Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Supply chains for processed potato and tomato products in the United States will have enhanced resilience with planting adaptation strategies

Abstract

Food systems are increasingly challenged to meet growing demand for specialty crops due to the effects of climate change and increased competition for resources. Here, we apply an integrated methodology that includes climate, crop, economic and life cycle assessment models to US potato and tomato supply chains. We find that supply chains for two popular processed products in the United States, French fries and pasta sauce, will be remarkably resilient, through planting adaptation strategies that avoid higher temperatures. Land and water footprints will decline over time due to higher yields, and greenhouse gas emissions can be mitigated by waste reduction and process modification. Our integrated methodology can be applied to other crops, health-based consumer scenarios (fresh versus processed) and geographies, thereby informing decision-making throughout supply chains. Employing such methods will be essential as food systems are forced to adapt and transform to become carbon neutral due to the imperatives of climate change.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Crop yield projection methodology.
Fig. 2: US potatoes.
Fig. 3: US tomatoes.
Fig. 4: Environmental footprints.
Fig. 5: Mitigation options.

Data availability

Source data are provided with this paper. All other data used in this paper are freely available upon request from the corresponding author.

Code availability

All code utilized in this paper are freely available upon request from the corresponding author.

References

  1. 1.

    Willett, W. et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    PubMed  Google Scholar 

  2. 2.

    2015–2020 Dietary Guidelines for Americans 8th edn (US Department of Health and Human Services and US Department of Agriculture, 2015).

  3. 3.

    Benton, T. G. et al. Designing sustainable landuse in a 1.5 °C world: the complexities of projecting multiple ecosystem services from land. Curr. Opin. Environ. Sustain. 31, 88–95 (2018).

    Google Scholar 

  4. 4.

    Mason-D’Croz, D. et al. Gaps between fruit and vegetable production, demand, and recommended consumption at global and national levels: an integrated modelling study. Lancet Planet. Health 3, e318–e329 (2019).

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Marklein, A., Elias, E., Nico, P. & Steenwerth, K. Projected temperature increases may require shifts in the growing season of cool-season crops and the growing locations of warm-season crops. Sci. Total Environ. 746, 140918 (2020).

    ADS  CAS  PubMed  Google Scholar 

  6. 6.

    Conrad, Z., Peters, C., Chui, K., Jahns, L. & Griffin, T. Agricultural capacity to increase the production of select fruits and vegetables in the US: a geospatial modeling analysis. Int. J. Environ. Res. Public Health 14, 1106 (2017).

    PubMed Central  Google Scholar 

  7. 7.

    Peters, C. J., Bills, N. L., Lembo, A. J., Wilkins, J. L. & Fick, G. W. Mapping potential foodsheds in New York state by food group: an approach for prioritizing which foods to grow locally. Renew. Agric. Food Syst. 27, 125–137 (2012).

    Google Scholar 

  8. 8.

    Giombolini, K. J., Chambers, K. J., Schlegel, S. A. & Dunne, J. B. Testing the local reality: does the Willamette Valley growing region produce enough to meet the needs of the local population? A comparison of agriculture production and recommended dietary requirements. Agric. Hum. Values 28, 247–262 (2011).

    Google Scholar 

  9. 9.

    Kremer, P. & Schreuder, Y. The feasibility of regional food systems in metropolitan areas: an investigation of Philadelphia’s foodshed. J. Agric. Food Syst. Community Dev. https://doi.org/10.5304/jafscd.2012.022.005 (2012).

  10. 10.

    Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science https://doi.org/10.1126/science.1204531 (2011).

  11. 11.

    Lobell, D. B., Baldos, U. L. C. & Hertel, T. W. Climate adaptation as mitigation: the case of agricultural investments. Environ. Res. Lett. 8, 015012 (2013).

    ADS  Google Scholar 

  12. 12.

    Lobell, D. B., Field, C. B., Cahill, K. N. & Bonfils, C. Impacts of future climate change on California perennial crop yields: model projections with climate and crop uncertainties. Agric. For. Meteorol. https://doi.org/10.1016/j.agrformet.2006.10.006 (2006).

  13. 13.

    Scheelbeek, P. F. D. et al. Effect of environmental changes on vegetable and legume yields and nutritional quality. Proc. Natl Acad. Sci. USA 115, 6804–6809 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Bisbis, M. B., Gruda, N. & Blanke, M. Potential impacts of climate change on vegetable production and product quality—a review. J. Clean. Prod. 170, 1602–1620 (2018).

    CAS  Google Scholar 

  15. 15.

    2017 Census of Agriculture (USDA, 2019); https://www.nass.usda.gov/Publications/AgCensus/2017/index.php#full_report

  16. 16.

    Riahi, K. et al. RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Climatic Change 109, 33–57 (2011).

    ADS  CAS  Google Scholar 

  17. 17.

    Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).

    ADS  CAS  PubMed  Google Scholar 

  18. 18.

    Ewert, F., Rounsevell, M. D. A., Reginster, I., Metzger, M. J. & Leemans, R. Future scenarios of European agricultural land use: I. Estimating changes in crop productivity. Agric. Ecosyst. Environ. 107, 101–116 (2005).

    Google Scholar 

  19. 19.

    Grassini, P., Eskridge, K. M. & Cassman, K. G. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nat. Commun. 4, 2918 (2013).

    ADS  PubMed  Google Scholar 

  20. 20.

    Loladze, I. Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition. Elife 3, e02245 (2014).

    PubMed  PubMed Central  Google Scholar 

  21. 21.

    Ben-Ari, T. et al. Causes and implications of the unforeseen 2016 extreme yield loss in the breadbasket of France. Nat. Commun. 9, 1627 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Lobell, D. B., Bonfils, C. J., Kueppers, L. M. & Snyder, M. A. Irrigation cooling effect on temperature and heat index extremes. Geophys. Res. Lett. 35, L09705 (2008).

    ADS  Google Scholar 

  23. 23.

    Venkat, K. The climate change and economic impacts of food waste in the United States. Int. J. Food Syst. Dyn. 2, 431–446 (2011).

    Google Scholar 

  24. 24.

    Kim, D., Parajuli, R. & Thoma, G. J. Life cycle assessment of dietary patterns in the United States: a full food supply chain perspective. Sustainability 12, 1586 (2020).

    CAS  Google Scholar 

  25. 25.

    A Roadmap to Reduce U.S. Food Waste by 20 Percent (ReFED, 2016); https://www.refed.com/downloads/ReFED_Report_2016.pdf

  26. 26.

    Ishangulyyev, R., Kim, S. & Lee, S. H. Understanding food loss and waste—why are we losing and wasting food? Foods 8, 297 (2019).

    PubMed Central  Google Scholar 

  27. 27.

    Schanes, K., Dobernig, K. & Gözet, B. Food waste matters—a systematic review of household food waste practices and their policy implications. J. Clean. Prod. 182, 978–991 (2018).

    Google Scholar 

  28. 28.

    van Vuuren, D. P. et al. The Representative Concentration Pathways: an overview. Climatic Change 109, 5–31 (2011).

    ADS  Google Scholar 

  29. 29.

    Sustainable Groundwater Management Act (State of California, 2014).

  30. 30.

    Hanak, E. et al. Water and the Future of the San Joaquin Valley (Public Policy Institute of California, 2019).

  31. 31.

    Sweet, S. K., Wolfe, D. W., DeGaetano, A. & Benner, R. Anatomy of the 2016 drought in the northeastern United States: implications for agriculture and water resources in humid climates. Agric. For. Meteorol. 247, 571–581 (2017).

    ADS  Google Scholar 

  32. 32.

    Badr, M. A., Hussein, S. D. A., El-Tohamy, W. A. & Gruda, N. Die Effizienz der Unterflur-Tropfbewässerung im Kartoffelanbau unter verschiedenen Trockenstressbedingungen. Gesunde Pflanz. 62, 63–70 (2010).

    Google Scholar 

  33. 33.

    Stubbs, M. Irrigation in U.S. Agriculture: On-Farm Technologies and Best Management Practices (Congressional Research Service, 2016); https://crsreports.congress.gov/product/pdf/R/R44158/7

  34. 34.

    Irmak, S., Odhiambo, L. O., Kranz, W. L. & Eisenhauer, D. E. Irrigation Efficiency and Uniformity, and Crop Water Use Efficiency (University of Nebraska–Lincoln, 2011); https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1455&context=biosysengfacpub

  35. 35.

    Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Morton, L. W., Hobbs, J., Arbuckle, J. G. & Loy, A. Upper Midwest climate variations: farmer responses to excess water risks. J. Environ. Qual. 44, 810–822 (2015).

    CAS  PubMed  Google Scholar 

  37. 37.

    Rosenzweig, C. et al. The Agricultural Model Intercomparison and Improvement Project (AgMIP): protocols and pilot studies. Agric. For. Meteorol. 170, 166–182 (2013).

    ADS  Google Scholar 

  38. 38.

    Zhao, C. et al. A SIMPLE crop model. Eur. J. Agron. 104, 97–106 (2019).

    Google Scholar 

  39. 39.

    Stockle, C. O., Martin, S. A. & Campbell, G. S. CropSyst, a cropping systems simulation model: water/nitrogen budgets and crop yield. Agric. Syst. 46, 335–359 (1994).

    Google Scholar 

  40. 40.

    Stöckle, C. O., Donatelli, M. & Nelson, R. CropSyst, a cropping systems simulation model. Eur. J. Agron. 18, 289–307 (2003).

    Google Scholar 

  41. 41.

    Haverkort, A. J. et al. A robust potato model: LINTUL-POTATO-DSS. Potato Res. 58, 313–327 (2015).

    Google Scholar 

  42. 42.

    Izaurralde, R. C., Williams, J. R., McGill, W. B., Rosenberg, N. J. & Jakas, M. C. Q. Simulating soil C dynamics with EPIC: model description and testing against long-term data. Ecol. Modell. 192, 362–384 (2006).

    Google Scholar 

  43. 43.

    Williams, J. R., Jones, C. A., Kiniry, J. R. & Spanel, D. A. The EPIC crop growth model. Trans. ASAE 32, 497–511 (1989).

    Google Scholar 

  44. 44.

    Jones, J. W. et al. The DSSAT cropping system model. Eur. J. Agron. 18, 235–265 (2003).

    Google Scholar 

  45. 45.

    Hoogenboom, G. et al. in Advances in Crop Modeling for a Sustainable Agriculture (ed. Boote, K. J.) 173–216 (Burleigh Dodds Science, 2019).

  46. 46.

    Raymundo, R. et al. Performance of the SUBSTOR-potato model across contrasting growing conditions. Field Crops Res. 202, 57–76 (2017).

    Google Scholar 

  47. 47.

    Li, Y. et al. Toward building a transparent statistical model for improving crop yield prediction: modeling rainfed corn in the U.S. Field Crops Res. 234, 55–65 (2019).

    Google Scholar 

  48. 48.

    Boote, K. J., Scholberg, J. M. S. & Jones, J. W. Improving the CROPGRO-Tomato model for predicting growth and yield response to temperature. Hortic. Sci. 47, 1038–1049 (2012).

    Google Scholar 

  49. 49.

    Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, GB1022 (2008).

    ADS  Google Scholar 

  50. 50.

    Zhao, C. et al. Protocol for US Fruit and Vegetable Crop Modeling Project Document v.1.0 (Agriculture & Food Systems Institute, 2019).

  51. 51.

    2012 Census of Agriculture Highlights: Conservation (NASS, 2014).

  52. 52.

    Abatzoglou, J. & Brown, T. A comparison of statistical downscaling methods suited for wildfire applications. Int. J. Climatol. 32, 772–780 (2012).

    Google Scholar 

  53. 53.

    Abatzoglou, J. Development of gridded surface meteorological data for ecological applications and modeling. Int. J. Climatol. 33, 121–131 (2013).

    Google Scholar 

  54. 54.

    Gugała, M., Sikorska, A., Zarzecka, K. & Kapela, K. Changes in the content of total nitrogen, phosphorus and potassium in potato tubers under the influence of the use of herbicides. J. Ecol. Eng. 16, 82–86 (2015).

    Google Scholar 

  55. 55.

    Prasad, R., Hochmuth, G. J. & Boote, K. J. Estimation of nitrogen pools in irrigated potato production on sandy soil using the model SUBSTOR. PLoS ONE 10, e0117891 (2015).

    PubMed  PubMed Central  Google Scholar 

  56. 56.

    Ruiz-Vera, U. M. et al. Global warming can negate the expected CO2 stimulation in photosynthesis and productivity for soybean grown in the midwestern United States. Plant Physiol. https://doi.org/10.1104/Pp.112.211938 (2013).

  57. 57.

    Warszawski, L. et al. The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP): project framework. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1312330110 (2014).

  58. 58.

    Kruse, J. R. Documentation of the WAEES Global Agricultural and Biofuels Partial Equilibrium Modeling System (WAEES, 2020); https://www.waees-llc.com/wp-content/uploads/2020/09/The-WAEES-Global-Agricultural-and-Biofuels-Modeling-System.pdf

  59. 59.

    2017 Global Food Policy Report (IFPRI, 2017); https://doi.org/10.2499/9780896292529

  60. 60.

    Robinson, S. et al. The International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT): Model Description for Version 3 (International Food Policy Research Institute, 2015).

  61. 61.

    Rosegrant, M. W. International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT) Model Description (International Food Policy Research Institute, 2012).

  62. 62.

    Parajuli, R. et al. Protocol for life cycle assessment modeling of US fruit and vegetable supply chains—cases of processed potato and tomato products. Data Brief 34, 106639 (2020).

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Parajuli, R., Matlock, M. D. & Thoma, G. Cradle to grave environmental impact evaluation of the consumption of potato and tomato products. Sci. Total Environ. 758, 143662 (2021).

    ADS  CAS  PubMed  Google Scholar 

  64. 64.

    Environmental Management—Life Cycle Assessment—Requirements and Guidelines ISO 14044:2006 (ISO, 2006).

  65. 65.

    Wernet, G. et al. The Ecoinvent Database Version 3 (part I): overview and methodology. Int. J. Life Cycle Assess. 21, 1218–1230 (2016).

    Google Scholar 

  66. 66.

    Schau, E. M. & Fet, A. M. LCA studies of food products as background for environmental product declarations. Int. J. Life Cycle Assess. 13, 255–264 (2008).

    Google Scholar 

  67. 67.

    McAuliffe, G. A., Takahashi, T. & Lee, M. R. F. Applications of nutritional functional units in commodity-level life cycle assessment (LCA) of agri-food systems. Int. J. Life Cycle Assess. 25, 208–221 (2020).

    PubMed  Google Scholar 

  68. 68.

    Fulgoni, V. L. III, Keast, D. R. & Drewnowski, A. Development and validation of the Nutrient-Rich Foods Index: a tool to measure nutritional quality of foods. J. Nutr. 139, 1549–1554 (2009).

    PubMed  Google Scholar 

  69. 69.

    Marvinney, E., Kendall, A. & Brodt, S. Life cycle-based assessment of energy use and greenhouse gas emissions in almond production, part II: uncertainty analysis through sensitivity analysis and scenario testing. J. Ind. Ecol. https://doi.org/10.1111/jiec.12333 (2015).

  70. 70.

    Joint Research Centre–Institute for Environment and Sustainability: International Reference Life Cycle Data System (ILCD) Handbook—General Guide for Life Cycle Assessment—Detailed Guidance (European Commission, 2010).

  71. 71.

    Environmental Management: Life Cycle Assessment—Examples of Application of ISO 14041 to Goal and Scope Definition and Inventory Analysis Technical Report ISO 14049:2000 (ISO, 2000).

  72. 72.

    Ekvall, T. & Weidema, B. P. System boundaries and input data in consequential life cycle inventory analysis. Int. J. Life Cycle Assess. 9, 161–171 (2004).

    Google Scholar 

  73. 73.

    Total Store SuperStudy—Category Square Foot of Facing (Willard Bishop, 2015).

  74. 74.

    Buzby, J. C., Wells, H. F. & Hyman, J. The Estimated Amount, Value, and Calories of Postharvest Food Losses at the Retail and Consumer Levels in the United States (USDA Economic Research Service, 2014).

  75. 75.

    Buzby, J. C., Wells, H. F., Axtman, B. & Mickey, J. Supermarket Loss Estimates for Fresh Fruit, Vegetables, Meat, Poultry, and Seafood and Their Use in the ERS Loss-Adjusted Food Availability Data Economic Information Bulletin No. 44 (USDA, 2009); https://www.ers.usda.gov/webdocs/publications/44306/10895_eib44.pdf?v=627.1

  76. 76.

    Buzby, J. C., Hyman, J., Stewart, H. & Wells, H. F. The value of retail- and consumer-level fruit and vegetable losses in the United States. J. Consum. Aff. 45, 492–515 (2011).

    Google Scholar 

  77. 77.

    Buzby, J. C. & Hyman, J. Total and per capita value of food loss in the United States. Food Policy 37, 561–570 (2012).

    Google Scholar 

  78. 78.

    Advancing Sustainable Materials Management: 2017 Fact Sheet Assessing Trends in Material Generation, Recycling, Composting, Combustion with Energy Recovery and Landfilling in the United States (EPA, 2019).

  79. 79.

    Good, P. I. Permutation, Parametric, and Bootstrap Tests of Hypotheses (Springer-Verlag, 2005).

  80. 80.

    Janssen, A. & Pauls, T. A Monte Carlo comparison of studentized bootstrap and permutation tests for heteroscedastic two-sample problems. Comput. Stat. 20, 369–383 (2005).

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Funding was supplied by USDA NIFA award no. 2017-68002-26789. T.B.S. and K.W. received additional support from the CGIAR Research Program on Policies, Institutions, and Markets. We acknowledge the helpful input received from the project’s advisory committee, which includes S. Alvarez, H. Giclas, K. Johnson, K. Morgan, J. McFerran, S. Mostoja, W. Reinhardt-Kapsak, S. Sambhav, L. Scandurra, D. Sonke, V. Verlage and K. Walsh.

Author information

Affiliations

Authors

Contributions

D.G. served as the convening lead author and co-led the overall project with S.A., who led the crop modelling team (C.S., K.R., C.G., T.K., Y.L., K.G., E.M., R.L.N., A.P., R.R., A.A.R., F.v.E., G.W., L.X. and C.Z.) and served as a lead author on the text. J.K. led the economic modelling team (P.I. and M.R.) and served as a lead author on the text. G.T. led the LCA modelling team (R.P. and D.G.) and served as a lead author on the text. C.F. served as a project co-lead after the departure of S.A. and co-led the extension component of the project with C.K. G.H., M. Matlock, M. McLean, T.B.S. and K.W. served as internal project advisors and as co-editors of the text. D.S. served on the project advisory committee and provided critical data to the LCA modelling for processed tomato supply chains. L.T. led communications for the project and created the figures.

Corresponding author

Correspondence to David Gustafson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Food thanks Pauline Scheelbeek, Rachel Schattman, Ali Mohammadi, Jing Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 US Potato and Tomato Supply Chains.

The pie charts (a potatoes, b tomatoes) show the relative amounts of different foods sourced from potatoes and tomatoes in the United States. The bar charts show the relative environmental footprints (c greenhouse gas emissions, d land use, e water use) of potatoes and tomatoes at harvest, using three alternative life cycle assessment (LCA) functional units: mass, caloric content, and nutrient density.

Supplementary information

Supplementary Information

Supplementary Fig. 1, Discussion and Table 1.

Source data

Source Data Fig. 1

Data for charts.

Source Data Fig. 2

Data for charts.

Source Data Fig. 3

Data for charts.

Source Data Fig. 4

Data for charts.

Source Data Fig. 5

Data for charts.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gustafson, D., Asseng, S., Kruse, J. et al. Supply chains for processed potato and tomato products in the United States will have enhanced resilience with planting adaptation strategies. Nat Food 2, 862–872 (2021). https://doi.org/10.1038/s43016-021-00383-w

Download citation

Search

Quick links