Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Catalytic stereodivergent total synthesis of amathaspiramide D

Abstract

The configuration of biologically active molecules typically alters their physiological properties, which highlights the importance of preparing and fully characterizing all possible stereoisomers of a lead candidate or a given natural product. However, despite many advances in asymmetric synthesis, it remains challenging to completely control both the absolute and relative configuration in catalyst-mediated asymmetric reactions in which contiguous stereogenic centres are created in a single chemical transformation. Here we report a target-oriented stereodivergent propargylic substitution reaction to access four stereoisomers of amathaspiramide D and its analogues. By combining nickel and copper-catalysed stereodivergent propargylation, the key substituted 2-pyrrolidone intermediate was synthesized with excellent selectivity. The scope of the stereoselective propargylation process was demonstrated across a range of propargylic carbonate and aldimine ester substrates. The synthetic utility of the chiral propargylated α-amino ester products was shown through reductive and cyclization transformations.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Overview of Ni/Cu dual catalysis for the stereodivergent total synthesis of amathaspiramide D.
Fig. 2: Stereodivergent propargylation to access four stereoisomers by simply employing the opposite enantiomer of one of the catalysts.
Fig. 3: Completion of the stereodivergent total synthesis of amathaspiramide D.
Fig. 4: Application and extension of the Ni/Cu dual-catalysed stereodivergent propargylic substitution reactions.

Data availability

The experimental data as well as the characterization data for all the compounds prepared during these studies are provided in the Supplementary Information. NMR data in a mnova file format and HPLC traces are available at https://zenodo.org/record/6326770#.YiG1suhBwuU, under the Creative Commons Attribution 4.0 international license. Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2112078 ((S,R)-6), 2112074 (anti-8), 2112077 (syn-10), 2112076 (syn-11), 2112075 ((S,S)-11) and 1973954 ((S,R)-29). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Jacobsen, E. N., Pfaltz, A. & Yamamoto, H. Comprehensive Asymmetric Catalysis (Springer, 1999).

  2. Farina, V., Reeves, J. T., Senanayake, C. H. & Song, J. J. Asymmetric synthesis of active pharmaceutical ingredients. Chem. Rev. 106, 2734–2793 (2006).

    CAS  PubMed  Article  Google Scholar 

  3. Taylor, M. & Jacobsen, E. N. Asymmetric catalysis in complex target synthesis. Proc. Natl Acad. Sci. USA 101, 5368–5373 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Beletskaya, I. P., Nájera, C. & Yus, M. Stereodivergent catalysis. Chem. Rev. 118, 5080–5200 (2018).

    CAS  PubMed  Article  Google Scholar 

  5. Morris, B. D. & Prinsep, M. R. Amathaspiramides A−F, novel brominated alkaloids from the marine bryozoan Amathia wilsoni. J. Nat. Prod. 62, 688–693 (1999).

    CAS  PubMed  Article  Google Scholar 

  6. Hughes, C. & Trauner, D. The total synthesis of (−)-amathaspiramide F. Angew. Chem. Int. Ed. 41, 4556–4559 (2002).

    CAS  Article  Google Scholar 

  7. Sakaguchi, K. et al. Total synthesis of (−)-amathaspiramide F. Org. Lett. 10, 5449–5452 (2008).

    CAS  PubMed  Article  Google Scholar 

  8. Chiyoda, K., Shimokawa, J. & Fukuyama, T. Total syntheses of all the amathaspiramides. Angew. Chem. Int. Ed. 51, 2505–2508 (2012).

    CAS  Article  Google Scholar 

  9. O’Connor, M., Sun, C. & Lee, D. Synthesis of amathaspiramides by aminocyanation of enolates. Angew. Chem. Int. Ed. 54, 9963–9966 (2015).

    Article  CAS  Google Scholar 

  10. Cai, S.-L., Song, R., Dong, H.-Q., Lin, G.-Q. & Sun, X.-W. Practical asymmetric synthesis of amathaspiramides B, D, and F. Org. Lett. 18, 1996–1999 (2016).

    CAS  PubMed  Article  Google Scholar 

  11. Soheili, A. & Tambar, U. K. Synthesis of (±)-amathaspiramide F and discovery of an unusual stereocontrolling element for the [2,3]-Stevens rearrangement. Org. Lett. 15, 5138–5141 (2013).

    CAS  PubMed  Article  Google Scholar 

  12. Cho, H. et al. Asymmetric Cα-alkylation of proline via chirality transfers of conformationally restricted proline derivative: application to the total synthesis of (−)-amathaspiramide F. Org. Lett. 20, 6121–6125 (2018).

    CAS  PubMed  Article  Google Scholar 

  13. Krautwald, S., Sarlah, D., Schafroth, M. A. & Carreira, E. M. Enantio- and diastereodivergent dual catalysis: α-allylation of branched aldehydes. Science 340, 1065–1068 (2013).

    CAS  PubMed  Article  Google Scholar 

  14. Du, Z. T. & Shao, Z.-H. Combining transition metal catalysis and organocatalysis—an update. Chem. Soc. Rev. 42, 1337–1378 (2012).

    Article  Google Scholar 

  15. Chen, D.-F., Han, Z.-Y., Zhou, X.-L. & Gong, L.-Z. Asymmetric organocatalysis combined with metal catalysis: concept, proof of concept, and beyond. Acc. Chem. Res. 47, 2365–2377 (2014).

    CAS  PubMed  Article  Google Scholar 

  16. Romiti, F. et al. Different strategies for designing dual-catalytic enantioselective processes: from fully cooperative to non-cooperative systems. J. Am. Chem. Soc. 141, 17952–17961 (2019).

    CAS  PubMed  Article  Google Scholar 

  17. Schafroth, M. A., Zuccarello, G., Krautwald, S., Sarlah, D. & Carreira, E. M. Stereodivergent total synthesis of Δ9-tetrahydrocannabinols. Angew. Chem. Int. Ed. 53, 13898–13901 (2014).

    CAS  Article  Google Scholar 

  18. Ding, C.-H. & Hou, X.-L. Catalytic asymmetric propargylation. Chem. Rev. 111, 1914–1937 (2011).

    CAS  PubMed  Article  Google Scholar 

  19. Sakata, K. & Nishibayashi, Y. Mechanism and reactivity of catalytic propargylic substitution reactions via metal–allenylidene intermediates: a theoretical perspective. Catal. Sci. Technol. 8, 12–25 (2018).

    CAS  Article  Google Scholar 

  20. Zhang, D.-Y. & Hu, X.-P. Recent advances in copper-catalyzed propargylic substitution. Tetrahedron Lett. 56, 283–295 (2015).

    CAS  Article  Google Scholar 

  21. Smith, S. W. & Fu, G. C. Nickel-catalyzed asymmetric cross-couplings of racemic propargylic halides with arylzinc reagents. J. Am. Chem. Soc. 130, 12645–12647 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Wendlandt, A. E., Vangal, P. & Jacobsen, E. N. Quaternary stereocentres via an enantioconvergent catalytic SN1 reaction. Nature 556, 447–451 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Watanabe, K. et al. Nickel-catalyzed asymmetric propargylic amination of propargylic carbonates bearing an internal alkyne group. Org. Lett. 20, 5448–5451 (2018).

    CAS  PubMed  Article  Google Scholar 

  24. Lu, F.-D. et al. Asymmetric propargylic radical cyanation enabled by dual organophotoredox and copper catalysis. J. Am. Chem. Soc. 141, 6167–6172 (2019).

    CAS  PubMed  Article  Google Scholar 

  25. Huo, H., Gorsline, B. J. & Fu, G. C. Catalyst-controlled doubly enantioconvergent coupling of racemic alkyl nucleophiles and electrophiles. Science 367, 559–564 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Miyazaki, Y., Zhou, B., Tsuji, H. & Kawatsura, M. Nickel-catalyzed asymmetric Friedel–Crafts propargylation of 3-substituted indoles with propargylic carbonates bearing an internal alkyne group. Org. Lett. 22, 2049–2053 (2020).

    CAS  PubMed  Article  Google Scholar 

  27. Chang, X., Zhang, J., Peng, L. & Guo, C. Collective synthesis of acetylenic pharmaceuticals via enantioselective nickel/Lewis acid-catalyzed propargylic alkylation. Nat. Commun. 12, 299 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Wu, Y., Huo, X. & Zhang, W. Synergistic Pd/Cu catalysis in organic synthesis. Chem. Eur. J. 26, 4895–4916 (2020).

    CAS  PubMed  Article  Google Scholar 

  29. Huo, X., He, R., Zhang, X. & Zhang, W. An Ir/Zn dual catalysis for enantio- and diastereodivergent α-allylation of α-hydroxyketones. J. Am. Chem. Soc. 138, 11093–11096 (2016).

    CAS  PubMed  Article  Google Scholar 

  30. Huo, X. et al. Stereoselective and site-specific allylic alkylation of amino acids and small peptides via a Pd/Cu dual catalysis. J. Am. Chem. Soc. 139, 9819–9822 (2017).

    CAS  PubMed  Article  Google Scholar 

  31. Liang, W., Xu, S.-M., Zhu, Q., Che, C. & Wang, C.-J. Synergistic Cu/Pd catalysis for enantioselective allylic alkylation of aldimine esters: access to α,α-disubstituted α-amino acids. Angew. Chem. Int. Ed. 56, 12312–12316 (2017).

    Article  CAS  Google Scholar 

  32. Huo, X., Zhang, J., Fu, J., He, R. & Zhang, W. Ir/Cu dual catalysis: enantio- and diastereodivergent access to α,α-disubstituted α-amino acids bearing vicinal stereocenters. J. Am. Chem. Soc. 140, 2080–2084 (2018).

    CAS  PubMed  Article  Google Scholar 

  33. Wei, L., Zhu, Q., Xu, S.-M., Chang, X. & Wang, C.-J. Stereodivergent synthesis of α,α-disubstituted α-amino acids via synergistic Cu/Ir catalysis. J. Am. Chem. Soc. 140, 1508–1513 (2018).

    CAS  PubMed  Article  Google Scholar 

  34. Jiang, X., Boehm, P. & Hartwig, J. F. Stereodivergent allylation of azaaryl acetamides and acetates by synergistic iridium and copper catalysis. J. Am. Chem. Soc. 140, 1239–1242 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Zhang, Q. et al. Stereodivergent coupling of 1,3-dienes with aldimine esters enabled by synergistic Pd and Cu catalysis. J. Am. Chem. Soc. 141, 14554–14559 (2019).

    CAS  PubMed  Article  Google Scholar 

  36. He, Z.-T., Jiang, X. & Hartwig, J. F. Stereodivergent construction of tertiary fluorides in vicinal stereogenic pairs by allylic substitution with iridium and copper catalysts. J. Am. Chem. Soc. 141, 13066–13073 (2019).

    CAS  PubMed  Article  Google Scholar 

  37. Xu, S.-M. et al. Stereodivergent assembly of tetrahydro-γ-carbolines via synergistic catalytic asymmetric cascade reaction. Nat. Commun. 10, 5553 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  38. He, R. et al. Stereodivergent Pd/Cu catalysis for the dynamic kinetic asymmetric transformation of racemic unsymmetrical 1,3-disubstituted allyl acetates. J. Am. Chem. Soc. 142, 8097–8103 (2020).

    CAS  PubMed  Article  Google Scholar 

  39. Zhu, M., Zhang, Q. & Zi, W. Diastereodivergent synthesis of β-amino alcohols by dual-metal-catalyzed coupling of alkoxyallenes with aldimine esters. Angew. Chem. Int. Ed. 60, 6545–6552 (2021).

    CAS  Article  Google Scholar 

  40. Zhang, J. et al. Enantio- and diastereodivergent construction of 1,3-nonadjacent stereocenters bearing axial and central chirality through synergistic Pd/Cu catalysis. J. Am. Chem. Soc. 143, 12622–12632 (2021).

    CAS  PubMed  Article  Google Scholar 

  41. Peng, L., He, Z., Xu, X. & Guo, C. Cooperative Ni/Cu-catalyzed asymmetric propargylic alkylation of aldimine esters. Angew. Chem. Int. Ed. 59, 14270–14274 (2020).

    CAS  Article  Google Scholar 

  42. Tasker, S. Z., Standley, E. A. & Jamison, T. F. Recent advances in homogeneous nickel catalysis. Nature 509, 299–309 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Coldham, I. & Hufton, R. Intramolecular dipolar cycloaddition reactions of azomethine ylides. Chem. Rev. 105, 2765–2810 (2005).

    CAS  PubMed  Article  Google Scholar 

  44. Wei, L., Chang, X. & Wang, C.-J. Catalytic asymmetric reactions with N-metallated azomethine ylides. Acc. Chem. Res. 53, 1084–1100 (2020).

    CAS  PubMed  Article  Google Scholar 

  45. Peng, L., Wang, H. & Cuo, C. Copper-catalyzed enantioselective difluoromethylation of amino acids via difluorocarbene. J. Am. Chem. Soc. 143, 6376–6381 (2021).

    CAS  PubMed  Article  Google Scholar 

  46. Jang, H., Romiti, F., Torker, S. & Hoveyda, A. H. Catalytic diastereo- and enantioselective additions of versatile allyl groups to N–H ketimines. Nat. Chem. 9, 1269–1275 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Zhang, S. et al. Delayed catalyst function enables direct enantioselective conversion of nitriles to NH2-amines. Science 364, 45–51 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China (grant no. 21971227, C.G.) and the Fundamental Research Funds for the Central Universities (WK2340000090, C.G.).

Author information

Authors and Affiliations

Authors

Contributions

C.G. conceived and designed the study and wrote the paper. Z.H. and L.P. performed the experiments and analysed the data. Z.H. performed the stereodivergent total synthesis of amathaspiramide D. L.P. performed the stereodivergent propargylic substitution reactions. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Chang Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Dirk Trauner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2, text and discussion.

Supplementary Data 1

Crystallographic data for compound (S,R)-6 CCDC 2112078.

Supplementary Data 2

Crystallographic data for compound anti-8 CCDC 2112074.

Supplementary Data 3

Crystallographic data for compound syn-10 CCDC 2112077.

Supplementary Data 4

Crystallographic data for compound syn-11 CCDC 2112076.

Supplementary Data 5

Crystallographic data for compound (S,S)-11 CCDC 2112075.

Supplementary Data 6

Crystallographic data for compound (S,R)-29 CCDC 1973954.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, Z., Peng, L. & Guo, C. Catalytic stereodivergent total synthesis of amathaspiramide D. Nat. Synth 1, 393–400 (2022). https://doi.org/10.1038/s44160-022-00063-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00063-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing