Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An analysis of gender bias studies in natural language processing

Artificial intelligence systems copy and amplify existing societal biases, a problem that by now is widely acknowledged and studied. But is current research of gender bias in natural language processing actually moving towards a resolution, asks Marta R. Costa-jussà.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    O’Neil, C. Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy (Crown, 2016).

  2. 2.

    Calders, T. & Verwer, S. Data Min. Knowl. Discov. 21, 277–292 (2010).

    MathSciNet  Article  Google Scholar 

  3. 3.

    LeCun, Y., Bengio, Y. & Hinton, G. Nature 521, 436–444 (2015).

    Article  Google Scholar 

  4. 4.

    Cislak, A., Formanowicz, M. & Saguy, T. Scientometrics 115, 189–200 (2018).

    Article  Google Scholar 

  5. 5.

    Ross, K., Boyle, K., Carter, C. & Ging, D. Journalism Stud. 19, 824–845 (2018).

    Article  Google Scholar 

  6. 6.

    Sweeney, L. Queue 11, 29 (2013).

    Article  Google Scholar 

  7. 7.

    Bolukbasi, T., Chang, K.-W., Zou, J., Saligrama, V. & Kalai, A. In Proc. 30th International Conference on Neural Information Processing Systems 4356–4364 (Curran Associates, 2016).

  8. 8.

    Caliskan, A., Bryson, J. J. & Narayanan, A. Science 356, 183–186 (2017).

    Article  Google Scholar 

  9. 9.

    Zhao, J., Zhou, Y., Li, Z., Wang, W. & Chang, K.-W. Proc. 2018 Conference on Empirical Methods in Natural Language Processing 4847–4853 (Association for Computational Linguistics, 2018) (2018).

  10. 10.

    Nissim, M., van Noord, R. & van der Goot, R. Preprint at http://arxiv.org/abs/1905.09866 (2019).

  11. 11.

    Gonen, H. & Goldberg, Y. In Proc. 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies 609–614 (Association for Computational Linguistics, 2019).

  12. 12.

    Basta, C., Costa-jussà, M. R. & Casas, N. In Proc. First Workshop on Gender Bias in Natural Language Processing 33–39 (Association for Computational Linguistics, 2019).

  13. 13.

    Vanmassenhove, E., Hardmeier, C. & Way, A. In Proc. 2018 Conference on Empirical Methods in Natural Language Processing 3003–3008 (Association for Computational Linguistics, 2018).

  14. 14.

    Escudé Font, J. & Costa-jussà, M. R. In Proc. First Workshop on Gender Bias in Natural Language Processing 147–154 (Association for Computational Linguistics, 2019).

  15. 15.

    Stanovsky, G., Smith, N. A. & Zettlemoyer, L. In Proc. 57th Annual Meeting of the Association for Computational Linguistics 1679–1684 (Association for Computational Linguistics, 2019).

  16. 16.

    Menegatti, M. & Rubini, M. Oxford Research https://doi.org/10.1093/acrefore/9780190228613.013.470 (2017).

  17. 17.

    Lewis, M. & Lupyan, G. Preprint at https://psyarxiv.com/7qd3g (2019).

  18. 18.

    Lindqvist, A., Renström, E. A. & Gustafsson Sendén, M. Sex Roles 81, 109–117 (2019).

    Article  Google Scholar 

  19. 19.

    Aharoni, R., Johnson, M. & Firat, O. In Proc. 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies 3874–3884 (Association for Computational Linguistics, 2019).

Download references

Acknowledgements

This work is supported by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund (MINECO/ERDF, EU) through the programme Ramón y Cajal.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marta R. Costa-jussà.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Costa-jussà, M.R. An analysis of gender bias studies in natural language processing. Nat Mach Intell 1, 495–496 (2019). https://doi.org/10.1038/s42256-019-0105-5

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing