Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The life cycle of large igneous provinces

Abstract

Extremely voluminous magmatic systems known as large igneous provinces (LIPs) punctuate Earth’s history, and the gases they release plausibly link large-scale geodynamic and magmatic processes with major climate shifts in Earth’s geological record. However, quantifying the relationships between magmatism, gas release and environmental changes remains challenging. In this Review, we explore the major insights and outstanding questions regarding the linked evolution of mantle melting, expansive magmatic systems and the redistribution of volatiles from the solid Earth to the atmosphere. The evolution of mantle melt generation during LIP episodes sets the fundamental tempo of magma emplacement throughout the crust. The progression of crustal LIP magmatism and associated hydrothermal activity help shape the chemical evolution of the continental lithosphere and surface environment. Percolation of magmatic and metamorphic volatiles can decouple the tempo of gas release — a potential key driver of environmental changes — from the tempo of extrusive volcanic activity. LIPs demonstrate how large-scale magmatic systems interact with the surrounding lithosphere to propel evolving regimes of magma and volatile transfer through the crust. New, temporally resolved constraints on the evolution of LIP plumbing systems are needed to keep pace with increasingly precise timelines of palaeoenvironmental change during LIP emplacement.

Key points

  • Large igneous provinces (LIPs) mobilize climate-impacting gases from the solid Earth and have been implicated in major environmental disruptions.

  • Mantle melting varies between LIPs: continental LIP main-phase melting tends to be shallower than early and late phases, whereas oceanic LIPs differ, suggesting that lithosphere thickness is among the controls modulating melting.

  • LIPs exhibit an evolving lithospheric transport system that links waxing and waning generation of a prodigious volume (106–107 km3) of mantle melt with intrusions and surface outpourings of lava.

  • LIP volatiles originate from the mantle, continental lithospheric mantle and crust. Evolving magmatic chemistry, intrusion, volatile flushing and cryptic degassing complicate the relationship between pace of emissions (particularly CO2) and surface eruption rates.

  • Understanding links between LIP melt generation, lithospheric magma plumbing and surface climate requires high-resolution timelines for these systems combining geodynamic modelling, geochronology and geochemical datasets.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Large igneous provinces represent Earth’s largest magmatic events.
Fig. 2: Evolution of continental large igneous provinces.
Fig. 3: Stratigraphy of the Columbia River Flood Basalts.
Fig. 4: The tempo of LIP magmatism varies across multiple timescales.
Fig. 5: Melt inclusion and proxy data track CO2, S and halogen budgets in large igneous province magmas.
Fig. 6: Regime diagram tracking large igneous province evolution.

Data availability

Data compilation used in Fig. 5 is available in a worksheet file (Supplementary data).

References

  1. 1.

    Bryan, S. E. & Ernst, R. E. Revised definition of large igneous provinces (LIPs). Earth Sci. Rev. 86, 175–202 (2008).

    Google Scholar 

  2. 2.

    Ernst, R. E. et al. in Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes Ch. 1 (eds Ernst, R. E., Dickson, A. J. & Bekker, A.) 1–26 (Wiley, 2021).

  3. 3.

    Coffin, M. F. & Eldholm, O. Large igneous provinces: crustal structure, dimensions, and external consequences. Rev. Geophys. 32, 1–36 (1994).

    Google Scholar 

  4. 4.

    Ernst, R. E. Large Igneous Provinces (Cambridge Univ. Press, 2014).

  5. 5.

    Jones, M. T., Jerram, D. A., Svensen, H. H. & Grove, C. The effects of large igneous provinces on the global carbon and sulphur cycles. Palaeogeogr. Palaeoclimatol. Palaeoecol. 441, 4–21 (2016).

    Google Scholar 

  6. 6.

    Bond, D. P. & Wignall, P. B. Large igneous provinces and mass extinctions: an update. Geol. Soc. Am. Spec. Pap. 505, 29–55 (2014).

    Google Scholar 

  7. 7.

    Wignall, P. Large igneous provinces and mass extinctions. Earth Sci. Rev. 53, 1–33 (2001).

    Google Scholar 

  8. 8.

    Clapham, M. E. & Renne, P. R. Flood basalts and mass extinctions. Annu. Rev. Earth Planet. Sci. 47, 275–303 (2019).

    Google Scholar 

  9. 9.

    Courtillot, V. E. & Renne, P. R. On the ages of flood basalt events. C.R. Geosci. 335, 113–140 (2003).

    Google Scholar 

  10. 10.

    Foley, S. F. & Fischer, T. P. An essential role for continental rifts and lithosphere in the deep carbon cycle. Nat. Geosci. 10, 897–902 (2017).

    Google Scholar 

  11. 11.

    Black, B. A. & Gibson, S. A. Deep carbon and the life cycle of large igneous provinces. Elements 15, 319–324 (2019).

    Google Scholar 

  12. 12.

    Cashman, K. V., Sparks, R. S. & Blundy, J. D. Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science 355, eaag3055 (2017).

    Google Scholar 

  13. 13.

    Ernst, R. E., Liikane, D. A., Jowitt, S. M., Buchan, K. & Blanchard, J. A new plumbing system framework for mantle plume-related continental Large Igneous Provinces and their mafic-ultramafic intrusions. J. Volcanol. Geotherm. Res. 384, 75–84 (2019).

    Google Scholar 

  14. 14.

    Ernst, R., Grosfils, E. & Mege, D. Giant dike swarms: Earth, Venus, and Mars. Annu. Rev. Earth Planet. Sci. 29, 489–534 (2001).

    Google Scholar 

  15. 15.

    Buchan, K. L. & Ernst, R. E. Plumbing systems of large igneous provinces (LIPs) on Earth and Venus: investigating the role of giant circumferential and radiating dyke swarms, coronae and novae, and mid-crustal intrusive complexes. Gondwana Res. https://doi.org/10.1016/j.gr.2021.02.014 (2021).

  16. 16.

    Ernst, R. E. & Youbi, N. How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 478, 30–52 (2017).

    Google Scholar 

  17. 17.

    Self, S., Schmidt, A. & Mather, T. Emplacement characteristics, time scales, and volcanic gas release rates of continental flood basalt eruptions on Earth. Geol. Soc. Am. Spec. Pap. 505, 319–337 (2014).

    Google Scholar 

  18. 18.

    Campbell, I. H. Testing the plume theory. Chem. Geol. 241, 153–176 (2007).

    Google Scholar 

  19. 19.

    Foulger, G. R. in Plates vs Plumes: A Geological Controversy (Wiley-Blackwell, 2011).

  20. 20.

    Richards, M. A., Duncan, R. A. & Courtillot, V. E. Flood basalts and hot-spot tracks: plume heads and tails. Science 246, 103–107 (1989).

    Google Scholar 

  21. 21.

    Campbell, I. H. & Griffiths, R. W. Implications of mantle plume structure for the evolution of flood basalts. Earth Planet. Sci. Lett. 99, 79–93 (1990).

    Google Scholar 

  22. 22.

    Elkins-Tanton, L. T. & Hager, B. H. Melt intrusion as a trigger for lithospheric foundering and the eruption of the Siberian flood basalts. Geophys. Res. Lett. 27, 3937–3940 (2000).

    Google Scholar 

  23. 23.

    Jones, A. P., Price, G. D., Price, N. J., DeCarli, P. S. & Clegg, R. A. Impact induced melting and the development of large igneous provinces. Earth Planet. Sci. Lett. 202, 551–561 (2002).

    Google Scholar 

  24. 24.

    Coltice, N., Phillips, B., Bertrand, H., Ricard, Y. & Rey, P. Global warming of the mantle at the origin of flood basalts over supercontinents. Geology 35, 391–394 (2007).

    Google Scholar 

  25. 25.

    Gurnis, M. Large-scale mantle convection and the aggregation and dispersal of supercontinents. Nature 332, 695–699 (1988).

    Google Scholar 

  26. 26.

    French, S. W. & Romanowicz, B. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 525, 95–99 (2015).

    Google Scholar 

  27. 27.

    Tsekhmistrenko, M., Sigloch, K., Hosseini, K. & Barruol, G. A tree of Indo-African mantle plumes imaged by seismic tomography. Nat. Geosci. 14, 612–619 (2021).

    Google Scholar 

  28. 28.

    Stuart, F. M., Lass-Evans, S., Fitton, J. G. & Ellam, R. M. High 3He/4He ratios in picritic basalts from Baffin Island and the role of a mixed reservoir in mantle plumes. Nature 424, 57–59 (2003).

    Google Scholar 

  29. 29.

    Peters, B. J. et al. Helium–oxygen–osmium isotopic and elemental constraints on the mantle sources of the Deccan Traps. Earth Planet. Sci. Lett. 478, 245–257 (2017).

    Google Scholar 

  30. 30.

    Thompson, R. & Gibson, S. Transient high temperatures in mantle plume heads inferred from magnesian olivines in Phanerozoic picrites. Nature 407, 502–506 (2000).

    Google Scholar 

  31. 31.

    Herzberg, C. & Gazel, E. Petrological evidence for secular cooling in mantle plumes. Nature 458, 619–622 (2009).

    Google Scholar 

  32. 32.

    Coogan, L., Saunders, A. & Wilson, R. Aluminum-in-olivine thermometry of primitive basalts: evidence of an anomalously hot mantle source for large igneous provinces. Chem. Geol. 368, 1–10 (2014).

    Google Scholar 

  33. 33.

    Davies, D., Goes, S. & Sambridge, M. On the relationship between volcanic hotspot locations, the reconstructed eruption sites of large igneous provinces and deep mantle seismic structure. Earth Planet. Sci. Lett. 411, 121–130 (2015).

    Google Scholar 

  34. 34.

    Garnero, E. J., McNamara, A. K. & Shim, S. Continent-sized anomalous zones with low seismic velocity at the base of Earth’s mantle. Nat. Geosci. 9, 481–489 (2016).

    Google Scholar 

  35. 35.

    Koppers, A. A. et al. Mantle plumes and their role in Earth processes. Nat. Rev. Earth Environ. 2, 382–401 (2021).

    Google Scholar 

  36. 36.

    Sobolev, S. V. et al. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 477, 312–316 (2011).

    Google Scholar 

  37. 37.

    Mundl-Petermeier, A. et al. Anomalous 182W in high 3He/4He ocean island basalts: fingerprints of Earth’s core? Geochim. Cosmochim. Acta 271, 194–211 (2020).

    Google Scholar 

  38. 38.

    Trela, J. et al. The hottest lavas of the Phanerozoic and the survival of deep Archaean reservoirs. Nat. Geosci. 10, 451–456 (2017).

    Google Scholar 

  39. 39.

    Farnetani, C. G. & Richards, M. A. Numerical investigations of the mantle plume initiation model for flood basalt events. J. Geophys. Res. Solid Earth 99, 13813–13833 (1994).

    Google Scholar 

  40. 40.

    Jennings, E. S., Gibson, S. A. & Maclennan, J. Hot primary melts and mantle source for the Paraná-Etendeka flood basalt province: new constraints from Al-in-olivine thermometry. Chem. Geol. 529, 119287 (2019).

    Google Scholar 

  41. 41.

    Spice, H. E., Fitton, J. G. & Kirstein, L. A. Temperature fluctuation of the Iceland mantle plume through time. Geochem. Geophys. Geosyst. 17, 243–254 (2016).

    Google Scholar 

  42. 42.

    Kamenetsky, V. S., Chung, S., Kamenetsky, M. B. & Kuzmin, D. V. Picrites from the Emeishan Large Igneous Province, SW China: a compositional continuum in primitive magmas and their respective mantle sources. J. Petrol. 53, 2095–2113 (2012).

    Google Scholar 

  43. 43.

    Lightfoot, P. C. et al. Remobilization of the continental lithosphere by a mantle plume - Major-element, trace-element, and Sr-isotope, Nd-isotope, and Pb-isotope evidence from picritic and tholeiitic lavas of the Noril’sk district, Siberian Trap, Russia. Contrib. Mineral. Petrol. 114, 171–188 (1993).

    Google Scholar 

  44. 44.

    Camp, V. E. & Hanan, B. B. A plume-triggered delamination origin for the Columbia River Basalt Group. Geosphere 4, 480–495 (2008).

    Google Scholar 

  45. 45.

    Pearce, J. A., Ernst, R. E., Peate, D. W. & Rogers, C. LIP printing: use of immobile element proxies to characterize Large Igneous Provinces in the geologic record. Lithos 392-393, 106068 (2021).

    Google Scholar 

  46. 46.

    Shorttle, O. & Maclennan, J. Compositional trends of Icelandic basalts: implications for short–length scale lithological heterogeneity in mantle plumes. Geochem. Geophys. Geosyst. 12, 11008 (2011).

    Google Scholar 

  47. 47.

    Kent, A. et al. Mantle heterogeneity during the formation of the North Atlantic Igneous Province: constraints from trace element and Sr–Nd–Os–O isotope systematics of Baffin Island picrites. Geochem. Geophys. Geosyst. 5, Q11004 (2004).

    Google Scholar 

  48. 48.

    Cox, K. A model for flood basalt vulcanism. J. Petrol. 21, 629–650 (1980).

    Google Scholar 

  49. 49.

    Alt, J. C. et al. Recycling of water, carbon, and sulfur during subduction of serpentinites: a stable isotope study of Cerro del Almirez, Spain. Earth Planet. Sci. Lett. 327, 50–60 (2012).

    Google Scholar 

  50. 50.

    Hofmann, A. W. & White, W. M. Mantle plumes from ancient oceanic crust. Earth Planet. Sci. Lett. 57, 421–436 (1982).

    Google Scholar 

  51. 51.

    Sobolev, A. V. et al. The amount of recycled crust in sources of mantle-derived melts. Science 316, 412–417 (2007).

    Google Scholar 

  52. 52.

    Stagno, V., Ojwang, D. O., McCammon, C. A. & Frost, D. J. The oxidation state of the mantle and the extraction of carbon from Earth’s interior. Nature 493, 84–88 (2013).

    Google Scholar 

  53. 53.

    Cabral, R. A. et al. Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust. Nature 496, 490–493 (2013).

    Google Scholar 

  54. 54.

    Wang, X. J. et al. Recycled ancient ghost carbonate in the Pitcairn mantle plume. Proc. Natl Acad. Sci. USA 115, 8682–8687 (2018).

    Google Scholar 

  55. 55.

    Wooden, J. L. et al. Isotopic and trace-element constraints on mantle and crustal contributions to Siberian continental flood basalts, Noril’sk area, Siberia. Geochim. Cosmochim. Acta 57, 3677–3704 (1993).

    Google Scholar 

  56. 56.

    Gibson, S., Thompson, R. & Day, J. Timescales and mechanisms of plume–lithosphere interactions: 40Ar/39Ar geochronology and geochemistry of alkaline igneous rocks from the Paraná–Etendeka large igneous province. Earth Planet. Sci. Lett. 251, 1–17 (2006).

    Google Scholar 

  57. 57.

    Herzberg, C. & O’hara, M. Plume-associated ultramafic magmas of Phanerozoic age. J. Petrol. 43, 1857–1883 (2002).

    Google Scholar 

  58. 58.

    White, R. & McKenzie, D. Mantle plumes and flood basalts. J. Geophys. Res.Solid Earth 100, 17543–17585 (1995).

    Google Scholar 

  59. 59.

    Lee, C. A., Luffi, P., Plank, T., Dalton, H. & Leeman, W. P. Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas. Earth Planet. Sci. Lett. 279, 20–33 (2009).

    Google Scholar 

  60. 60.

    Sobolev, A. V., Sobolev, S. V., Kuzmin, D., Malitch, K. & Petrunin, A. Siberian meimechites: origin and relation to flood basalts and kimberlites. Russ. Geol. Geophys. 50, 999–1033 (2009).

    Google Scholar 

  61. 61.

    Herzberg, C. Partial melting below the Ontong Java Plateau. Geol. Soc. 229, 179–183 (2004).

    Google Scholar 

  62. 62.

    White, R. & McKenzie, D. Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J. Geophys. Res. Solid Earth 94, 7685–7729 (1989).

    Google Scholar 

  63. 63.

    Fedorenko, V., Czamanske, G., Zen’ko, T., Budahn, J. & Siems, D. Field and geochemical studies of the melilite-rearing Arydzhangsky Suite, and an overall perspective on the Siberian alkaline-ultramafic flood-volcanic rocks. Int. Geol. Rev. 42, 769–804 (2000).

    Google Scholar 

  64. 64.

    Simonetti, A. & Neal, C. R. In-situ chemical, U-Pb dating, and Hf isotope investigation of megacrystic zircons, Malaita (Solomon Islands): evidence for multi-stage alkaline magmatic activity beneath the Ontong Java Plateau. Earth Planet. Sci. Lett. 295, 251–261 (2010).

    Google Scholar 

  65. 65.

    Frey, F. A. et al. Temporal geochemical trends in Kerguelen Archipelago basalts: evidence for decreasing magma supply from the Kerguelen plume. Chem. Geol. 164, 61–80 (2000).

    Google Scholar 

  66. 66.

    Frey, F. A. et al. Origin and evolution of a submarine large igneous province: the Kerguelen Plateau and Broken Ridge, southern Indian Ocean. Earth Planet. Sci. Lett. 176, 73–89 (2000).

    Google Scholar 

  67. 67.

    Jackson, M. G. et al. Ultra-depleted melts in olivine-hosted melt inclusions from the Ontong Java Plateau. Chem. Geol. 414, 124–137 (2015).

    Google Scholar 

  68. 68.

    Weatherley, S. M. & Katz, R. F. Melting and channelized magmatic flow in chemically heterogeneous, upwelling mantle. Geochem. Geophys. Geosyst. 13, Q0AC18 (2012).

    Google Scholar 

  69. 69.

    Stracke, A. A process-oriented approach to mantle geochemistry. Chem. Geol. 579, 120350 (2021).

    Google Scholar 

  70. 70.

    Thompson, R. & Gibson, S. A. Subcontinental mantle plumes, hotspots and pre-existing thinspots. J. Geol. Soc. 148, 973–977 (1991).

    Google Scholar 

  71. 71.

    Sleep, N. H. Lateral flow and ponding of starting plume material. J. Geophys. Res. Solid Earth 102, 10001–10012 (1997).

    Google Scholar 

  72. 72.

    Gao, H. Crustal seismic structure beneath the source area of the Columbia River flood basalt: bifurcation of the Moho driven by lithosphere delamination. Geophys. Res. Lett. 42, 9764–9771 (2015).

    Google Scholar 

  73. 73.

    Sharma, J., Kumar, M. R., Roy, K. S., Pal, S. & Roy, P. Low-velocity zones and negative radial anisotropy beneath the plume perturbed northwestern Deccan volcanic province. J. Geophys. Res. Solid Earth 126, e2020JB020295 (2021).

    Google Scholar 

  74. 74.

    Niday, W. & Humphreys, E. Complex upper mantle anisotropy in the Pacific Northwest: evidence from SKS splitting. Earth Planet. Sci. Lett. 540, 116264 (2020).

    Google Scholar 

  75. 75.

    Ridley, V. A. & Richards, M. A. Deep crustal structure beneath large igneous provinces and the petrologic evolution of flood basalts. Geochem. Geophys. Geosyst. 11, Q09006 (2010).

    Google Scholar 

  76. 76.

    Catchings, R. & Mooney, W. Crustal structure of the Columbia Plateau: evidence for continental rifting. J. Geophys. Res. Solid Earth 93, 459–474 (1988).

    Google Scholar 

  77. 77.

    Thybo, H. & Artemieva, I. Moho and magmatic underplating in continental lithosphere. Tectonophysics 609, 605–619 (2013).

    Google Scholar 

  78. 78.

    Davenport, K., Hole, J., Tikoff, B., Russo, R. & Harder, S. A strong contrast in crustal architecture from accreted terranes to craton, constrained by controlled-source seismic data in Idaho and eastern Oregon. Lithosphere 9, 325–340 (2017).

    Google Scholar 

  79. 79.

    Oakey, G. & Saltus, R. Geophysical analysis of the Alpha–Mendeleev ridge complex: characterization of the High Arctic Large Igneous Province. Tectonophysics 691, 65–84 (2016).

    Google Scholar 

  80. 80.

    Larsen, R. B. et al. Portrait of a giant deep-seated magmatic conduit system: the Seiland Igneous Province. Lithos 296, 600–622 (2018).

    Google Scholar 

  81. 81.

    Grant, T. B. et al. Anatomy of a deep crustal volcanic conduit system; the Reinfjord ultramafic complex, Seiland Igneous Province, northern Norway. Lithos 252, 200–215 (2016).

    Google Scholar 

  82. 82.

    Lange, R. A. Constraints on the preeruptive volatile concentrations in the Columbia River flood basalts. Geology 30, 179–182 (2002).

    Google Scholar 

  83. 83.

    Karlstrom, L. & Richards, M. On the evolution of large ultramafic magma chambers and timescales for flood basalt eruptions. J. Geophys. Res. Solid Earth 116, B08216 (2011).

    Google Scholar 

  84. 84.

    Black, B. A. & Manga, M. Volatiles and the tempo of flood basalt magmatism. Earth Planet. Sci. Lett. 458, 130–140 (2017).

    Google Scholar 

  85. 85.

    Farnetani, C. G., Richards, M. A. & Ghiorso, M. S. Petrological models of magma evolution and deep crustal structure beneath hotspots and flood basalt provinces. Earth Planet. Sci. Lett. 143, 81–94 (1996).

    Google Scholar 

  86. 86.

    White, S. M., Crisp, J. A. & Spera, F. J. Long-term volumetric eruption rates and magma budgets. Geochem. Geophys. Geosyst. 7, Q03010 (2006).

    Google Scholar 

  87. 87.

    Crisp, J. A. Rates of magma emplacement and volcanic output. J. Volcanol. Geotherm. Res. 20, 177–211 (1984).

    Google Scholar 

  88. 88.

    Tierney, C. R., Schmitt, A. K., Lovera, O. M. & de Silva, S. L. Voluminous plutonism during volcanic quiescence revealed by thermochemical modeling of zircon. Geology 44, 683–686 (2016).

    Google Scholar 

  89. 89.

    Ward, K. M., Delph, J. R., Zandt, G., Beck, S. L. & Ducea, M. N. Magmatic evolution of a Cordilleran flare-up and its role in the creation of silicic crust. Sci. Rep. 7, 9047 (2017).

    Google Scholar 

  90. 90.

    Morriss, M. C., Karlstrom, L., Nasholds, M. W. & Wolff, J. A. The Chief Joseph dike swarm of the Columbia River flood basalts, and the legacy data set of William H. Taubeneck. Geosphere 16, 1082–1106 (2020).

    Google Scholar 

  91. 91.

    Glišović, P. & Forte, A. M. On the deep-mantle origin of the Deccan Traps. Science 355, 613–616 (2017).

    Google Scholar 

  92. 92.

    Glišović, P. & Forte, A. M. Two deep-mantle sources for Paleocene doming and volcanism in the North Atlantic. Proc. Natl Acad. Sci. USA 116, 13227–13232 (2019).

    Google Scholar 

  93. 93.

    Richards, M. A. et al. Triggering of the largest Deccan eruptions by the Chicxulub impact. Geol. Soc. Am. Bull. 127, 1507–1520 (2015).

    Google Scholar 

  94. 94.

    Saunders, A. D. Two LIPs and two Earth-system crises: the impact of the North Atlantic Igneous Province and the Siberian Traps on the Earth-surface carbon cycle. Geol. Mag. 153, 201–222 (2016).

    Google Scholar 

  95. 95.

    Gladczenko, T. P., Coffin, M. F. & Eldholm, O. Crustal structure of the Ontong Java Plateau: modeling of new gravity and existing seismic data. J. Geophys. Res. Solid Earth 102, 22711–22729 (1997).

    Google Scholar 

  96. 96.

    Mittal, T. & Richards, M. A. Volatile degassing from magma chambers as a control on volcanic eruptions. J. Geophys. Res. Solid Earth 124, 7869–7901 (2019).

    Google Scholar 

  97. 97.

    Jellinek, A. M. & DePaolo, D. J. A model for the origin of large silicic magma chambers: precursors of caldera-forming eruptions. Bull. Volcanol. 65, 363–381 (2003).

    Google Scholar 

  98. 98.

    Colón, D. P., Bindeman, I. N. & Gerya, T. V. Understanding the isotopic and chemical evolution of Yellowstone hot spot magmatism using magmatic-thermomechanical modeling. J. Volcanol. Geotherm. Res. 370, 13–30 (2019).

    Google Scholar 

  99. 99.

    Huber, C., Townsend, M., Degruyter, W. & Bachmann, O. Optimal depth of subvolcanic magma chamber growth controlled by volatiles and crust rheology. Nat. Geosci. 12, 762–768 (2019).

    Google Scholar 

  100. 100.

    Perry-Houts, J. & Karlstrom, L. Anisotropic viscosity and time-evolving lithospheric instabilities due to aligned igneous intrusions. Geophys. J. Int. 216, 794–802 (2019).

    Google Scholar 

  101. 101.

    Keller, T., May, D. A. & Kaus, B. J. Numerical modelling of magma dynamics coupled to tectonic deformation of lithosphere and crust. Geophys. J. Int. 195, 1406–1442 (2013).

    Google Scholar 

  102. 102.

    Petford, N. Rheology of granitic magmas during ascent and emplacement. Annu. Rev. Earth Planet. Sci. 31, 399–427 (2003).

    Google Scholar 

  103. 103.

    Karlstrom, L., Paterson, S. R. & Jellinek, A. M. A reverse energy cascade for crustal magma transport. Nat. Geosci. 10, 604–608 (2017).

    Google Scholar 

  104. 104.

    Magee, C., Ernst, R. E., Muirhead, J., Phillips, T. & Jackson, C. A. L. in Dyke Swarms of the World: A Modern Perspective (eds Srivastava, R., Ernst, R. & Peng, P.) 45–85 (Springer, 2019).

  105. 105.

    Wolff, J., Ramos, F., Hart, G., Patterson, J. & Brandon, A. Columbia River flood basalts from a centralized crustal magmatic system. Nat. Geosci. 1, 177–180 (2008).

    Google Scholar 

  106. 106.

    Parfitt, E. & Head, J. Buffered and unbuffered dike emplacement on Earth and Venus: implications for magma reservoir size, depth, and rate of magma replenishment. Earth Moon Planets 61, 249–281 (1993).

    Google Scholar 

  107. 107.

    Muirhead, J. D., Airoldi, G., Rowland, J. V. & White, J. D. Interconnected sills and inclined sheet intrusions control shallow magma transport in the Ferrar large igneous province, Antarctica. Bulletin 124, 162–180 (2012).

    Google Scholar 

  108. 108.

    Muirhead, J. D., Airoldi, G., White, J. D. & Rowland, J. V. Cracking the lid: sill-fed dikes are the likely feeders of flood basalt eruptions. Earth Planet. Sci. Lett. 406, 187–197 (2014).

    Google Scholar 

  109. 109.

    Block, K. A., Steiner, J. C., Puffer, J. H., Jones, K. M. & Goldstein, S. L. Evolution of late stage differentiates in the Palisades Sill, New York and New Jersey. Lithos 230, 121–132 (2015).

    Google Scholar 

  110. 110.

    Reidel, S. P. & Tolan, T. L. Eruption and emplacement of flood basalt: an example from the large-volume Teepee Butte Member, Columbia River Basalt Group. Geol. Soc. Am. Bull. 104, 1650–1671 (1992).

    Google Scholar 

  111. 111.

    Arndt, N., Chauvel, C., Czamanske, G. & Fedorenko, V. Two mantle sources, two plumbing systems: tholeiitic and alkaline magmatism of the Maymecha River basin, Siberian flood volcanic province. Contrib. Mineral. Petrol. 133, 297–313 (1998).

    Google Scholar 

  112. 112.

    Dessai, A., Markwick, A., Vaselli, O. & Downes, H. Granulite and pyroxenite xenoliths from the Deccan Trap: insight into the nature and composition of the lower lithosphere beneath cratonic India. Lithos 78, 263–290 (2004).

    Google Scholar 

  113. 113.

    Friedrich, A. M. et al. Stratigraphic framework for the plume mode of mantle convection and the analysis of interregional unconformities on geological maps. Gondwana Res. 53, 159–188 (2018).

    Google Scholar 

  114. 114.

    Krob, F. C., Glasmacher, U. A., Bunge, H., Friedrich, A. M. & Hackspacher, P. C. Application of stratigraphic frameworks and thermochronological data on the Mesozoic SW Gondwana intraplate environment to retrieve the Paraná-Etendeka plume movement. Gondwana Res. 84, 81–110 (2020).

    Google Scholar 

  115. 115.

    Lin, S. & van Keken, P. E. Multiple volcanic episodes of flood basalts caused by thermochemical mantle plumes. Nature 436, 250–252 (2005).

    Google Scholar 

  116. 116.

    Burov, E. & Gerya, T. Asymmetric three-dimensional topography over mantle plumes. Nature 513, 85–89 (2014).

    Google Scholar 

  117. 117.

    Leng, W. & Zhong, S. Surface subsidence caused by mantle plumes and volcanic loading in large igneous provinces. Earth Planet. Sci. Lett. 291, 207–214 (2010).

    Google Scholar 

  118. 118.

    Black, B. A., Weiss, B. P., Elkins-Tanton, L. T., Veselovskiy, R. V. & Latyshev, A. Siberian Traps volcaniclastic rocks and the role of magma-water interactions. Geol. Soc. Am. Bull. 127, 1437–1452 (2015).

    Google Scholar 

  119. 119.

    Czamanske, G. K., Gurevitch, A., Fedorenko, V. & Simonov, O. Demise of the Siberian plume: paleogeographic and paleotectonic reconstruction from the prevolcanic and volcanic record, north-central Siberia. Int. Geol. Rev. 40, 95–115 (1998).

    Google Scholar 

  120. 120.

    Polozov, A., Svensen, H. & Planke, S. Formation of Phreatomagmatic Pipes in the Tunguska Basin (Siberia, Russia) during the end-Permian. Geophys. Res. Abstr. 12, EGU2010-13128 (2010).

    Google Scholar 

  121. 121.

    Peate, I. U. & Bryan, S. E. Re-evaluating plume-induced uplift in the Emeishan large igneous province. Nat. Geosci. 1, 625–629 (2008).

    Google Scholar 

  122. 122.

    Neal, C. R., Mahoney, J. J. & Chazey III, W. J. Mantle sources and the highly variable role of continental lithosphere in basalt petrogenesis of the Kerguelen Plateau and Broken Ridge LIP: results from ODP Leg 183. J. Petrol. 43, 1177–1205 (2002).

    Google Scholar 

  123. 123.

    McQuarrie, N. & Rodgers, D. W. Subsidence of a volcanic basin by flexure and lower crustal flow: the eastern Snake River Plain, Idaho. Tectonics 17, 203–220 (1998).

    Google Scholar 

  124. 124.

    Jones, S. & Maclennan, J. Crustal flow beneath Iceland. J. Geophys. Res. Solid Earth 110, B09410 (2005).

    Google Scholar 

  125. 125.

    Orellana-Rovirosa, F. & Richards, M. Evidence and models for lower crustal flow beneath the Galápagos platform. Geochem. Geophys. Geosyst. 17, 113–142 (2016).

    Google Scholar 

  126. 126.

    Mitchell, R. N. et al. The supercontinent cycle. Nat. Rev. Earth Environ. 2, 358–374 (2021).

    Google Scholar 

  127. 127.

    Zhu, J. et al. Weak vertical surface movement caused by the ascent of the Emeishan mantle anomaly. J. Geophys. Res. Solid Earth 123, 1018–1034 (2018).

    Google Scholar 

  128. 128.

    Courtillot, V., Jaupart, C., Manighetti, I., Tapponnier, P. & Besse, J. On causal links between flood basalts and continental breakup. Earth Planet. Sci. Lett. 166, 177–195 (1999).

    Google Scholar 

  129. 129.

    Planke, S., Symonds, P. A., Alvestad, E. & Skogseid, J. Seismic volcanostratigraphy of large-volume basaltic extrusive complexes on rifted margins. J. Geophys. Res. Solid Earth 105, 19335–19351 (2000).

    Google Scholar 

  130. 130.

    Hooper, P. R. The timing of crustal extension and the eruption of continental flood basalts. Nature 345, 246–249 (1990).

    Google Scholar 

  131. 131.

    Bryan, S. E. & Ferrari, L. Large igneous provinces and silicic large igneous provinces: progress in our understanding over the last 25 years. GSA Bull. 125, 1053–1078 (2013).

    Google Scholar 

  132. 132.

    Vanderkluysen, L., Mahoney, J. J., Hooper, P. R., Sheth, H. C. & Ray, R. The feeder system of the Deccan Traps (India): insights from dike geochemistry. J. Petrol. 52, 315–343 (2011).

    Google Scholar 

  133. 133.

    Bindeman, I. et al. Pervasive hydrothermal events associated with large igneous provinces documented by the Columbia River Basaltic Province. Sci. Rep. 10, 10206 (2020).

    Google Scholar 

  134. 134.

    Park, Y., Swanson-Hysell, N. L., Lisiecki, L. E. & Macdonald, F. A. in Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes Ch. 7 (eds Ernst, R. E., Dickson, A. J. & Bekker, A.) 153–168 (Wiley, 2021).

  135. 135.

    Dessert, C., Dupré, B., Gaillardet, J., François, L. M. & Allegre, C. J. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chem. Geol. 202, 257–273 (2003).

    Google Scholar 

  136. 136.

    Alt, J. C. & Teagle, D. A. The uptake of carbon during alteration of ocean crust. Geochim. Cosmochim. Acta 63, 1527–1535 (1999).

    Google Scholar 

  137. 137.

    Fitton, J. G. & Godard, M. Origin and evolution of magmas on the Ontong Java Plateau. Geol. Soc. 229, 151–178 (2004).

    Google Scholar 

  138. 138.

    Black, B., Mittal, T., Lingo, F., Walowski, K. & Hernandez, A. in Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes Ch. 5 (eds Ernst, R. E., Dickson, A. J. & Bekker, A.) 117–131 (Wiley, 2021).

  139. 139.

    Taylor, H. P. Jr & Forester, R. W. An oxygen and hydrogen isotope study of the Skaergaard intrusion and its country rocks: a description of a 55 my old fossil hydrothermal system. J. Petrol. 20, 355–419 (1979).

    Google Scholar 

  140. 140.

    Wotzlaw, J., Bindeman, I. N., Schaltegger, U., Brooks, C. K. & Naslund, H. R. High-resolution insights into episodes of crystallization, hydrothermal alteration and remelting in the Skaergaard intrusive complex. Earth Planet. Sci. Lett. 355, 199–212 (2012).

    Google Scholar 

  141. 141.

    Mittal, T., Self, S. & Jay, A. Thickness characteristics of pāhoehoe lavas in the Deccan Province, Western Ghats, India, and in continental flood basalt provinces elsewhere. Front. Earth Sci. 8, 630604 (2021).

    Google Scholar 

  142. 142.

    Reidel, S. P., Camp, V. E., Tolan, T. L. & Martin, B. S. The Columbia River flood basalt province: stratigraphy, areal extent, volume, and physical volcanology. Geol. Soc. Am. Spec. Pap. 497, 1–43 (2013).

    Google Scholar 

  143. 143.

    Kamo, S. L. et al. Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian–Triassic boundary and mass extinction at 251 Ma. Earth Planet. Sci. Lett. 214, 75–91 (2003).

    Google Scholar 

  144. 144.

    Blackburn, T. J. et al. Zircon U-Pb geochronology links the end-Triassic extinction with the Central Atlantic Magmatic Province. Science 340, 941–945 (2013).

    Google Scholar 

  145. 145.

    Kasbohm, J. & Schoene, B. Rapid eruption of the Columbia River flood basalt and correlation with the mid-Miocene climate optimum. Sci. Adv. 4, eaat8223 (2018).

    Google Scholar 

  146. 146.

    Kasbohm, J., Schoene, B. & Burgess, S. in Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes Ch. 2 (eds Ernst, R. E., Dickson, A. J. & Bekker, A.) 27–82 (Wiley, 2021).

  147. 147.

    Burgess, S. D. & Bowring, S. A. High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction. Sci. Adv. 1, e1500470 (2015).

    Google Scholar 

  148. 148.

    Renne, P. R. et al. State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact. Science 350, 76–78 (2015).

    Google Scholar 

  149. 149.

    Sprain, C. J. et al. The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary. Science 363, 866–870 (2019).

    Google Scholar 

  150. 150.

    Schoene, B. et al. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science 363, 862–866 (2019).

    Google Scholar 

  151. 151.

    Ravizza, G. & Peucker-Ehrenbrink, B. Chemostratigraphic evidence of Deccan volcanism from the marine osmium isotope record. Science 302, 1392–1395 (2003).

    Google Scholar 

  152. 152.

    Dodd, S. C., Mac Niocaill, C. & Muxworthy, A. R. Long duration (>4 Ma) and steady-state volcanic activity in the early Cretaceous Paraná–Etendeka Large Igneous Province: new palaeomagnetic data from Namibia. Earth Planet. Sci. Lett. 414, 16–29 (2015).

    Google Scholar 

  153. 153.

    Schoene, B., Eddy, M. P., Keller, C. B. & Samperton, K. M. An evaluation of Deccan Traps eruption rates using geochronologic data. Geochronology 3, 181–198 (2020).

    Google Scholar 

  154. 154.

    Chenet, A., Fluteau, F., Courtillot, V., Gérard, M. & Subbarao, K. Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: Results from a 1200-m-thick section in the Mahabaleshwar escarpment. J. Geophys. Res. Solid Earth 113, B04101 (2008).

    Google Scholar 

  155. 155.

    Pavlov, V. E. et al. Geomagnetic secular variations at the Permian-Triassic boundary and pulsed magmatism during eruption of the Siberian Traps. Geochem. Geophys. Geosyst. 20, 773–791 (2019).

    Google Scholar 

  156. 156.

    Xu, Y., Yang, Z., Tong, Y. & Jing, X. Paleomagnetic secular variation constraints on the rapid eruption of the Emeishan continental flood basalts in southwestern China and northern Vietnam. J. Geophys. Res. Solid Earth 123, 2597–2617 (2018).

    Google Scholar 

  157. 157.

    Percival, L. M. E. et al. Mercury evidence for pulsed volcanism during the end-Triassic mass extinction. Proc. Natl Acad. Sci. USA 114, 7929–7934 (2017).

    Google Scholar 

  158. 158.

    Jones, D. S., Martini, A. M., Fike, D. A. & Kaiho, K. A volcanic trigger for the Late Ordovician mass extinction? Mercury data from south China and Laurentia. Geology 45, 631–634 (2017).

    Google Scholar 

  159. 159.

    Lindström, S. et al. Volcanic mercury and mutagenesis in land plants during the end-Triassic mass extinction. Sci. Adv. 5, eaaw4018 (2019).

    Google Scholar 

  160. 160.

    Woodruff, L. G., Schulz, K. J., Nicholson, S. W. & Dicken, C. L. Mineral deposits of the Mesoproterozoic Midcontinent Rift System in the Lake Superior region-A space and time classification. Ore Geol. Rev. 126, 103716 (2020).

    Google Scholar 

  161. 161.

    Leitch, A. & Davies, G. Mantle plumes and flood basalts: enhanced melting from plume ascent and an eclogite component. J. Geophys. Res. 106, 2047–2059 (2001).

    Google Scholar 

  162. 162.

    Jiang, Q., Jourdan, F., Olierook, H. K., Merle, R. E. & Whittaker, J. M. Longest continuously erupting large igneous province driven by plume-ridge interaction. Geology 49, 206–210 (2020).

    Google Scholar 

  163. 163.

    Mahoney, J. J., Storey, M., Duncan, R. A., Spencer, K. J. & Pringle, M. in The Mesozoic Pacific: Geology, Tectonics, and Volcanism Vol. 77 (eds Pringle, M. S., Sager, W. W., Sliter, W. V. & Stein, S.) 233–261 (Wiley, 1993).

  164. 164.

    Zhu, D. et al. The 132 Ma Comei-Bunbury large igneous province: remnants identified in present-day southeastern Tibet and southwestern Australia. Geology 37, 583–586 (2009).

    Google Scholar 

  165. 165.

    Yu, X., Lee, C. A., Chen, L. & Zeng, G. Magmatic recharge in continental flood basalts: insights from the Chifeng igneous province in Inner Mongolia. Geochem. Geophys. Geosyst. 16, 2082–2096 (2015).

    Google Scholar 

  166. 166.

    Heinonen, J. S., Luttinen, A. V., Spera, F. J. & Bohrson, W. A. Deep open storage and shallow closed transport system for a continental flood basalt sequence revealed with Magma Chamber Simulator. Contrib. Mineral. Petrol. 174, 87 (2019).

    Google Scholar 

  167. 167.

    Schmidt, A. et al. Selective environmental stress from sulphur emitted by continental flood basalt eruptions. Nat. Geosci. 9, 77–82 (2015).

    Google Scholar 

  168. 168.

    Black, B. A. et al. Systemic swings in end-Permian climate from Siberian Traps carbon and sulfur outgassing. Nat. Geosci. 11, 949–954 (2018).

    Google Scholar 

  169. 169.

    Thordarson, T. & Self, S. The Roza Member, Columbia River Basalt Group: a gigantic pahoehoe lava flow field formed by endogenous processes? J. Geophys. Res. Solid Earth 103, 27411–27445 (1998).

    Google Scholar 

  170. 170.

    Fendley, I. M. et al. Constraints on the volume and rate of Deccan Traps flood basalt eruptions using a combination of high-resolution terrestrial mercury records and geochemical box models. Earth Planet. Sci. Lett. 524, 115721 (2019).

    Google Scholar 

  171. 171.

    Petcovic, H. L. & Dufek, J. D. Modeling magma flow and cooling in dikes: implications for emplacement of Columbia River flood basalts. J. Geophys. Res. Solid Earth 110, B10201 (2005).

    Google Scholar 

  172. 172.

    Karlstrom, L., Murray, K. E. & Reiners, P. W. Bayesian Markov-Chain Monte Carlo inversion of low-temperature thermochronology around two 8–10 m wide Columbia River flood basalt dikes. Front. Earth Sci. 7, 90 (2019).

    Google Scholar 

  173. 173.

    Biasi, J. & Karlstrom, L. Timescales of magma transport in the Columbia River flood basalts, determined by paleomagnetic data. Earth Planet. Sci. Lett. 576, 117169 (2021).

    Google Scholar 

  174. 174.

    Ghosh, P., Sayeed, M., Islam, R. & Hundekari, S. Inter-basaltic clay (bole bed) horizons from Deccan traps of India: implications for palaeo-weathering and palaeo-climate during Deccan volcanism. Palaeogeogr. Palaeoclimatol. Palaeoecol. 242, 90–109 (2006).

    Google Scholar 

  175. 175.

    Olsen, P. E., Kent, D. V., Cornet, B., Witte, W. K. & Schlische, R. W. High-resolution stratigraphy of the Newark rift basin (early Mesozoic, eastern North America). Geol. Soc. Am. Bull. 108, 40–77 (1996).

    Google Scholar 

  176. 176.

    Schaller, M. F., Wright, J. D. & Kent, D. V. Atmospheric PCO2 perturbations associated with the Central Atlantic Magmatic Province. Science 331, 1404–1409 (2011).

    Google Scholar 

  177. 177.

    Sharma, M. in Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism (eds Mahoney, J. J. & Coffin, M. F.) 273–296 (1997).

  178. 178.

    Sawlan, M. G. Alteration, mass analysis, and magmatic compositions of the Sentinel Bluffs Member, Columbia River flood basalt province. Geosphere 14, 286–303 (2018).

    Google Scholar 

  179. 179.

    Xu, J., Suzuki, K., Xu, Y., Mei, H. & Li, J. Os, Pb, and Nd isotope geochemistry of the Permian Emeishan continental flood basalts: insights into the source of a large igneous province. Geochim. Cosmochim. Acta 71, 2104–2119 (2007).

    Google Scholar 

  180. 180.

    Fedorenko, V. A. & Czamanske, G. K. Results of new field and geochemical studies of the volcanic and intrusive rocks of the Maymecha-Kotuy area, Siberian flood-basalt province, Russia. Int. Geol. Rev. 39, 479–531 (1997).

    Google Scholar 

  181. 181.

    Sheth, H. C., Pande, K. & Bhutani, R. 40Ar-39Ar ages of Bombay trachytes: evidence for a Palaeocene phase of Deccan volcanism. Geophys. Res. Lett. 28, 3513–3516 (2001).

    Google Scholar 

  182. 182.

    Moore, N., Grunder, A. & Bohrson, W. The three-stage petrochemical evolution of the Steens Basalt (southeast Oregon, USA) compared to large igneous provinces and layered mafic intrusions. Geosphere 14, 2505–2532 (2018).

    Google Scholar 

  183. 183.

    Bennett, E. N., Lissenberg, C. J. & Cashman, K. V. The significance of plagioclase textures in mid-ocean ridge basalt (Gakkel Ridge, Arctic Ocean). Contrib. Mineral. Petrol. 174, 1–22 (2019).

    Google Scholar 

  184. 184.

    Reidel, S. P. et al. The Grande Ronde Basalt, Columbia River Basalt Group; Stratigraphic descriptions and correlations in Washington, Oregon, and Idaho. Geol. Soc. Am. Spec. Pap. 239, 21–53 (1989).

    Google Scholar 

  185. 185.

    Durand, S. R. & Sen, G. Preeruption history of the Grande Ronde formation lavas, Columbia River basalt group, American northwest: evidence from phenocrysts. Geology 32, 293–296 (2004).

    Google Scholar 

  186. 186.

    Ramos, F. C., Wolff, J. A. & Tollstrup, D. L. Sr isotope disequilibrium in Columbia River flood basalts: evidence for rapid shallow-level open-system processes. Geology 33, 457–460 (2005).

    Google Scholar 

  187. 187.

    Borges, M. R., Sen, G., Hart, G. L., Wolff, J. A. & Chandrasekharam, D. Plagioclase as recorder of magma chamber processes in the Deccan Traps: Sr-isotope zoning and implications for Deccan eruptive event. J. Asian Earth Sci. 84, 95–101 (2014).

    Google Scholar 

  188. 188.

    Bryan, S. E. et al. The largest volcanic eruptions on Earth. Earth Sci. Rev. 102, 207–229 (2010).

    Google Scholar 

  189. 189.

    Streck, M. J., Ferns, M. L. & McIntosh, W. Large, persistent rhyolitic magma reservoirs above Columbia River Basalt storage sites: the Dinner Creek Tuff eruptive center, eastern Oregon. Geosphere 11, 226–235 (2015).

    Google Scholar 

  190. 190.

    Rocha, B. C. et al. Rapid eruption of silicic magmas from the Paraná magmatic province (Brazil) did not trigger the Valanginian event. Geology 48, 1174–1178 (2020).

    Google Scholar 

  191. 191.

    Basu, A. R. et al. Widespread silicic and alkaline magmatism synchronous with the Deccan Traps flood basalts, India. Earth Planet. Sci. Lett. 552, 116616 (2020).

    Google Scholar 

  192. 192.

    Peate, D. W. Global dispersal of Pb by large-volume silicic eruptions in the Paraná-Etendeka large igneous province. Geology 37, 1071–1074 (2009).

    Google Scholar 

  193. 193.

    Cather, S. M., Dunbar, N. W., McDowell, F. W., McIntosh, W. C. & Scholle, P. A. Climate forcing by iron fertilization from repeated ignimbrite eruptions: the icehouse–silicic large igneous province (SLIP) hypothesis. Geosphere 5, 315–324 (2009).

    Google Scholar 

  194. 194.

    Tabazadeh, A. & Turco, R. P. Stratospheric chlorine injection by volcanic-eruptions: HCI scavenging and implications for ozone. Science 260, 1082–1086 (1993).

    Google Scholar 

  195. 195.

    Glaze, L., Self, S., Schmidt, A. & Hunter, S. Assessing eruption column height in ancient flood basalt eruptions. Earth Planet. Sci. Lett. 457, 263–270 (2014).

    Google Scholar 

  196. 196.

    Thordarson, T. & Self, S. The Laki (Skaftár Fires) and Grímsvötn eruptions in 1783–1785. Bull. Volcanol. 55, 233–263 (1993).

    Google Scholar 

  197. 197.

    Thordarson, T., Larsen, G., Steinthorsson, S. & Self, S. The 1783–1785 AD Laki-Grímsvötn eruptions II: Appraisal based on contemporary accounts. Jökull 53, 11–47 (2003).

    Google Scholar 

  198. 198.

    Hon, K., Kauahikaua, J., Denlinger, R. & Mackay, K. Emplacement and inflation of pahoehoe sheet flows: observations and measurements of active lava flows on Kilauea Volcano, Hawaii. Geol. Soc. Am. Bull. 106, 351–370 (1994).

    Google Scholar 

  199. 199.

    Swanson, D. A., Wright, T., Hooper, P. & Bentley, R. Revisions in stratigraphic nomenclature of the Columbia River Basalt Group (USGS, 1979).

  200. 200.

    Brown, R. J., Blake, S., Thordarson, T. & Self, S. Pyroclastic edifices record vigorous lava fountains during the emplacement of a flood basalt flow field, Roza Member, Columbia River Basalt Province, USA. Geol. Soc. Am. Bull. 126, 875–891 (2014).

    Google Scholar 

  201. 201.

    Jones, T. J. & Llewellin, E. W. Convective tipping point initiates localization of basaltic fissure eruptions. Earth Planet. Sci. Lett. 553, 116637 (2021).

    Google Scholar 

  202. 202.

    Wei, Z., Qin, Z. & Suckale, J. Magma mixing during conduit flow is reflected in melt-inclusion data from persistently degassing volcanoes. ESSOAr https://doi.org/10.1002/essoar.10505766.1 (2021).

    Article  Google Scholar 

  203. 203.

    Burgisser, A., Bergantz, G. W. & Breidenthal, R. E. Addressing complexity in laboratory experiments: the scaling of dilute multiphase flows in magmatic systems. J. Volcanol. Geotherm. Res. 141, 245–265 (2005).

    Google Scholar 

  204. 204.

    Witt, T., Walter, T. R., Müller, D., Guðmundsson, M. T. & Schöpa, A. The relationship between lava fountaining and vent morphology for the 2014–2015 Holuhraun eruption, Iceland, analyzed by video monitoring and topographic mapping. Front. Earth Sci. 6, 235 (2018).

    Google Scholar 

  205. 205.

    Ross, P. S. et al. Mafic volcaniclastic deposits in flood basalt provinces: a review. J. Volcanol. Geotherm. Res. 145, 281–314 (2005).

    Google Scholar 

  206. 206.

    Thordarson, T. Accretionary-lapilli-bearing pyroclastic rocks at ODP Leg 192 Site 1184: a record of subaerial phreatomagmatic eruptions on the Ontong Java Plateau. Geol. Soc. 229, 275–306 (2004).

    Google Scholar 

  207. 207.

    Pyle, D. & Mather, T. Halogens in igneous processes and their fluxes to the atmosphere and oceans from volcanic activity: a review. Chem. Geol. 263, 110–121 (2009).

    Google Scholar 

  208. 208.

    Dasgupta, R. & Hirschmann, M. M. The deep carbon cycle and melting in Earth’s interior. Earth Planet. Sci. Lett. 298, 1–13 (2010).

    Google Scholar 

  209. 209.

    Wieser, P. E., Jenner, F., Edmonds, M., Maclennan, J. & Kunz, B. E. Chalcophile elements track the fate of sulfur at Kīlauea Volcano, Hawai’i. Geochim. Cosmochim. Acta 282, 245–275 (2020).

    Google Scholar 

  210. 210.

    Guex, J. et al. Thermal erosion of cratonic lithosphere as a potential trigger for mass-extinction. Sci. Rep. 6, 23168 (2016).

    Google Scholar 

  211. 211.

    Broadley, M. W., Barry, P. H., Ballentine, C. J., Taylor, L. A. & Burgess, R. End-Permian extinction amplified by plume-induced release of recycled lithospheric volatiles. Nat. Geosci. 11, 682–687 (2018).

    Google Scholar 

  212. 212.

    Gales, E., Black, B. & Elkins-Tanton, L. T. Carbonatites as a record of the carbon isotope composition of large igneous province outgassing. Earth Planet. Sci. Lett. 535, 116076 (2020).

    Google Scholar 

  213. 213.

    Liu, J. et al. Plume-driven recratonization of deep continental lithospheric mantle. Nature 592, 732–736 (2021).

    Google Scholar 

  214. 214.

    Howarth, G. H. et al. Superplume metasomatism: evidence from Siberian mantle xenoliths. Lithos 184, 209–224 (2014).

    Google Scholar 

  215. 215.

    Ernst, R. E., Davies, D. R., Jowitt, S. M. & Campbell, I. When do mantle plumes destroy diamonds? Earth Planet. Sci. Lett. 502, 244–252 (2018).

    Google Scholar 

  216. 216.

    Svensen, H. et al. Siberian gas venting and the end-Permian environmental crisis. Earth Planet. Sci. Lett. 277, 490–500 (2009).

    Google Scholar 

  217. 217.

    Aarnes, I., Svensen, H., Polteau, S. & Planke, S. Contact metamorphic devolatilization of shales in the Karoo Basin, South Africa, and the effects of multiple sill intrusions. Chem. Geol. 281, 181–194 (2011).

    Google Scholar 

  218. 218.

    Capriolo, M. et al. Deep CO2 in the end-Triassic Central Atlantic Magmatic Province. Nat. Commun. 11, 1670 (2020).

    Google Scholar 

  219. 219.

    Hernandez Nava, A. et al. Reconciling early deccan traps CO2 outgassing and pre-KPB global climate. Proc. Natl Acad. Sci. USA 118, e2007797118 (2021).

    Google Scholar 

  220. 220.

    Hartley, M. E., Maclennan, J., Edmonds, M. & Thordarson, T. Reconstructing the deep CO2 degassing behaviour of large basaltic fissure eruptions. Earth Planet. Sci. Lett. 393, 120–131 (2014).

    Google Scholar 

  221. 221.

    Moore, L. R. et al. Bubbles matter: an assessment of the contribution of vapor bubbles to melt inclusion volatile budgets. Am. Mineral. 100, 806–823 (2015).

    Google Scholar 

  222. 222.

    Rosenthal, A., Hauri, E. & Hirschmann, M. Experimental determination of C, F, and H partitioning between mantle minerals and carbonated basalt, CO2/Ba and CO2/Nb systematics of partial melting, and the CO2 contents of basaltic source regions. Earth Planet. Sci. Lett. 412, 77–87 (2015).

    Google Scholar 

  223. 223.

    Workman, R. K., Hauri, E., Hart, S. R., Wang, J. & Blusztajn, J. Volatile and trace elements in basaltic glasses from Samoa: implications for water distribution in the mantle. Earth Planet. Sci. Lett. 241, 932–951 (2006).

    Google Scholar 

  224. 224.

    Cabato, J. A., Stefano, C. J. & Mukasa, S. B. Volatile concentrations in olivine-hosted melt inclusions from the Columbia River flood basalts and associated lavas of the Oregon Plateau: implications for magma genesis. Chem. Geol. 392, 59–73 (2015).

    Google Scholar 

  225. 225.

    Ivanov, A. V. et al. Volatile concentrations in olivine-hosted melt inclusions from meimechite and melanephelinite lavas of the Siberian Traps Large Igneous Province: evidence for flux-related high-Ti, high-Mg magmatism. Chem. Geol. 483, 442–462 (2018).

    Google Scholar 

  226. 226.

    Blake, S., Self, S., Sharma, K. & Sephton, S. Sulfur release from the Columbia River Basalts and other flood lava eruptions constrained by a model of sulfide saturation. Earth Planet. Sci. Lett. 299, 328–338 (2010).

    Google Scholar 

  227. 227.

    Caricchi, L., Sheldrake, T. E. & Blundy, J. Modulation of magmatic processes by CO2 flushing. Earth Planet. Sci. Lett. 491, 160–171 (2018).

    Google Scholar 

  228. 228.

    Black, B. A. & Manga, M. The eruptibility of magmas at Tharsis and Syrtis Major on Mars. J. Geophys. Res. Planets 121, 944–964 (2016).

    Google Scholar 

  229. 229.

    Burton, M. R., Sawyer, G. M. & Granieri, D. Deep carbon emissions from volcanoes. Rev. Mineral. Geochem. 75, 323–354 (2013).

    Google Scholar 

  230. 230.

    Ilyinskaya, E. et al. Globally significant CO2 emissions from Katla, a subglacial volcano in Iceland. Geophys. Res. Lett. 45, 10–332 (2018).

    Google Scholar 

  231. 231.

    McKay, D. I. A., Tyrrell, T., Wilson, P. A. & Foster, G. L. Estimating the impact of the cryptic degassing of Large Igneous Provinces: a mid-Miocene case-study. Earth Planet. Sci. Lett. 403, 254–262 (2014).

    Google Scholar 

  232. 232.

    Gaillard, F., Scaillet, B., Pichavant, M. & Iacono-Marziano, G. The redox geodynamics linking basalts and their mantle sources through space and time. Chem. Geol. 418, 217–233 (2015).

    Google Scholar 

  233. 233.

    Jugo, P. J. Sulfur content at sulfide saturation in oxidized magmas. Geology 37, 415–418 (2009).

    Google Scholar 

  234. 234.

    Zintwana, M. P., Cawthorn, R. G., Ashwal, L. D., Roelofse, F. & Cronwright, H. Mercury in the Bushveld complex, South Africa, and the Skaergaard intrusion, Greenland. Chem. Geol. 320, 147–155 (2012).

    Google Scholar 

  235. 235.

    Le Vaillant, M., Barnes, S. J., Mungall, J. E. & Mungall, E. L. Role of degassing of the Noril’sk nickel deposits in the Permian–Triassic mass extinction event. Proc. Natl Acad. Sci. USA 114, 2485–2490 (2017).

    Google Scholar 

  236. 236.

    Macdonald, F. & Wordsworth, R. Initiation of Snowball Earth with volcanic sulfur aerosol emissions. Geophys. Res. Lett. 44, 1938–1946 (2017).

    Google Scholar 

  237. 237.

    Caricchi, L., Townsend, M., Rivalta, E. & Namiki, A. The build-up and triggers of volcanic eruptions. Nat. Rev. Earth Environ. 2, 458–476 (2021).

    Google Scholar 

  238. 238.

    Mittal, T. & Richards, M. A. The magmatic architecture of continental flood basalts II: A new conceptual model. ESSOAr https://doi.org/10.1002/essoar.10506092.1 (2021).

    Article  Google Scholar 

  239. 239.

    Chenet, A. et al. Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: 2. Constraints from analysis of eight new sections and synthesis for a 3500-m-thick composite section. J. Geophys. Res. Solid Earth 114, B06103 (2009).

    Google Scholar 

  240. 240.

    Braunger, S. et al. Do carbonatites and alkaline rocks reflect variable redox conditions in their upper mantle source? Earth Planet. Sci. Lett. 533, 116041 (2020).

    Google Scholar 

  241. 241.

    Reichow, M. K. et al. The timing and extent of the eruption of the Siberian Traps large igneous province: implications for the end-Permian environmental crisis. Earth Planet. Sci. Lett. 277, 9–20 (2009).

    Google Scholar 

  242. 242.

    Nielsen, T. F. The shape and volume of the Skaergaard intrusion, Greenland: implications for mass balance and bulk composition. J. Petrol. 45, 507–530 (2004).

    Google Scholar 

  243. 243.

    Bürgmann, R. & Dresen, G. Rheology of the lower crust and upper mantle: evidence from rock mechanics, geodesy, and field observations. Annu. Rev. Earth Planet. Sci. 36, 531–567 (2008).

    Google Scholar 

  244. 244.

    Caprarelli, G. & Reidel, S. P. Physical evolution of Grande Ronde Basalt magmas, Columbia River Basalt Group, north-western USA. Mineral. Petrol. 80, 1–25 (2004).

    Google Scholar 

  245. 245.

    Caprarelli, G. & Reidel, S. P. A clinopyroxene–basalt geothermobarometry perspective of Columbia Plateau (NW-USA) Miocene magmatism. Terra Nova 17, 265–277 (2005).

    Google Scholar 

  246. 246.

    Hartley, M. & Thordarson, T. Melt segregations in a Columbia River Basalt lava flow: a possible mechanism for the formation of highly evolved mafic magmas. Lithos 112, 434–446 (2009).

    Google Scholar 

  247. 247.

    Tao, Y., Putirka, K., Hu, R. & Li, C. The magma plumbing system of the Emeishan large igneous province and its role in basaltic magma differentiation in a continental setting. Am. Mineral. 100, 2509–2517 (2015).

    Google Scholar 

  248. 248.

    Putirka, K. D. Thermometers and barometers for volcanic systems. Rev. Mineral. Geochem. 69, 61–120 (2008).

    Google Scholar 

  249. 249.

    Black, B. A., Elkins-Tanton, L. T., Rowe, M. C. & Peate, I. U. Magnitude and consequences of volatile release from the Siberian Traps. Earth Planet. Sci. Lett. 317–318, 363–373 (2012).

    Google Scholar 

  250. 250.

    Liu, Z. et al. Unusually thickened crust beneath the Emeishan large igneous province detected by virtual deep seismic sounding. Tectonophysics 721, 387–394 (2017).

    Google Scholar 

  251. 251.

    Cherepanova, Y., Artemieva, I. M., Thybo, H. & Chemia, Z. Crustal structure of the Siberian craton and the West Siberian basin: an appraisal of existing seismic data. Tectonophysics 609, 154–183 (2013).

    Google Scholar 

  252. 252.

    Wolff, J. et al. Source materials for the main phase of the Columbia River Basalt Group: geochemical evidence and implications for magma storage and transport. Geol. Soc. Am. Spec. Pap. 497, 273–291 (2013).

    Google Scholar 

  253. 253.

    Barry, T. et al. Eruption chronology of the Columbia River Basalt Group. Geol. Soc. Am. 497, 45–66 (2013).

    Google Scholar 

  254. 254.

    Thordarson, T. & Höskuldsson, Á. Postglacial volcanism in Iceland. Jökull 58, e228 (2008).

    Google Scholar 

  255. 255.

    Neal, C. A. et al. The 2018 rift eruption and summit collapse of Kīlauea Volcano. Science 363, 367–374 (2019).

    Google Scholar 

  256. 256.

    Lipman, P. W. & Calvert, A. T. Modeling volcano growth on the Island of Hawaii: deep-water perspectives. Geosphere 9, 1348–1383 (2013).

    Google Scholar 

  257. 257.

    Storey, M., Duncan, R. A. & Tegner, C. Timing and duration of volcanism in the North Atlantic Igneous Province: implications for geodynamics and links to the Iceland hotspot. Chem. Geol. 241, 264–281 (2007).

    Google Scholar 

  258. 258.

    Matthews, S., Shorttle, O., Rudge, J. F. & Maclennan, J. Constraining mantle carbon: CO2-trace element systematics in basalts and the roles of magma mixing and degassing. Earth Planet. Sci. Lett. 480, 1–14 (2017).

    Google Scholar 

  259. 259.

    Self, S., Widdowson, M., Thordarson, T. & Jay, A. E. Volatile fluxes during flood basalt eruptions and potential effects on the global environment: a Deccan perspective. Earth Planet. Sci. Lett. 248, 518–532 (2006).

    Google Scholar 

  260. 260.

    Callegaro, S. et al. Microanalyses link sulfur from large igneous provinces and Mesozoic mass extinctions. Geology 42, 895–898 (2014).

    Google Scholar 

  261. 261.

    Saal, A. E., Hauri, E. H., Langmuir, C. H. & Perfit, M. R. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature 419, 451–455 (2002).

    Google Scholar 

  262. 262.

    Sibik, S., Edmonds, M., Maclennan, J. & Svensen, H. Magmas erupted during the main pulse of Siberian Traps volcanism were volatile-poor. J. Petrol. 56, 2089–2116 (2015).

    Google Scholar 

  263. 263.

    Sobolev, A., Krivolutskaya, N. & Kuzmin, D. Petrology of the parental melts and mantle sources of Siberian trap magmatism. Petrology 17, 253–286 (2009).

    Google Scholar 

  264. 264.

    Black, B. A., Hauri, E. H., Elkins-Tanton, L. T. & Brown, S. M. Sulfur isotopic evidence for sources of volatiles in Siberian Traps magmas. Earth Planet. Sci. Lett. 394, 58–69 (2014).

    Google Scholar 

  265. 265.

    Self, S., Blake, S., Sharma, K., Widdowson, M. & Sephton, S. Sulfur and chlorine in late Cretaceous Deccan magmas and eruptive gas release. Science 319, 1654–1657 (2008).

    Google Scholar 

  266. 266.

    Choudhary, B. R., Santosh, M., De Vivo, B., Jadhav, G. & Babu, E. Melt inclusion evidence for mantle heterogeneity and magma degassing in the Deccan large Igneous Province, India. Lithos 346, 105135 (2019).

    Google Scholar 

  267. 267.

    Davis, K. N., Wolff, J. A., Rowe, M. C. & Neill, O. K. Sulfur release from main-phase Columbia River Basalt eruptions. Geology 45, 1043–1046 (2017).

    Google Scholar 

  268. 268.

    Zhang, Y., Ren, Z. & Xu, Y. Sulfur in olivine-hosted melt inclusions from the Emeishan picrites: implications for S degassing and its impact on environment. J. Geophys. Res. Solid Earth 118, 4063–4070 (2013).

    Google Scholar 

  269. 269.

    Marks, L. et al. F, Cl, and S concentrations in olivine-hosted melt inclusions from mafic dikes in NW Namibia and implications for the environmental impact of the Paraná–Etendeka Large Igneous Province. Earth Planet. Sci. Lett. 392, 39–49 (2014).

    Google Scholar 

  270. 270.

    Peate, D. W., Peate, I. U., Rowe, M. C., Thompson, J. M. & Kerr, A. C. Petrogenesis of high-MgO lavas of the Lower Mull Plateau Group, Scotland: insights from melt inclusions. J. Petrol. 53, 1867–1886 (2012).

    Google Scholar 

  271. 271.

    Thordarson, T., Self, S., Oskarsson, N. & Hulsebosch, T. Sulfur, chlorine, and fluorine degassing and atmospheric loading by the 1783–1784 AD Laki (Skaftár Fires) eruption in Iceland. Bull. Volcanol. 58, 205–225 (1996).

    Google Scholar 

  272. 272.

    Clarkson, M. O. et al. Ocean acidification and the Permo-Triassic mass extinction. Science 348, 229–232 (2015).

    Google Scholar 

Download references

Acknowledgements

T.A.M. acknowledges funding from ERC consolidator grant (ERC-2018-COG-818717-V-ECHO). B.A.B. acknowledges funding from NSF EAR 1615147. L.K. acknowledges funding from NSF EAR 1848554.

Author information

Affiliations

Authors

Contributions

All authors participated in drafting and revising the article. B.A.B. and T.A.M. led the discussion of volatiles and created the volatile compilation, L.K. led the discussion of formation-level and member-level tempo, B.A.B. and L.K. led the discussion of the structure of large igneous provinces and their relationship to other volcanic activity, B.A.B. led the discussion of mantle melt generation.

Corresponding author

Correspondence to Benjamin A. Black.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks R. Ernst, L. Kirstein and B. Schoene, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Mass extinctions

Abrupt losses of biodiversity in which >75% of species vanish over geologically short intervals, yielding extinction rates that far exceed rates at which new species evolve.

Continental lithospheric mantle

(CLM). The uppermost part of the mantle that is mechanically attached to continental crust and does not participate in mantle convection.

Transcrustal transport system

The suite of processes by which magma ascends through the crust to the surface via a network of storage zones (magma chambers) and dikes and/or sills.

Tholeiitic

Iron-rich basalts like those found at mid-ocean ridges, commonly thought to originate at relatively high (>10%) degrees of melting, typically at pressures <3 GPa.

Alkaline

Basalts rich in K and Na, and are thought to originate at relatively low degrees of melting (<5%), often at pressures >3 GPa.

Mantle melting

Occurs when the decompression, temperature or composition of mantle material (or a combination of these) place it above its solidus — but almost universally below its liquidus, when it would be entirely molten.

Mantle plumes

Focused upwellings from the deep mantle with anomalous composition and temperature that cause them to be buoyant.

Edge-driven convection

Invokes lithospheric thickness variations, for example, across the edges of continents, to drive local convection and decompression melting.

Delamination

When the formation of dense eclogites causes the lowermost crust or lithospheric mantle to sink into the underlying mantle.

Mantle potential temperatures

The temperatures of a parcel of mantle if brought adiabatically to the Earth’s surface, which enables comparison of mantle temperatures from different depths.

Geodynamic modelling

Solves conservation equations for mass, momentum and energy to predict how the solid Earth evolves, typically focused on large length scales and timescales, and typically involving mantle convection.

Major element

An element with concentration exceeding ~1 wt% — in this case, within magmas — including Si, Fe, O, Mg, Ca and Al.

Trace element

An element with concentration typically <1 wt%, such as rare-earth elements.

Partial melting

A fractional degree of melting, from 0% at the solidus to 100% at the liquidus.

Magma plumbing system

Transcrustal magma transport and storage networks that feed surface eruptions.

Intrusive to extrusive ratio

The proportion of primary magma that freezes upon ascent versus the volume that erupts on the surface.

Mantle xenoliths

Fragments of mantle rock entrained and transported in a magma — the presence of dense xenoliths in erupted volcanic rocks reflects sufficiently rapid ascent to keep them entrained.

Dynamic topography

Often defined as the time-dependent generation of surface relief from non-isostatic mantle or crustal flow.

Tempo

The tempo of magmatism is its pace, for example, how the intensity of magmatic activity varies through time — it often refers to the volume and frequency of eruptions at the surface.

Incompatible

Elements that are strongly enriched in the melt relative to solid phases during mantle melting, often due to ionic charge or radius that hinders their easy substitution into the structure of the solid phases that are present.

Bulk distribution coefficients

Di, commonly abbreviated as Di = Cisolid/Ciliq, for the concentration of a species i in a solid residue (Cisolid) relative to in the liquid (Ciliq). By definition, Di « 1 for incompatible species.

Rehomogenization

The experimental reheating of crystals hosting recrystallized or bubble-bearing melt inclusions until inclusions melt, and then quenching to form homogeneous glass suitable for obtaining representative compositions by microanalysis.

CO2 flushing

Refers to exsolution of CO2-rich fluids at depth in the magmatic system, which then ascend and modify the balance of volatiles in shallower (typically more CO2-depleted) magmas.

Diffuse degassing

Non-eruptive degassing via permeable pathways through the crust.

Cryptic degassing

Cryptic degassing is gas release due to intrusive or metamorphic degassing that causes total degassing to exceed expectations from magma volatile concentrations, and that can manifest as excess gas release during eruptions or as diffuse, non-eruptive degassing.

Magma redox

Refers to the balance between oxidation and reduction that determines the oxidation state of chemical species in the magma.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Black, B.A., Karlstrom, L. & Mather, T.A. The life cycle of large igneous provinces. Nat Rev Earth Environ 2, 840–857 (2021). https://doi.org/10.1038/s43017-021-00221-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-021-00221-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing