Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Powder diffraction

An Author Correction to this article was published on 25 November 2021

This article has been updated


Powder diffraction is a non-destructive technique, which is experimentally simple in principle. Because the physics behind diffraction is well understood, an exceptionally large amount of information can be obtained from a single measurement. The positions and relative intensities of the peaks yield a fingerprint that can be used for qualitative phase analysis. Quantitative phase analysis can be obtained by detailed analysis of the intensities. Unit cells can be derived from the peak positions. Crystal structures can be solved using powder diffraction data and refined by the Rietveld method. The peak profiles contain information about crystallite size, strain and nanostructure. Non-idealities in the intensities give information on texture. Abandoning the crystallographic model provides information about local structure, by pair distribution function analysis. For powder diffraction, everything is a sample; the technique is commonly applied to characterize minerals, ceramics, metals and alloys, catalysts, polymers, pharmaceuticals, organic compounds, environmental and forensic samples, among others. The major features of contemporary laboratory powder diffractometers are described. Methods for obtaining suitable powder specimens are summarized. Major applications of qualitative and quantitative phase analysis, structure solution, size/strain/nanostructure analysis using peak profiles, texture analysis and pair distribution function analysis are introduced.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Diffraction principles.
Fig. 2: Schematic of the information content of a powder pattern.
Fig. 3: Diffractometer geometries.
Fig. 4: Specimen preparation.
Fig. 5: 2D powder diffraction patterns.
Fig. 6: Red flagstone and Nature’s Bounty B-Complex phase analysis.
Fig. 7: Relationship between electron density and diffraction pattern.
Fig. 8: Total scattering analysis.
Fig. 9: Representative case studies of application of powder X-ray diffraction in characterization of pharmaceutical materials, with indomethacin as the model drug.
Fig. 10: International Union of Crystallography Commission on Powder Diffraction Reynolds Cup round robin example results.

Change history


  1. Etter, M. & Dinnebier, R. E. A century of powder diffraction: a brief history. Z. für anorganische und allgemeine Chem. 640, 3015–3028 (2014).

    Google Scholar 

  2. Billinge, S. J. L. Powder Diffraction: Theory and Practice (eds Dinnebier, R. E. & Billinge, S. J. L.) 464–493 (Royal Society of Chemistry, 2008).

  3. Gilmore, C. J., Kaduk, J. A. & Schenk, H. International Tables for Crystallography Volume H: Powder Diffraction (International Union of Crystallography, 2019). This recent comprehensive review of powder diffraction theory, practice and applications is the primary reference for both beginners and advanced users.

  4. Mittemeijer, E. J. & Scardi, P. Diffraction Analysis of the Microstructure of Materials (Springer, 2004).

  5. Egami, T. & Billinge, S. J. L. Underneath the Bragg Peaks: Structural Analysis of Complex Materials 2nd edn (Elsevier, 2012). This work is a guide for beginners in the pair distribution function analysis of imperfect crystals, but also useful for more advanced users and those who apply Powder Diffraction File analysis to liquids and glasses.

  6. Bragg, W. H. & Bragg, W. L. The reflection of X-rays by crystals. Proc. R. Soc. A. 88, 428–438 (1913).

    ADS  MATH  Google Scholar 

  7. Ophus, C. Four-dimensional scanning transmission electron microscopy (4D-STEM): From scanning nanodiffraction to ptychography and beyond. Microsc. Microanal. 25, 563–582 (2019).

    ADS  Google Scholar 

  8. Mu, X., Wang, D., Feng, T. & Kübel, C. Radial distribution function imaging by STEM diffraction: phase mapping and analysis of heterogeneous nanostructured glasses. Ultramicroscopy 168, 1–6 (2016).

    Google Scholar 

  9. Harding, G., Kosanetzky, J. & Neitzel, U. X-ray diffraction computed tomography. Med. Phys. 14, 515–525 (1987).

    Google Scholar 

  10. Jacques, S. D. M. et al. Dynamic X-ay diffraction computed tomography reveals real-time insight into catalyst active phase evolution. Angew. Chem. Int. Ed. 50, 10148–10152 (2011).

    Google Scholar 

  11. Jacques, S. D. M., et al. Pair distribution function computed tomography. Nat. Commun. 4, 2536 (2013).

    ADS  Google Scholar 

  12. Hu, Y.-Y. et al. Origin of additional capacities in metal oxide lithium-ion battery electrodes. Nat. Mater. 12, 1130–1136 (2013).

    ADS  Google Scholar 

  13. Morrison, V. R. et al. A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction. Science 346, 445–448 (2014).

    ADS  Google Scholar 

  14. Rietveld, H. M. Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 22, 151–152 (1967). This work is the initial description of what is now known as the Rietveld method.

    Google Scholar 

  15. Cline, J. P., Mendenhall, M. H., Black, D., Windover, D. & Henins, A. in International Tables for Crystallography Volume H: Powder Diffraction Ch. 3.1 (eds Gilmore, C. J., Kaduk, J. A. & Schenk, H.) 224–262 (Wiley, 2019).

  16. Schroeder, P. Clays in the Critical Zone (Cambridge Univ. Press, 2018).

  17. Klug, H. P. & Alexander, L. E. X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley-Interscience, 1974). This work is the classic reference textbook on powder diffraction.

  18. Cullity, B. D. & Stock, S. R. Elements of X-ray Diffraction 3rd edn (Prentice Hall, 2001).

  19. Guinebretiere, R. X-ray Diffraction by Polycrystalline Materials (ISTE, 2006).

  20. Jenkins, R. & Snyder, R. L. Introduction to X-Ray Powder Diffractometry (Wiley-Interscience, 1996).

  21. Mittemeijer, E. J. & Welzel, U. Modern Diffraction Methods (Wiley-VCH, 2013).

  22. Pecharsky, V. K. & Zavalij, P. Y. Fundamentals of Powder Diffraction and Structural Characterization of Materials 2nd edn (Springer, 2009). This work is an excellent introduction to powder diffraction for the beginner.

  23. Clearfield, A., Reibenspies, J. & Bhuvanesh, N. Principles and Applications of Powder Diffraction (Wiley, 2008).

  24. Whitfield, P. S., Huq, A. & Kaduk, J. A. in International Tables for Crystallography Volume H: Powder Diffraction Ch. 2.10 (eds Gilmore, C. J., Kaduk, J. A. & Schenk, H.) 200–222 (Wiley, 2019).

  25. Toby, B. H. & Von Dreele, R. B. GSAS II: the genesis of a modern open source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544–549 (2013).

    Google Scholar 

  26. Smith, D. K. Evaluation of the Detectability and Quantification of Respirable Crystalline Silica by X-ray Powder Diffraction Methods (Cambridge Univ. Press, 1992)

  27. Keen, D. A. & Goodwin, A. L. The crystallography of correlated disorder. Nature 521, 303–309 (2015).

    ADS  Google Scholar 

  28. Debye, P. Zerstreuung von röntgenstrahlen [German]. Ann. Phys. 351, 809–823 (1915).

    Google Scholar 

  29. Cervellino, A., Giannini, C. & Guagliardi, A. DEBUSSY: a Debye user system for nanocrystalline materials. J. Appl. Cryst. 43, 1543–1547 (2010).

    Google Scholar 

  30. David, W. I. F. & Shankland, K. Structure determination from powder diffraction data. Acta Cryst. A 64, 52–64 (2008).

    Google Scholar 

  31. Juhás, P., Cherba, D. M., Duxbury, P. M., Punch, W. F. & Billinge, S. J. L. Ab initio determination of solid-state nanostructure. Nature 440, 655–658 (2006).

    ADS  Google Scholar 

  32. Cliffe, M. J., Dove, M. T., Drabold, D. A. & Goodwin, A. L. Structure determination of disordered materials from diffraction data. Phys. Rev. Lett. 104, 125501 (2010).

    ADS  Google Scholar 

  33. Gates-Rector, S. & Blanton, T. The Powder Diffraction File: a quality materials characterization database. Powd. Diffr. 39, 352–360 (2019). This work is the primary reference to the contents and structure of the Powder Diffraction File database, which should be used to cite the database.

    ADS  Google Scholar 

  34. Grazulis, S. et al. Crystallography Open Database — an open-access collection of crystal structures. J. Appl. Cryst. 42, 726–729 (2009).

    Google Scholar 

  35. Kaduk, J. A. in International Tables for Crystallography Volume H: Powder Diffraction Ch. 3.7 (eds Gilmore, C. J., Kaduk, J. A. & Schenk, H.) 304–324 (Wiley, 2019).

  36. Caussin, P., Nusinovici, J. & Beard, D. W. Specific data handling techniques and new enhancements in a search–match program. Adv. X-Ray Anal. 32, 531–538 (1989).

    Google Scholar 

  37. Nusinovici, J. & Bertelmann, D. Practical determination of the acceptable 2θ error for non-ambiguous identification of pure phases with DIFFRAC-AT. Adv. X-ray Anal. 36, 327–332 (1993).

    Google Scholar 

  38. Nusinovici, J. & Winter, M. J. Diffrac-At search: search/match using full traces as input. Adv. X-ray Anal. 37, 59–66 (1994).

    Google Scholar 

  39. Degen, T., Sadki, M., Bron, E., Konig, U. & Nenert, G. The HighScore suite. Powd. Diffr. 29, S13–S18 (2014).

    ADS  Google Scholar 

  40. Gilmore, et al. in International Tables for Crystallography Volume H: Powder Diffraction Ch. 6.1 (eds Gilmore, C. J., Kaduk, J. A. & Schenk, H.) 698–715 (Wiley, 2019).

  41. Hanawalt, J. D. et al. Chemical analysis by X-ray diffraction. Ind. Eng. Chem. Anal. Ed. 10, 457–512 (1938).

    Google Scholar 

  42. Madsen, I. C., Scarlett, N. V. Y., Kleeberg R. & Knorr K. in International Tables for Crystallography, Volume H: Powder Diffraction Ch. 3.9 (eds Gilmore, C. J., Kaduk, J. A. & Schenk, H.) 344–373 (Wiley, 2019).

  43. Lutterotti, L., Pilliere, H., Fontugne, C., Boullay, P. & Chateigner, D. Full-profile search–match by the Rietveld method. J. Appl. Cryst. 52, 587–598 (2019).

    Google Scholar 

  44. Madsen, I. C., Scarlett, N. V. Y. & Kern, A. Description and survey of methodologies for the determination of amorphous content via X-ray powder diffraction. Z. für Kristallographie 226, 944–955 (2011).

    ADS  Google Scholar 

  45. Viterbo, D. in Fundamentals of Crystallography 2nd edn Ch. 6.3 (ed. Giacovazzo, C.) 419–432 (Oxford Science, 2002).

  46. Viterbo, D. in Fundamentals of Crystallography 2nd edn Ch. 6.3 (ed. Giacovazzo, C.) 432–464 (Oxford Science, 2002).

  47. Oszlanya, G. & Suto, A. The charge flipping algorithm. Acta Cryst. A Found. Crystallogr. 64, 123–134 (2008).

    ADS  Google Scholar 

  48. Gilmore, C., Dong, W. & Bricogne, G. A multisolution method of phase determination by combined maximization of entropy and likelihood. VI. The use of error-correcting codes as a source of phase permutation and their application to the phase problem in powder, electron and macromolecular crystallography. Acta Cryst. Sect. A Found. Crystallogr. 55, 70–83 (1999).

    Google Scholar 

  49. David, W. I. F., Shankland, K., McCusker, L. B. & Baerlocher, C. eds. Structure Determination from Powder Diffraction Data (Oxford Univ. Press, 2002).

  50. Baerlocher, C., McCusker, L. B., Prokic, S. & Wessels, T. Exploiting texture to estimate the relative intensities of overlapping reflections. Z. Krist. 219, 803–812 (2004).

    Google Scholar 

  51. Černý, R. & Favre-Nicolin, V. Direct space methods of structure determination from powder diffraction: principles, guidelines and perspectives. Z. Krist. 222, 105–113 (2007).

    Google Scholar 

  52. Černý, R. Crystal structures from powder diffraction: principles, difficulties and progress. Crystals 7, 142 (2017).

    Google Scholar 

  53. Shankland K. in International Tables for Crystallography Volume H: Powder Diffraction Ch. 4.1 (eds Gilmore, C. J., Kaduk, J. A. & Schenk, H.) 386–394 (Wiley, 2019).

  54. Altomare, A., Cuocci, C., Moliterni, A. & Rizzi R. in International Tables for Crystallography Volume H: Powder Diffraction Ch. 3.4 (eds Gilmore, C. J., Kaduk, J. A. & Schenk, H.) 270–281 (Wiley, 2019).

  55. Altomare, A., Cuocci, C., Moliterni, A. & Rizzi R. in International Tables for Crystallography Volume H: Powder Diffraction Ch. 4.2 (eds Gilmore, C. J., Kaduk, J. A. & Schenk, H.) 395–413 (Wiley, 2019).

  56. David, W. I. F. in International Tables for Crystallography Volume H: Powder Diffraction Ch. 4.3 (eds Gilmore, C. J., Kaduk, J. A. & Schenk, H.) 414–432 (Wiley, 2019).

  57. Florence, A. J. in International Tables for Crystallography Volume H: Powder Diffraction Ch. 4.4 (eds Gilmore, C. J., Kaduk, J. A. & Schenk, H.) 433–441 (Wiley, 2019).

  58. Černý, R. & Favre-Nicolin, V. in International Tables for Crystallography Volume H: Powder Diffraction Ch. 4.5 (eds Gilmore, C. J., Kaduk, J. A. & Schenk, H.) 442–451 (Wiley, 2019).

  59. Baerlocher, C. & McCusker, L. B. in International Tables for Crystallography Volume H: Powder Diffraction Ch. 4.6 (eds Gilmore, C. J., Kaduk, J. A. & Schenk, H.) 452–464 (Wiley, 2019).

  60. Visser, J. W. A fully automatic program for finding the unit cell from powder data. J. Appl. Cryst. 2, 89–95 (1969).

    Google Scholar 

  61. Werner, P.-e, Eriksson, L. & Westdahl, M. TREOR, a semi-exhaustive trial-and-error powder indexing program for all symmetries. J. Appl. Cryst. 18, 367–370 (1985).

    Google Scholar 

  62. Altomare, A. et al. New techniques for indexing: N-TREOR in EXPO. J. Appl. Cryst. 33, 1180–1186 (2000).

    Google Scholar 

  63. Louër, D. & Boultif, A. Some further considerations in powder diffraction pattern indexing with the dichotomy method. Powder Diffr. 29, S7–S12 (2014).

    ADS  Google Scholar 

  64. Warren, B. E. X-ray Diffraction (Dover Publications, 1990).

  65. Von Dreele, R. B. in International Tables for Crystallography Volume H: Powder Diffraction Ch. 3.3 (eds Gilmore, C. J., Kaduk, J. A. & Schenk, H.) 200–222 (Wiley, 2019).

  66. Leoni M. in International Tables for Crystallography Volume H: Powder Diffraction Ch. 5.1 (eds Gilmore, C. J., Kaduk, J. A. & Schenk, H.) 524–537 (Wiley, 2019).

  67. Leoni M. in International Tables for Crystallography Volume H: Powder Diffraction Ch. 3.6 (eds Gilmore, C. J., Kaduk, J. A. & Schenk, H.) 288–303 (Wiley, 2019).

  68. Popa N. C. in International Tables for Crystallography Volume H: Powder Diffraction Ch. 5.2 (eds Gilmore, C. J., Kaduk, J. A. & Schenk, H.) 538–554 (Wiley, 2019).

  69. Cheary, R. W. & Coelho, A. A. A fundamental parameters approach to X-ray line-profile fitting. J. Appl. Cryst. 25, 109–121 (1992).

    Google Scholar 

  70. Scherrer, P. Bestimmung der Grösse und der inneren Strucktur von Kolloidteilchem mittels Röntgenstrahlen [German]. Mach. Ges. Wiss. Göttingen 1918, 98–100 (1918).

    Google Scholar 

  71. Williamson, G. K. & Hall, W. H. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953).

    Google Scholar 

  72. Billinge S. J. L. in International Tables for Crystallography Volume H: Powder Diffraction Ch.5.7 (eds Gilmore, C. J., Kaduk, J. A. & Schenk, H.) 649–672 (Wiley, 2019).

  73. Welberry, T. R. Diffuse X-Ray Scattering and Models of Disorder (Oxford Univ. Press, 2004).

  74. Treacy, M. M. J., Newsam, J. M. & Deem, M. W. A general recursion method for calculating diffracted intensities from crystals containing planar faults. Proc. Roy. Soc. Lond. A 433, 499–520 (1991).

    ADS  MATH  Google Scholar 

  75. Kocks U. F., Tomé C. & Wenk H.-R. Texture and Anisotropy (Cambridge Univ. Press, 1998).

  76. Bunge H.-J. & Esling C. Quantitative Texture Analysis (DGM Informationsgesellschaft, 1982).

  77. Roe, R.-J. Description of crystallite orientation in polycrystalline materials. III. General solution to pole figure inversion. J. Appl. Phys. 36, 2024–2031 (1965).

    ADS  Google Scholar 

  78. Matthies S., Vinel G. & Helming K., Standard Distributions in Texture Analysis (Akademie, 1987).

  79. Lutterotti, L., Matthies, S., Wenk, H.-R., Schultz, A. J. & Richardson, J. W. Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J. Appl. Phys. 81, 594–600 (1997).

    ADS  Google Scholar 

  80. Rietveld, H. M. A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65–71 (1969). This work is the second of the two initial papers on what is now known as the Rietveld method.

    Google Scholar 

  81. Von Dreele, R. B. Quantitative texture analysis by Rietveld refinement. J. Appl. Cryst. 30, 517–525 (1997).

    Google Scholar 

  82. Lutterotti, L. Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction. Nucl. Instrum. Methods Phys. Res. B 268, 334–340 (2010).

    ADS  Google Scholar 

  83. Chateigner, D., Lutterotti, L. & Morales, M. in International Tables for Crystallography Volume H: Powder Diffraction Ch. 5.3 (eds Gilmore, C. J., Kaduk, J. A. & Schenk, H.) 555–580 (Wiley, 2019).

  84. Matthies, S., Priesmeyer, H. G. & Daymond, M. R. On the diffractive determination of single-crystal elastic constants using polycrystalline samples. J. Appl. Cryst. 34, 585–601 (2001).

    Google Scholar 

  85. Voigt W. Lehrbuch der Kristallphysik (Teubner, 1928).

  86. Reuss, A. Account of the liquid limit of mixed crystals on the basis of the plasticity condition for single crystal. Z. Angew. Math. Mech. 9, 49–58 (1929).

    Google Scholar 

  87. Hill, R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A 65, 349–354 (1952).

    ADS  Google Scholar 

  88. Matthies, S. & Humbert, M. On the principle of a geometric mean of even-rank symmetric tensors for textured polycrystals. J. Appl. Cryst. 28, 254–266 (1995).

    Google Scholar 

  89. Chateigner, D. Combined Analysis (Wiley, 2010).

  90. Lutterotti, L., Chateigner, D., Ferrari, S. & Ricote, J. Texture, residual stress and structural analysis of thin films using a combined X-ray analysis. Thin Solid. Films 450, 34–41 (2004).

    ADS  Google Scholar 

  91. Ferrari, M. & Lutterotti, L. Method for the simultaneous determination of anisotropic residual stresses and texture by X-ray diffraction. J. Appl. Phys. 76, 7246–7255 (1994).

    ADS  Google Scholar 

  92. Masadeh, A. S. et al. Quantitative size-dependent structure and strain determination of CdSe nanoparticles using atomic pair distribution function analysis. Phys. Rev. B 76, 115413 (2007).

    ADS  Google Scholar 

  93. Christiansen, T. L., Cooper, S. R. & Jensen, K. M. There’s no place like real-space: elucidating size-dependent atomic structure of nanomaterials using pair distribution function analysis. Nanoscale Adv. 2, 2234–2254 (2020).

    ADS  Google Scholar 

  94. Neder, R. B. & Korsunskiy, V. I. Structure of nanoparticles from powder diffraction data using the pair distribution function. J. Physics: Condens. Matter 17, S125–S134 (2005).

    ADS  Google Scholar 

  95. Terban, M. W. & Billinge, S. J. L. Structural analysis of molecular materials using the pair distribution function. Chem Reviews (in the press).

  96. Warren, B. E., Krutter, H. & Morningstar, O. Fourier analysis of X-ray patterns of vitreous SiO2 and B2O2. J. Am. Ceram. Soc. 19, 202–206 (1936).

    Google Scholar 

  97. Elliott, S. Medium-range structural order in covalent amorphous solids. Nature 354, 445–452 (1991).

    ADS  Google Scholar 

  98. Kwei, G. H., Billinge, S. J. L., Cheong, S.-W. & Saxton, J. G. Pair-distribution functions of ferroelectric perovskites: direct observation of structural ground states. Ferroelectrics 164, 57–73 (1995).

    Google Scholar 

  99. Senn, M. S., Keen, D. A., Lucas, T. C. A., Hriljac, J. A. & Goodwin, A. L. Emergence of long-range order in BaTiO3 from local symmetry-breaking distortions. Phys. Rev. Lett. 116, 207602 (2016).

    ADS  Google Scholar 

  100. Jeong, I.-K. et al. Direct observation of the formation of polar nanoregions in Pb(Mg1/3Nb2/3)O3 using neutron pair distribution function analysis. Phys. Rev. Lett. 94, 147602 (2005).

    ADS  Google Scholar 

  101. Billinge, S. J. L., DiFrancesco, R. G., Kwei, G. H., Neumeier, J. J. & Thompson, J. D. Direct observation of lattice polaron formation in the local structure of La1xCaxMnO3. Phys. Rev. Lett. 77, 715–718 (1996).

    ADS  Google Scholar 

  102. Bozin, E. S. et al. Local orbital degeneracy lifting as a precursor to an orbital-selective Peierls transition. Nat. Commun. 10, 3638 (2019).

    ADS  Google Scholar 

  103. Skjaervoe, S. H. et al. Unconventional continuous structural disorder at the order–disorder phase transition in the hexagonal manganites. Phys. Rev. X 9, 031001 (2019).

    Google Scholar 

  104. Farrow, C. L. et al. PDF_t2 and PDFgui: computer programs for studying nanostructure in crystals. J. Phys. Condens. Matter 19, 335219 (2007).

    Google Scholar 

  105. Coelho, A. A. TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Cryst. 51, 210–218 (2018).

    Google Scholar 

  106. Juhás, P., Farrow, C. L., Yang, X., Knox, K. R. & Billinge, S. J. L. Complex Modeling: a strategy and software program for combining multiple information sources to solve ill-posed structure and nanostructure inverse problems. Acta Crystallogr. A 71, 562–568 (2015).

    Google Scholar 

  107. McGreevy, R. L. Reverse Monte Carlo modeling. J. Phys. Condens. Matter 13, R877 (2001).

    ADS  Google Scholar 

  108. Jensen, K. M. O. et al. Revealing the mechanisms behind SnO2 nanoparticle formation and growth during hydrothermal synthesis: an in situ total scattering study. J. Am. Chem. Soc. 134, 6785–6792 (2012).

    Google Scholar 

  109. Jensen, K. M. O., Tyrsted, C., Bremholm, M. & Iversen, B. B. In situ studies of solvothermal synthesis of energy materials. ChemSusChem 7, 1594–1611 (2014).

    Google Scholar 

  110. Redmond, E. L., Setzler, B. P., Juhás, P., Billinge, S. J. L. & Fuller, T. F. In-situ monitoring of particle growth at PEMFC cathode under accelerated cycling conditions. Electrochem. Solid. St. 15, B72–B74 (2012).

    Google Scholar 

  111. Key, B., Morcrette, M., Tarascon, J.-M. & Grey, C. P. Pair distribution function analysis and solid state nmr studies of silicon electrodes for lithium ion batteries: understanding the (de)lithiation mechanisms. J. Am. Chem. Soc. 133, 503–512 (2011).

    Google Scholar 

  112. Butala, M. M. et al. Local structure evolution and modes of charge storage in secondary Li–FeS2 Cells. Chem. Mater. 29, 3070–3082 (2017).

    Google Scholar 

  113. Terban, M. W., Johnson, M., DiMichiel, M. & Billinge, S. J. L. Detection and characterization of nanoparticles in suspension at low concentrations using the X-ray total scattering pair distribution function technique. Nanoscale 7, 5480–5487 (2015).

    ADS  Google Scholar 

  114. Terban, M. et al. Local structural effects due to micronization and amorphization on an HIV treatment active pharmaceutical ingredient. Mol. Pharmaceutics 17, 2370–2389 (2020).

    Google Scholar 

  115. Frandsen, B. A. & Billinge, S. J. L. Magnetic structure determination from the magnetic pair distribution function (mPDF): ground state of MnO. Acta Crystallogr. A 71, 325–334 (2015).

    Google Scholar 

  116. Frandsen, B. A. et al. Verification of Anderson superexchange in MnO via magnetic pair distribution function analysis and ab initio theory. Phys. Rev. Lett. 116, 197204 (2016).

    ADS  Google Scholar 

  117. Billinge, S. J. L. et al. in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering (Elsevier, 2021).

  118. Billinge, S. J. L. The rise of the X-ray atomic pair distribution function method: a series of fortunate events. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 377, 20180413 (2019).

    ADS  Google Scholar 

  119. Young, C. A. & Goodwin, A. L. Applications of pair distribution function methods to contemporary problems in materials chemistry. J. Mater. Chem. 21, 6464 (2011).

    Google Scholar 

  120. Worhatch, R. J., Kim, H. J., Swainson, I. P., Yonkeu, A. L. & Billinge, S. J. L. Study of local structure in selected cubic organic–inorganic perovskites. Chem. Mater. 20, 1272–1277 (2008).

    Google Scholar 

  121. Choi, J. J., Yang, X., Norman, Z. M., Billinge, S. J. L. & Owen, J. S. Structure of methylammonium lead iodide on mesoporous titanium dioxide: active material in high performance metal-organic solar cells. Nano Lett. 14, 127–133 (2014).

    ADS  Google Scholar 

  122. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N. & Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    ADS  Google Scholar 

  123. Beecher, A. N. et al. Direct observation of dynamic symmetry breaking above room temperature in methylammonium lead iodide perovskite. ACS Energy Lett. 1, 880–887 (2016).

    Google Scholar 

  124. Yang, L. et al. A cloud platform for atomic pair distribution function analysis: PDFitc. Acta Crystallogr. A 77, 2–6 (2021).

    Google Scholar 

  125. Liu, C.-H., Tao, Y., Hsu, D. J., Du, Q. & Billinge, S. J. L. Using a machine learning approach to determine the space group of a structure from the atomic pair distribution function. Acta Crystallogr. A 75, 633–643 (2019).

    Google Scholar 

  126. Banerjee, S. et al. Cluster-mining: an approach for determining core structures of metallic nanoparticles from atomic pair distribution function data. Acta Crystallogr. A 76, 24–31 (2020).

    Google Scholar 

  127. Jensen, K. M. O. et al. Demonstration of thin film pair distribution function analysis (tfPDF) for the study of local structure in amorphous and crystalline thin films. IUCrJ 2, 481–489 (2015).

    Google Scholar 

  128. Bernstein, J. & Reutzel-Edens, S. M. in International Tables for Crystallography Volume H: Powder Diffraction Ch 7.5 (eds Gilmore, C. J., Kaduk, J. A. & Schenk, H.) 767–781 (Wiley, 2019).

  129. Thakral, N. K., Zanon, R. L., Kelly, R. C. & Thakral, S. Applications of powder X-ray diffraction in small molecule pharmaceuticals: achievements and aspirations. J. Pharm. Sci. 107, 2969–2982 (2018).

    Google Scholar 

  130. Aitipamula, S. Polymorphs, salts, and cocrystals: what’s in a name? Cryst. Growth Des. 12, 2147–2152 (2012).

    Google Scholar 

  131. US Food and Drug Administration. Guidance for Industry ANDAs: Pharmaceutical Solid Polymorphism (2007).

  132. Vioglio, P. C., Chierotti, M. R. & Gobetto, R. Pharmaceutical aspects of salt and cocrystal forms of APIs and characterization challenges. Adv. Drug Deliv. Rev. 117, 86–110 (2017).

    Google Scholar 

  133. Thakral, S., Terban, M. W., Thakral, N. K. & Suryanarayanan, R. Recent advances in the characterization of amorphous pharmaceuticals by X-ray diffractometry. Adv. Drug Deliv. Rev. 100, 183–193 (2016).

    Google Scholar 

  134. Terban, M. W., Cheung, E. Y., Krolikowski, P. & Billinge, S. J. Recrystallization, phase composition, and local structure of amorphous lactose from the total scattering pair distribution function. Cry. Growth Des. 16, 210–220 (2016).

    Google Scholar 

  135. Thakral, S., Govindarajan, R. & Suryanarayanan, R. in Polymorphism in the Pharmaceutical Industry: Solid Form and Drug Development 329–380 (Wiley, 2018).

  136. In US Pharmacopoeia — National Formulary 40th Edn 820–827 (United States Pharmacopeial Convention, 2017).

  137. Munjal, B. & Suryanarayanan, R. Applications of synchrotron powder X-ray diffractometry in drug substance and drug product characterization. TrAC Trends Anal Chem. 136, 116181 (2021).

    Google Scholar 

  138. Thakral, N. K., Mohapatra, S., Stephenson, G. A. & Suryanarayanan, R. Compression-induced crystallization of amorphous indomethacin in tablets: characterization of spatial heterogeneity by two-dimensional X-ray diffractometry. Mol. Pharm. 12, 253–263 (2015).

    Google Scholar 

  139. Surwase, S. A. et al. Indomethacin: new polymorphs of an old drug. Mol. Pharm. 10, 4472–4480 (2013).

    Google Scholar 

  140. Mohapatra, S., Samanta, S., Kothari, K., Mistry, P. & Suryanarayanan, R. Effect of polymer molecular weight on the crystallization behavior of indomethacin amorphous solid dispersions. Cry. Growth Des. 17, 3142–3150 (2017).

    Google Scholar 

  141. Hunger, K. & Schmidt, M. U. Industrial Organic Pigments: Production, Crystal Structures, Properties, Applications (Wiley-VCH, 2018).

  142. Schmidt, M. U. in International Tables for Crystallography Volume H: Powder Diffraction Ch. 7.10 (eds Gilmore, C. J., Kaduk, J. A. & Schenk, H.) 834–842 (Wiley, 2019).

  143. Schmidt, M. U., Hofmann, D. W. M., Buschbaum, C. & Metz, H. J. Crystal structures of Pigment Red 170 and derivatives, as determined by X-ray powder diffraction. Angew. Chem. Int. Ed. 45, 1313–1317 (2006).

    Google Scholar 

  144. Arletti, R., Cruciani, G. & Ferraris, G. in International Tables for Crystallography Volume H: Powder Diffraction Ch. 7.14 (eds Gilmore, C. J., Kaduk, J. A. & Schenk, H.) 885–895 (Wiley, 2019).

  145. Aranda, M. A. G., De la Torre, A. G. & León-Reina, L. in International Tables for Crystallography Volume H: Powder Diffraction Ch. 7.12 (eds Gilmore, C. J., Kaduk, J. A. & Schenk, H.) 855–865 (Wiley, 2019).

  146. Wong-Ng, W. in International Tables for Crystallography Volume H: Powder Diffraction Ch. 7.8 (eds Gilmore, C. J., Kaduk, J. A. & Schenk, H.) 804–827 (Wiley, 2019).

  147. Scarlett, N. V. Y. & Bish, D. L. in International Tables for Crystallography Volume H: Powder Diffraction Ch. 7.7 (eds Gilmore, C. J., Kaduk, J. A. & Schenk, H.) 793–803 (Wiley, 2019).

  148. Madsen, I. C., Scarlett, N. V. Y., Cranswick, L. M. D. & Lwin, T. Outcomes of the International Union of Crystallography Commission on Powder Diffraction round robin on quantitative phase analysis: samples 1a to 1h. J. Appl. Cryst. 34, 409–426 (2001).

    Google Scholar 

  149. Scarlett, N. V. Y. et al. Outcomes of the International Union of Crystallography Commission on Powder Diffraction round robin on quantitative phase analysis: samples 2, 3, 4, synthetic bauxite, natural granodiorite and pharmaceuticals. J. Appl. Cryst. 35, 383–400 (2002).

    Google Scholar 

  150. De la Torre, G. & Aranda, M. A. G. Accuracy in Rietveld quantitative phase analysis of Portland cements. J. Appl. Cryst. 36, 1169–1176 (2003).

    Google Scholar 

  151. León-Reina, L. et al. Accuracy in Rietveld quantitative phase analysis: a comparative study of strictly monochromatic Mo and Cu radiation. J. Applied. Cryst. 49, 722–735 (2016).

    Google Scholar 

  152. León-Reina, L. et al. in International Tables for Crystallography Volume H: Powder Diffraction Ch. 3.10 (eds Gilmore, C. J., Kaduk, J. A. & Schenk, H.) 374–384 (Wiley, 2019).

  153. Kaduk, J. A. in International Tables for Crystallography Volume H: Powder Diffraction Ch. 4.9 (eds Gilmore, C. J., Kaduk, J. A. & Schenk, H.) 489–522 (Wiley, 2019).

  154. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. The Cambridge Structural Database. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 72, 171–179 (2016). This work is the current primary reference for the CSD, which should be used to cite the database.

    Google Scholar 

  155. Sykes, R. A. et al. New software for statistical analysis of Cambridge Structural Database data. J. Appl. Crystallogr. 44, 882–886 (2011).

    Google Scholar 

  156. Bruno, I. J. et al. Retrieval of crystallographically-derived molecular geometry information. J. Chem. Inf. Sci. 44, 2133–2144 (2004).

    Google Scholar 

  157. Jones, G., Willett, P., Glen, R. C., Leach, A. R. & Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 267, 727–748 (1997).

    Google Scholar 

  158. Villars, P., Onodera, N. & Iwata, S. The Linus Pauling File (LPF) and its applications to materials design. J. Alloy. Compd. 279, 1–7 (1998).

    Google Scholar 

  159. Hellenbrandt, M. The Inorganic Crystal Structure Database (ICSD) — present and future. Crystallogr. Rev. 10, 17–22 (2004).

    Google Scholar 

  160. Brown, I. D. The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. International Union of Crystallography Monographs on Crystallography 12 (Oxford Univ. Press, 2002).

  161. Shannon, R. D. & Prewitt, C. T. Effective ionic radii in oxides and fluorides. Acta Cryst. Sect. B Struct. Sci. 25, 925–946 (1969).

    Google Scholar 

  162. Crystal Impact. Diamond — Crystal and Molecular Structure Visualization (2013).

  163. Spek, A. L. Structure validation in chemical crystallography. Acta Cryst. Sect. D Biol. Cryst. 65, 148–155 (2009).

    Google Scholar 

  164. van de Streek, J. & Neumann, M. A. Validation of experimental molecular crystal structures with dispersion-corrected density functional theory. Acta Cryst. B Struct. Sci. 66, 544–558 (2010).

    Google Scholar 

  165. van de Streek, J. & Neumann, M. A. Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D). Acta Cryst. Sect. B Struct. Sci. Cryst. Eng. Mater. 70, 1020–1032 (2014).

    Google Scholar 

  166. Kaduk, J. A. & Parteheimer, W. Chemical accuracy and precision in Rietveld analysis: the crystal structure of cobalt(II) acetate tetrahydrate. Powder Diffr. 12, 27–39 (1997).

    ADS  Google Scholar 

  167. Kern, A. in International Tables for Crystallography Volume H: Powder Diffraction Ch. 2.1 (eds Gilmore, C. J., Kaduk, J. A. & Schenk, H.) 26–50 (Wiley, 2019).

  168. Gozzo, F. Advances in synchrotron XRPD for the characterization of pharmaceuticals. Acta Cryst. A 70, C587–C587 (2014).

    Google Scholar 

  169. Petsko, G. Crystallography without crystals — and other bold, probably incorrect predictions of the future of X-ray diffraction. Chem. Eng. News 92, 42–43 (2014).

    Google Scholar 

  170. Poulsen, H. F. & Vaughan, G. B. M. in International Tables for Crystallography Volume H: Powder Diffraction Ch. 5.5 (eds Gilmore, C. J., Kaduk, J. A. & Schenk, H.) 601–616 (Wiley, 2019).

  171. Scarlett, N. V. Y. & Madsen, I. C. Quantification of phases with Partial or No Known Crystal Structure. Powder Diffr. 21, 278–284 (2006).

    ADS  Google Scholar 

  172. Naber, C., Stegmeyer, S., Jansen, D., Goetz-Neuenhoeffer, F. & Neubauer, J. The PONKCS method applied for time resolved XRD quantification of supplementary cementitious material reactivity in hydrating mixtures with ordinary Portland cement. Constr. Build. Mater. 214, 449–457 (2019).

    Google Scholar 

  173. Dinnebier, R. E. & Billinge, S. J. L. Powder Diffraction: Theory and Practice (RSC, 2008).

Download references


S.J.L.B.’s research is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (DOE-BES) under contract no. DE-SC0012704.

Author information




Introduction (S.J.L.B. and R.E.D.); Experimentation (N.H.); Results (I.M., J.A.K., R.Č., M.L., L.L. and D.C.); Applications (S.J.L.B., S.T. and J.A.K.); Reproducibility and data deposition (J.A.K. and N.H.); Limitations and optimizations (J.A.K.); Outlook (J.A.K.); Overview of the Primer (J.A.K.).

Corresponding author

Correspondence to James A. Kaduk.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Methods Primers thanks C. Malliakas and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Advanced Photon Source:

Cambridge Crystallographic Data Centre:


CIF deposition and validation service:

Combined Analysis:

Crystallographica Search-Match:

Inorganic Crystal Structure Database (ICSD):

International Centre for Diffraction Data:



Pauling File:

Pearson’s Crystal Data:

Powder Diffraction File:

Reynolds Cup:



Unit cell

The unit cell is the parallelepiped built on the vectors, a, b and c, of a crystallographic basis of the direct lattice. Its volume is given by the scalar triple product, V = (a, b, c), and corresponds to the square root of the determinant of the metric tensor.

Short-range atomic order

The regular and predictable arrangement of atoms over a short distance, usually with one or two atom spacings. However, this regularity does not persist over a long distance, and is aperiodic. Examples of materials with short-range order include amorphous materials such as wax, glass and liquids

Pair distribution function

A representation of the probability of finding two atoms in a material separated by some distance r. It is often present with respect to the probabilities in a random distribution of atoms, so some probabilities are positive and others are negative.

Long-range order

The property of crystal structures in which atoms are arranged with translational periodicity over extents of at least three unit cells. This is the property that gives rise to Bragg peaks.

Diffraction angle

The angle between the incident and diffracted X-ray beams


An instrument for the accurate and precise measurement of angles. A goniometer is the heart of a powder diffractometer, capable of measuring angles to 0.001–0.0001°.


Devices that narrow and/or shape a beam of X-rays. In a powder diffractometer, they can take the form of a slit, tube or set of parallel plates.

Fluorescent X-rays

Secondary X-rays emitted when an atom is bombarded by high-energy X-rays that knock an electron from a core orbital. The fluorescent X-rays are emitted when an electron in a higher-energy orbital fills the hole.

Preferred orientation

Preferred orientation arises when there is a stronger tendency for the crystallites in a powder or a texture to be oriented more in one way, or one set of ways, than all others.

Rietveld refinement

A method of analysing powder diffraction data in which the crystal structure is refined by fitting the entire profile of the diffraction pattern to a calculated profile using a least-squares approach. There is no intermediate step of extracting structure factors, and so patterns containing many overlapping Bragg peaks can be analysed.

Chebyshev background function

A background function using Chebyshev polynomials Tn(x), often shifted Chebyshev polynomials of the first kind. The polynomials are defined by recursion relations: T0(x) = 1, T1(x) = x, T2(x) = 2x2 – 1, and Tn + 1(x) = 2xTn(x) – Tn - 1(x). The value of x is often not 2θ but some value within the range of the diffraction pattern, such as {[2(2θ – 2θmin)] / (2θmax – 2θmin)} – 1.

Hanawalt search

A search/match phase identification method that uses the three strongest, most intense peaks for the search phase and the eight strongest peaks for the match phase.

Multiple pattern technique

The process of measuring multiple powder patterns from a specimen as a function of a variable such as temperature or degree of orientation, with the objective of obtaining a more accurate set of observed structure factor amplitudes Fhkl than could be obtained from a single pattern.

Anisotropic broadening

Broadening of diffraction peaks, which varies as a function of the direction in the crystal lattice corresponding to the peaks.


Two or more different crystal structures of a single chemical substance. In the pharmaceutical world, the term is often incorrectly extended to include hydrates and solvates, which should instead be called pseudopolymorphs.


Solids that are crystalline single-phase materials composed of two or more different molecular or ionic compounds, generally in a stoichiometric ratio, which are neither solvates nor simple salts.

Density functional theory

An approach to quantum mechanical calculations, especially in the solid state, in which the properties of many-electron systems are described by functionals, which are functions of another function. In density functional theory methods, the functions model the electron density.

Electron crystallography

Crystallography carried out using electrons rather than X-rays or neutrons as the probe. Generally performed in a transmission electron microscope.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaduk, J.A., Billinge, S.J.L., Dinnebier, R.E. et al. Powder diffraction. Nat Rev Methods Primers 1, 77 (2021).

Download citation

  • Accepted:

  • Published:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing