Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Artificial dynamical effects in quantum field theory

Abstract

In Newtonian mechanics, studying a system in a non-Galilean reference frame can lead to inertial pseudoforces appearing, such as the centrifugal force that seems to arise in dynamics analysed in a rotating frame. Likewise, artificial effects may arise in relativistic quantum field theory (QFT) if a system is studied in a framework that violates Poincaré invariance. In this Perspective, we highlight how such issues complicate the traditional canonical quantization of QFTs and can lead to a subjective description of natural phenomena. By contrast, the treatment of the same problem using light-front quantization is free from spurious pseudoeffects because Poincaré invariance is effectively preserved for all practical intents and purposes. We illustrate these statements using several examples: the Gerasimov–Drell–Hearn (GDH) relation, a fundamental feature of QFT; the absence of any measurable impact of Lorentz contraction in high-energy collisions; and the fictitious character of vacuum fluctuation contributions to the cosmological constant.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Illustrations underlying the computation of the nucleon electromagnetic form factors in the case of the front form and instant form.
Fig. 2: The Gerasimov–Drell–Hearn relation.
Fig. 3: Reordering of event times by an IF boost.
Fig. 4: Effect of quantum fluctuations on the causal nature of an event.

References

  1. Busza, W., Rajagopal, K. & van der Schee, W. Heavy ion collisions: the big picture and the big questions. Annu. Rev. Nucl. Part. Sci. 68, 339–376 (2018).

    ADS  Article  Google Scholar 

  2. Gelis, F. Some aspects of the theory of heavy ion collisions. Rep. Prog. Phys. 84, 056301 (2021).

    ADS  MathSciNet  Article  Google Scholar 

  3. Penrose, R. The apparent shape of a relativistically moving sphere. Math. Proc. Camb. Philos. Soc. 55, 137–139 (1959).

    ADS  MathSciNet  Article  Google Scholar 

  4. Chabysheva, S. S. & Hiller, J. R. Casimir force on a light front. Prog. Part. Nucl. Phys. 117, 103836 (2021).

    Article  Google Scholar 

  5. Dirac, P. A. M. Forms of relativistic dynamics. Rev. Mod. Phys. 21, 392–399 (1949).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  6. Roberts, C. D. & Williams, A. G. Dyson-Schwinger equations and their application to hadronic physics. Prog. Part. Nucl. Phys. 33, 477–575 (1994).

    ADS  Article  Google Scholar 

  7. Eichmann, G., Sanchis-Alepuz, H., Williams, R., Alkofer, R. & Fischer, C. S. Baryons as relativistic three-quark bound states. Prog. Part. Nucl. Phys. 91, 1–100 (2016).

    ADS  Article  Google Scholar 

  8. Qin, S.-X. & Roberts, C. D. Impressions of the continuum bound state problem in QCD. Chin. Phys. Lett. 37, 121201 (2020).

    ADS  Article  Google Scholar 

  9. Qin, S.-X. & Roberts, C. D. Resolving the Bethe–Salpeter kernel. Chin. Phys. Lett. 38, 071201 (2021).

    ADS  Article  Google Scholar 

  10. Roberts, C. D., Richards, D. G., Horn, T. & Chang, L. Insights into the emergence of mass from studies of pion and kaon structure. Prog. Part. Nucl. Phys. 120, 103883 (2021).

    Article  Google Scholar 

  11. Brodsky, S. J., Pauli, H.-C. & Pinsky, S. S. Quantum chromodynamics and other field theories on the light cone. Phys. Rep. 301, 299–486 (1998).

    ADS  MathSciNet  Article  Google Scholar 

  12. Collins, J. The non-triviality of the vacuum in light-front quantization: an elementary treatment. Preprint at arXiv https://doi.org/10.48550/arXiv.1801.03960 (2018).

  13. Mannheim, P. D., Lowdon, P. & Brodsky, S. J. Comparing light-front quantization with instant-time quantization. Phys. Rep. 891, 1–65 (2021).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  14. Ji, X. & Liu, Y. Computing light-front wave functions without light-front quantization: a large-momentum effective theory approach. Preprint at arXiv https://doi.org/10.48550/arXiv.2106.05310 (2021).

  15. Jaffe, R. L. Casimir effect and the quantum vacuum. Phys. Rev. D 72, 021301 (2005).

    ADS  Article  Google Scholar 

  16. Brodsky, S. J. & Primack, J. R. The electromagnetic interactions of loosely bound composite systems. Phys. Rev. 174, 2071–2073 (1968).

    ADS  Article  Google Scholar 

  17. Brodsky, S. J. & Primack, J. R. The electromagnetic interactions of composite systems. Ann. Phys. 52, 315–365 (1969).

    ADS  Article  Google Scholar 

  18. Drell, S. D. & Yan, T.-M. Connection of elastic electromagnetic nucleon form factors at large Q2 and deep inelastic structure functions near threshold. Phys. Rev. Lett. 24, 181–185 (1970).

    ADS  Article  Google Scholar 

  19. West, G. B. Phenomenological model for the electromagnetic structure of the proton. Phys. Rev. Lett. 24, 1206–1209 (1970).

    ADS  Article  Google Scholar 

  20. Brodsky, S. J. & Drell, S. The anomalous magnetic moment and limits on fermion substructure. Phys. Rev. D 22, 2236 (1980).

    ADS  Article  Google Scholar 

  21. Bakker, B. L. G. et al. Light-front quantum chromodynamics: a framework for the analysis of hadron physics. Nucl. Phys. B Proc. Suppl. 251–252, 165–174 (2014).

    ADS  Article  Google Scholar 

  22. Hornbostel, K., Brodsky, S. J. & Pauli, H. C. Light-cone-quantized QCD in 1+1 dimensions. Phys. Rev. D 41, 3814 (1990).

    ADS  Article  Google Scholar 

  23. Brodsky, S. J., de Téramond, G. F., Dosch, H. G. & Erlich, J. Light-front holographic QCD and emerging confinement. Phys. Rep. 584, 1–105 (2015).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  24. Brodsky, S. J., Roberts, C. D., Shrock, R. & Tandy, P. C. Confinement contains condensates. Phys. Rev. C 85, 065202 (2012).

    ADS  Article  Google Scholar 

  25. Drell, S. D. & Yan, T.-M. Massive lepton-pair production in hadron-hadron collisions at high energies. Phys. Rev. Lett. 25, 316–320 (1970); erratum 25, 902 (1970).

    ADS  Article  Google Scholar 

  26. Dokshitzer, Y. L. Calculation of the structure functions for deep-inelastic scattering and e+e annihilation by perturbation theory in quantum chromodynamics [Russian]. Sov. Phys. JETP 46, 641–653 (1977).

    ADS  Google Scholar 

  27. Gribov, V. N. & Lipatov, L. N. Deep inelastic electron scattering in perturbation theory. Phys. Lett. B 37, 78–80 (1971).

    ADS  Article  Google Scholar 

  28. Lipatov, L. N. The parton model and perturbation theory. Sov. J. Nucl. Phys. 20, 94–102 (1975).

    Google Scholar 

  29. Altarelli, G. & Parisi, G. Asymptotic freedom in parton language. Nucl. Phys. B 126, 298–318 (1977).

    ADS  Article  Google Scholar 

  30. Lepage, G. P. & Brodsky, S. J. Exclusive processes in quantum chromodynamics: evolution equations for hadronic wavefunctions and the form factors of mesons. Phys. Lett. B 87, 359–365 (1979).

    ADS  Article  Google Scholar 

  31. Efremov, A. V. & Radyushkin, A. V. Factorization and asymptotical behavior of pion form-factor in QCD. Phys. Lett. B 94, 245–250 (1980).

    ADS  Article  Google Scholar 

  32. Brodsky, S. J., Hwang, D. S., Ma, B.-Q. & Schmidt, I. Light cone representation of the spin and orbital angular momentum of relativistic composite systems. Nucl. Phys. B 593, 311–335 (2001).

    ADS  MATH  Article  Google Scholar 

  33. Okun, L. & Kobsarev, I. Y. O gravitatsionnom vzaimodeistvii fermionov. Zh. Eksp. Teor. Fiz. 43, 1904 (1962).

    Google Scholar 

  34. Brodsky, S. J. Supersymmetric and other novel features of hadron physics from light-front holography. Preprint at arXiv https://doi.org/10.48550/arXiv.2112.02453 (2021).

  35. Gerasimov, S. B. A sum rule for magnetic moments and the damping of the nucleon magnetic moment in nuclei. Sov. J. Nucl. Phys. 2, 430–433 (1966).

    Google Scholar 

  36. Drell, S. D. & Hearn, A. C. Exact sum rule for nucleon magnetic moments. Phys. Rev. Lett. 16, 908–911 (1966).

    ADS  Article  Google Scholar 

  37. Hosoda, M. & Yamamoto, K. Sum rule for the magnetic moment of the Dirac particle. Prog. Theor. Phys. 36, 425–426 (1966).

    ADS  Article  Google Scholar 

  38. Barton, G. & Dombey, N. Drell-Hearn-Gerasimov sum rule: examples and counterexamples. Phys. Rev. 162, 1520–1525 (1967).

    ADS  Article  Google Scholar 

  39. Low, F. E. Scattering of light of very low frequency by systems of spin 1/2. Phys. Rev. 96, 1428–1432 (1954).

    ADS  MATH  Article  Google Scholar 

  40. Gell-Mann, M. & Goldberger, M. L. Scattering of low-energy photons by particles of spin 1/2. Phys. Rev. 96, 1433–1438 (1954).

    ADS  MATH  Article  Google Scholar 

  41. Dicus, D. A. & Palmer, D. R. Drell-Hearn sum rule from light-cone current commutators. Phys. Rev. D 6, 720–722 (1972).

    ADS  Article  Google Scholar 

  42. Pradhan, T. & Khare, A. V. Drell-Hearn sum rule from equal time commutators. Phys. Rev. D 5, 496–497 (1972).

    ADS  Article  Google Scholar 

  43. Pantforder, R., Rollnik, H. & Pfeil, W. The Gerasimov-Drell-Hearn sum rule and the infinite-momentum limit. Eur. Phys. J. C 1, 585–592 (1998).

    ADS  Article  Google Scholar 

  44. Salpeter, E. E. & Bethe, H. A. A relativistic equation for bound state problems. Phys. Rev. 84, 1232–1242 (1951).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  45. McGee, I. J. Electrodisintegration of the deuteron. I. Connection between the npd vertex function and the deuteron wave function. Phys. Rev. 158, 1500–1514 (1967).

    ADS  Article  Google Scholar 

  46. Wolschin, G. Aspects of relativistic heavy-ion collisions. Universe 6, 61 (2020).

    ADS  Article  Google Scholar 

  47. Zyla, P. A. et al. Review of particle physics. Prog. Theor. Exp. Phys. 2020, 083C01 (2020).

    Article  Google Scholar 

  48. Terrell, J. Invisibility of the Lorentz contraction. Phys. Rev. 116, 1041–1045 (1959).

    ADS  MathSciNet  Article  Google Scholar 

  49. Weisskopf, V. F. The visual appearance of rapidly moving objects. Phys. Today 13, 24–27 (1960).

    Article  Google Scholar 

  50. Zee, A. in High-Energy Physics (eds Mintz, S. L. & Perlmutter, A.) 211–230 (Springer, 1985).

  51. Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 61, 1 (1989).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  52. Carroll, S. M. The cosmological constant. Living Rev. Relativ. 4, 1 (2001).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  53. Peebles, P. J. E. & Ratra, B. The cosmological constant and dark energy. Rev. Mod. Phys. 75, 559 (2003).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  54. Padmanabhan, T. Cosmological constant — the weight of the vacuum. Phys. Rep. 380, 235–320 (2003).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  55. Zee, A. Gravity and its mysteries: some thoughts and speculations. Int. J. Mod. Phys. A 23, 1295–1308 (2008).

    ADS  MathSciNet  Article  Google Scholar 

  56. Moreno-Pulido, C. & Solà Peracaula, J. Running vacuum in quantum field theory in curved spacetime: renormalizing ρvac without ~m4 terms. Eur. Phys. J. C 80, 692 (2020).

    ADS  Article  Google Scholar 

  57. Mavromatos, N. E. & Solà Peracaula, J. Stringy-running-vacuum-model inflation: from primordial gravitational waves and stiff axion matter to dynamical dark energy. Eur. Phys. J. Spec. Top. 230, 2077–2110 (2021).

    Article  Google Scholar 

  58. Moreno-Pulido, C. & Solà Peracaula, J. Renormalizing the vacuum energy in cosmological spacetime: implications for the cosmological constant problem. Preprint at arXiv https://doi.org/10.48550/arXiv.2201.05827 (2022).

  59. Brodsky, S. J. & Shrock, R. Condensates in quantum chromodynamics and the cosmological constant. Proc. Natl Acad. Sci. USA 108, 45–50 (2011).

    ADS  Article  Google Scholar 

  60. Brodsky, S. J., Roberts, C. D., Shrock, R. & Tandy, P. C. Essence of the vacuum quark condensate. Phys. Rev. C 82, 022201 (2010).

    ADS  Article  Google Scholar 

  61. Chang, L., Roberts, C. D. & Tandy, P. C. Expanding the concept of in-hadron condensates. Phys. Rev. C 85, 012201 (2012).

    ADS  Article  Google Scholar 

  62. Cloet, I. C. & Roberts, C. D. Explanation and prediction of observables using continuum strong QCD. Prog. Part. Nucl. Phys. 77, 1–69 (2014).

    ADS  Article  Google Scholar 

  63. Feynman, R. P. & Weinberg, S. Elementary Particles and the Laws of Physics: The 1986 Dirac Memorial Lectures (Cambridge Univ. Press, 1999).

  64. Casher, A. & Susskind, L. Chiral magnetism (or magnetohadrochironics). Phys. Rev. D 9, 436–460 (1974).

    ADS  Article  Google Scholar 

  65. Weinberg, S. in Asymptotic Realms of Physics: Essays in Honor of Francis E. Low (eds Guth, A. H., Huang, K. & Jaffe, R. L.) (MIT Press, 1984).

Download references

Acknowledgements

This work is supported by the US Department of Energy, contract DE-AC02-76SF00515 (S.J.B.); the US Department of Energy, Office of Science, Office of Nuclear Physics, contract DE-AC05-06OR23177 (A.D.); and the National Natural Science Foundation of China, grant no. 12135007 (C.D.R.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the preparation of this article.

Corresponding authors

Correspondence to Stanley J. Brodsky, Alexandre Deur or Craig D. Roberts.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Physics thanks Wolfgang Lucha, Yang Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Relativistic Heavy Ion Collider: https://www.bnl.gov/rhic/physics.php

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brodsky, S.J., Deur, A. & Roberts, C.D. Artificial dynamical effects in quantum field theory. Nat Rev Phys 4, 489–495 (2022). https://doi.org/10.1038/s42254-022-00453-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-022-00453-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing