & Views
  • The atmospheres of most planets in our Solar System have a single large cyclonic vortex at each of their poles. Jupiter with its polygonal cyclones surrounding a single one, however, falls out of line, owing to an energy transfer to larger scales.

    • Agustín Sánchez-Lavega
    News & Views
  • The dynamics of quantum information and entanglement is closely linked to the physics of thermalization. A quantum simulator comprised of superconducting qubits has measured the spread of quantum information in a many-body system.

    • A. Safavi-Naini
    News & Views
  • Observations of an electronic state where rotational symmetry is broken show that this could be a generic feature of moiré materials.

    • Benjamin E. Feldman
    News & Views
  • A condensate of excitons was theoretically conjectured in the 1960s but has been challenging to pinpoint experimentally. Evidence has now emerged that it could be the ground state of tungsten ditelluride, a rich topological material.

    • Vitor M. Pereira
    News & Views
  • Promising machine learning techniques can deduce the properties of merging black holes from gravitational wave signals a million times faster than current state-of-the-art methods.

    • Rory Smith
    News & Views
  • Superconducting devices ubiquitously have an excess of broken Cooper pairs, which can hamper their performance. It is widely believed that external radiation is responsible but a study now suggests there must be an additional, unknown source.

    • Andrew P. Higginbotham
    News & Views
  • Acoustic waveguides have been used to implement the long-theorized phenomenon of non-Abelian braiding, in which abstract geometric constructions are used to generate transformations between different modes.

    • Yidong Chong
    News & Views
  • Solid-state sources of entangled photons with tailored properties are key elements for integrated quantum computing. Refractive-index perturbations propagating faster than the speed of light may offer a practical approach for generating entangled photon pairs.

    • Nahid Talebi
    News & Views
  • The reliability of quantum computers depends on the correction of noise-induced errors, which requires additional resources. Experiments on superconducting qubits have now demonstrated the capabilities of a less-demanding scheme for error detection.

    • Morten Kjaergaard
    News & Views
  • When crystal defects are present in an ensemble of spinning colloids that induce transverse forces on each other, the defects assemble into grain boundaries that can break the system apart into a set of crystal whorls.

    • Cynthia J. O. Reichhardt
    • Charles Reichhardt
    News & Views
  • Nonlinear optical effects are by default weak but they can be enhanced by sculpting the resulting spectrally periodic pulses from a fibre laser into an optimal shape.

    • Thibaut Sylvestre
    News & Views
  • Magnons are collective spin excitations that can propagate over long distances — an attractive trait for information-transfer technologies — but we need to better understand their thermodynamic properties. A platform using graphene may hold the key.

    • Matteo Carrega
    • Stefan Heun
    News & Views
  • Optical box traps create a potential landscape for quantum gases that is close to the homogeneous theoretical ideal. This Review of box trapping methods highlights the breakthroughs in experimental many-body physics that have followed their development.

    • Nir Navon
    • Robert P. Smith
    • Zoran Hadzibabic
    Review Article
  • Spectroscopic techniques can probe atomic and molecular gases with exquisite precision. This Review discusses the wide array of methods that have been developed and applied to study many-body physics in ultracold gases.

    • Chris J. Vale
    • Martin Zwierlein
    Review Article
  • Interaction with light can be used to precisely control motional states. This Review surveys recent progress in the preparation of non-classical mechanical states and in the application of optomechanical platforms to specific tasks in quantum technology.

    • Shabir Barzanjeh
    • André Xuereb
    • Eva M. Weig
    Review Article
  • Superconductivity and ordered states formed by interactions—both of which could be unconventional—have recently been observed in a family of kagome materials.

    • Titus Neupert
    • M. Michael Denner
    • M. Zahid Hasan
    Perspective
  • Solitary waves — solitons — occur in a wide range of physical systems with a broad array of attributes and applications. Carefully engineered light–matter interactions have now produced an optomechanical dissipative soliton with promising properties.

    • Alessia Pasquazi
    News & Views