Nature Outlook |

Stem cells

Stem cells could be the key to regenerating all manner of tissues damaged by injury or disease. This long-held dream has often outpaced reality, but incremental advances are setting the field up to realize some of its enormous potential.

This Nature Outlook is editorially independent, produced with financial support from a third party. About this content.

Features and comment

The vast potential of these building blocks of regenerative medicine is coming closer to being realized.

Outlook | | Nature

The ability to develop animals that have human organs could save the lives of people waiting for transplants, but ethical issues still need to be faced.

Outlook | | Nature

3D models of biological tissue that incorporate multiple cell types are the latest tools for understanding human development and disease.

Outlook | | Nature

More from Nature Portfolio

This Review highlights the research advances, advantages and challenges in several different strategies for generating functional β-cells for therapeutic use in diabetes mellitus. In addition, scalable bioengineering processes are also discussed for the realization of the therapeutic potential of derived β-cells.

Review Article | | Nature Reviews Endocrinology

Karen Echeverri and her colleagues showed in their recent Communications Biology study that an unconventional Fos/Jun heterodimer regulates axon regeneration in axolotl. In this article, she emphasises the diverse mechanisms of regeneration in other species and discusses future work needed to understand how the nervous system can be regenerated.

Comment | Open Access | | Communications Biology

Pluripotent cells generate all types of cells in the body and have largely been classified dichotomously into two types: naïve and primed. Arguing against a binary classification system, a study now discovers a unique transition state between naïve and primed pluripotency and describes the signals that control this transition.

News & Views | | Nature Cell Biology

Direct reprogramming converts cells from one lineage into cells of another without going through an intermediary pluripotent state. This Review describes our current understanding of the molecular mechanisms underlying direct reprogramming as well as the progress in improving its efficiency and the maturation of reprogrammed cells, and the challenges associated with its translational applications.

Review Article | | Nature Reviews Molecular Cell Biology

Producing meat without the drawbacks of conventional animal agriculture would greatly contribute to future food and nutrition security. This Review Article covers biological, technological, regulatory and consumer acceptance challenges in this developing field of biotechnology.

Review Article | | Nature Food

There has been considerable interest in cell-replacement strategies for the treatment of Parkinson disease. In this Review, Parmar, Grealish and Henchcliffe highlight some of the key developments in this field, with a focus on therapies based on dopamine neurons derived from human pluripotent stem cells.

Review Article | | Nature Reviews Neuroscience

Organoids are cellular 3D models of organs, which provide powerful in vitro platforms for the investigation of tissue and disease biology. In this Review, the authors investigate engineering approaches, including cellular engineering, designer matrices and microfluidics, to improve the reproducibility and physiological relevance of organoids.

Review Article | | Nature Reviews Materials