Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Operando visualization of the hydrogen evolution reaction with atomic-scale precision at different metal–graphene interfaces

Abstract

The development of catalysts for the hydrogen evolution reaction is pivotal for the hydrogen economy. Thin iron films covered with monolayer graphene exhibit outstanding catalytic activity, surpassing even that of platinum, as demonstrated by a method based on evaluating the noise in the tunnelling current of electrochemical scanning tunnelling microscopy. Using this approach, we mapped with atomic-scale precision the electrochemical activity of the graphene–iron interface, and determined that single iron atoms trapped within carbon vacancies and curved graphene areas on step edges are exceptionally active. Density functional theory calculations confirmed the sequence of activity obtained experimentally. This work exemplifies the potential of electrochemical scanning tunnelling microscopy as the only technique able to determine both the atomic structure and relative catalytic performance of atomically well-defined sites in electrochemical operando conditions and provides a detailed rationale for the design of novel catalysts based on cheap and abundant metals such as iron.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Catalytic processes at different interfaces.
Fig. 2: Electrochemistry and morphology of Gr growth on Pt(111).
Fig. 3: Hydrogen intercalation process under Gr on Pt(111).
Fig. 4: Activity towards the hydrogen evolution reaction of Gr/Pt(111) and Pt(111).
Fig. 5: Graphene/iron as a hydrogen evolution catalyst.
Fig. 6: Potentiodynamic EC-STM images during catalytic activity.
Fig. 7: Identification of catalytic active sites and current roughness analysis.

Data availability

The experimental raw data and atomic coordinates of the optimized models that support the findings of this study are available in figshare at https://doi.org/10.6084/m9.figshare.16437717.

References

  1. 1.

    Deng, D. et al. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 11, 218–230 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Sun, P. Z. et al. Limits on gas impermeability of graphene. Nature 579, 229–232 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Fu, Q. & Bao, X. Surface chemistry and catalysis confined under two-dimensional materials. Chem. Soc. Rev. 46, 1842–1874 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Sharifi, T. et al. Graphene as an electrochemical transfer layer. Carbon 141, 266–273 (2019).

    CAS  Article  Google Scholar 

  5. 5.

    Chen, W., Santos, E. J. G., Zhu, W., Kaxiras, E. & Zhang, Z. Tuning the electronic and chemical properties of monolayer MoS2 adsorbed on transition metal substrates. Nano Lett. 13, 509–514 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Kosmala, T., Calvillo, L., Agnoli, S. & Granozzi, G. Enhancing the oxygen electroreduction activity through electron tunnelling: CoOx ultrathin films on Pd(100). ACS Catal. 8, 2343–2352 (2018).

    CAS  Article  Google Scholar 

  7. 7.

    Kosmala, T. et al. Stable, active, and methanol-tolerant PGM-free surfaces in an acidic medium: electron tunneling at play in Pt/FeNC hybrid catalysts for direct methanol fuel cell cathodes. ACS Catal. 10, 7475–7485 (2020).

    CAS  Article  Google Scholar 

  8. 8.

    Baby, A., Trovato, L. & Di Valentin, C. Single atom catalysts (SAC) trapped in defective and nitrogen-doped graphene supported on metal substrates. Carbon 174, 772–788 (2021).

    CAS  Article  Google Scholar 

  9. 9.

    Itaya, K. & Tomita, E. Scanning tunneling microscope for electrochemistry—a new concept for the in situ scanning tunneling microscope in electrolyte solution. Surf. Sci. Lett. 201, L507–L512 (1988).

    CAS  Article  Google Scholar 

  10. 10.

    Itaya, K. Recent progresses of electrochemical surface science: importance of surface imaging with atomic scale. Electrochemistry 83, 21–25 (2015).

    Article  CAS  Google Scholar 

  11. 11.

    Madry, B., Morawski, I., Kosmala, T., Wandelt, K. & Nowicki, M. Porphyrin layers at Cu/Au(111)–electrolyte interfaces: in situ EC-STM study. Top. Catal. 24, 1335–1349 (2018).

    Article  CAS  Google Scholar 

  12. 12.

    Phan, T. H., Kosmala, T. & Wandelt, K. Potential dependence of self-assembled porphyrin layers on a Cu(111) electrode surface: in-situ STM study. Surf. Sci. 631, 207–212 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    Kosmala, T., Blanco, M., Granozzi, G. & Wandelt, K. Potential driven non-reactive phase transitions of ordered porphyrin molecules on iodine-modified Au(100): an electrochemical scanning tunneling microscopy (EC-STM) study. Surfaces 1, 12–28 (2018).

    Article  Google Scholar 

  14. 14.

    Zuili, D., Maurice, V. & Marcus, P. Surface structure of nickel in acid solution studied by in situ scanning tunneling microscopy. J. Electrochem. Soc. 147, 1393–1400 (2000).

    CAS  Article  Google Scholar 

  15. 15.

    Maurice, V., Strehblow, H. & Marcus, P. In situ STM study of the initial stages of oxidation of Cu(111) in aqueous solution. Surf. Sci. 458, 185–194 (2000).

    CAS  Article  Google Scholar 

  16. 16.

    Kosmala, T., Blanco, M., Granozzi, G. & Wandelt, K. Porphyrin bi-layer formation induced by a surface confined reduction on an iodine-modified Au(100) electrode surface. Electrochim. Acta 360, 137026 (2020).

    CAS  Article  Google Scholar 

  17. 17.

    Facchin, A. A., Kosmala, T., Gennaro, A. & Durante, C. Electrochemical scanning tunnelling microscopy investigations of FeN4 based macrocyclic molecules adsorbed on Au(111) and their implications in oxygen reduction reaction. ChemElectroChem https://doi.org/10.1002/celc.202000137 (2020).

  18. 18.

    Pfisterer, J. H. K., Liang, Y., Schneider, O. & Bandarenka, A. S. Direct instrumental identification of catalytically active surface sites. Nature 549, 74–77 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Liang, Y., Mclaughlin, D., Csoklich, C., Schneider, O. & Bandarenka, A. S. The nature of active centers catalyzing oxygen electro-reduction at platinum surfaces in alkaline media. Energy Environ. Sci. 12, 351–357 (2019).

    CAS  Article  Google Scholar 

  20. 20.

    Dedkov, Y. S., Fonin, M., Rüdiger, U. & Laubschat, C. Graphene-protected iron layer on Ni(111). Appl. Phys. Lett. 93, 85–88 (2008).

    Article  CAS  Google Scholar 

  21. 21.

    Sutter, P., Sadkowski, J. T. & Sutter, E. Graphene on Pt(111): growth and substrate interaction. Phys. Rev. B 80, 245411 (2009).

    Article  CAS  Google Scholar 

  22. 22.

    Cattelan, M. et al. The dynamics of Fe intercalation on pure and nitrogen doped graphene grown on Pt(111) probed by CO adsorption. Surf. Sci. 634, 49–56 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    Dahal, A. & Batzill, M. Growth from behind: intercalation-growth of two-dimensional FeO moiré structure underneath of metal-supported graphene. Sci. Rep. 5, 11378 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Cattelan, M. et al. The nature of the Fe–graphene interface at the nanometer level. Nanoscale 7, 2450–2460 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25.

    Hamada, I. & Otani, M. Comparative van der Waals density-functional study of graphene on metal surfaces. Phys. Rev. B Condens. Matter Mater. Phys. 82, 153412 (2010).

    Article  CAS  Google Scholar 

  26. 26.

    Fu, Y., Rudnev, A. V., Wiberg, G. K. H. & Arenz, M. Single graphene layer on Pt(111) creates confined electrochemical environment via selective ion transport. Angew. Chem. Int. Ed. 56, 12883–12887 (2017).

    CAS  Article  Google Scholar 

  27. 27.

    Miao, M., Nardelli, M. B., Wang, Q. & Liu, Y. First principles study of the permeability of graphene to hydrogen atoms. Phys. Chem. Chem. Phys. 15, 16132–16137 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Hu, K. et al. Catalytic activity of graphene-covered non-noble metals governed by proton penetration in electrochemical hydrogen evolution reaction. Nat. Commun. 12, 203 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Reda, M., Hansen, H. A. & Vegge, T. DFT study of the oxygen reduction reaction on carbon-coated iron and iron carbide. ACS Catal. 8, 10521–10529 (2018).

    CAS  Article  Google Scholar 

  30. 30.

    Zhou, Y. et al. Enhancing the hydrogen activation reactivity of nonprecious metal substrates via confined catalysis underneath graphene. Nano Lett. 16, 6058–6063 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Nørskov, J. K. et al. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 152, J23 (2005).

    Article  CAS  Google Scholar 

  32. 32.

    Markovic, N. M., Grgur, B. N. & Ross, P. N. Temperature-dependent hydrogen electrochemistry on platinum low-index single-crystal surfaces in acid solutions. J. Phys. Chem. B 5647, 5405–5413 (1997).

    Article  Google Scholar 

  33. 33.

    Hu, S. et al. Proton transport through one-atom-thick crystals. Nature 516, 227–230 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Achtyl, J. L. et al. Aqueous proton transfer across single-layer graphene. Nat. Commun. 6, 6539 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Xu, J. et al. Transparent proton transport through a two-dimensional nanomesh material. Nat. Commun. 10, 3971 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. 36.

    Schmid, M. et al. On-surface synthesis and characterization of an iron corrole. J. Phys. Chem. C 122, 10392–10399 (2018).

    CAS  Article  Google Scholar 

  37. 37.

    Amokrane, N., Gabrielli, C., Ostermann, E. & Perrot, H. Investigation of hydrogen adsorption—absorption on iron by EIS. Electrochim. Acta 53, 700–709 (2007).

    CAS  Article  Google Scholar 

  38. 38.

    Repetto, D. et al. Structure and magnetism of atomically thin Fe layers on flat and vicinal Pt surfaces. Phys. Rev. B Condens. Matter Mater. Phys. 74, 054408 (2006).

    Article  CAS  Google Scholar 

  39. 39.

    Tavakkoli, M. et al. Single-shell carbon-encapsulated iron nanoparticles: synthesis and high electrocatalytic activity for hydrogen evolution reaction. Angew. Chem. Int. Ed. 54, 4535–4538 (2015).

    CAS  Article  Google Scholar 

  40. 40.

    Carnevali, V. et al. Doping of epitaxial graphene by direct incorporation of nickel adatoms. Nanoscale 11, 10358–10364 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Cilpa-karhu, G., Pakkanen, O. J. & Laasonen, K. Hydrogen evolution reaction on the single-shell carbon-encapsulated iron nanoparticle: a density functional theory insight. J. Phys. Chem. C 123, 13569–13577 (2019).

    CAS  Article  Google Scholar 

  42. 42.

    Tabassum, H. et al. Recent advances in confining metal-based nanoparticles into carbon nanotubes for electrochemical energy conversion and storage devices. Energy Environ. Sci. 12, 2924–2956 (2019).

    CAS  Article  Google Scholar 

  43. 43.

    Calvillo, L. et al. Electrochemical behavior of TiOxCy as catalyst support for direct ethanol fuel cells at intermediate temperature: from planar systems to powders. ACS Appl. Mater. Interfaces 8, 716–725 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Fadley, C. S. Angle-resolved X-ray photoelectron spectroscopy. Progr. Surf. Sci. 16, 275–388 (1984).

    CAS  Article  Google Scholar 

  45. 45.

    Wilms, M., Kruft, M., Bermes, G. & Wandelt, K. A new and sophisticated electrochemical scanning tunneling microscope design for the investigation of potentiodynamic processes. Rev. Sci. Instrum. 70, 3641 (1999).

    CAS  Article  Google Scholar 

  46. 46.

    Horcas, I. et al. WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Giannozzi, P. et al. Quantum Espresso: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Tersoff, J. & Hamann, D. R. Theory of the scanning tunneling microscope. Phys. Rev. B 31, 805–813 (1985).

    CAS  Article  Google Scholar 

  49. 49.

    Kaack, M. & Fick, D. Determination of the work functions of Pt(111) and Ir(111) beyond 1100 K surface temperature. Surf. Sci. 342, 111–118 (1995).

    CAS  Article  Google Scholar 

  50. 50.

    Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  51. 51.

    Thonhauser, T. et al. Spin signature of nonlocal correlation binding in metal–organic frameworks. Phys. Rev. Lett. 115, 136402 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Thonhauser, T. et al. Van der Waals density functional: self-consistent potential and the nature of the van der Waals bond. Phys. Rev. B Condens. Matter Mater. Phys. 76, 125112 (2007).

    Article  CAS  Google Scholar 

  53. 53.

    Berland, K. et al. van der Waals forces in density functional theory: a review of the vdW-DF method. Rep. Prog. Phys. 78, 066501 (2015).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  54. 54.

    Langreth, D. C. et al. A density functional for sparse matter. J. Phys. Condens. Matter 21, 084203 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  CAS  Google Scholar 

  56. 56.

    García-Gil, S., García, A. & Ordejón, P. Calculation of core level shifts within DFT using pseudopotentials and localized basis sets. Eur. Phys. J. B 85, 239 (2012).

    Article  CAS  Google Scholar 

  57. 57.

    Baby, A. et al. Lattice mismatch drives spatial modulation of corannulene tilt on Ag(111). J. Phys. Chem. C 122, 10365–10376 (2018).

    CAS  Article  Google Scholar 

  58. 58.

    Baby, A., Lin, H., Brivio, G. P., Floreano, L. & Fratesi, G. Core-level spectra and molecular deformation in adsorption: V-shaped pentacene on Al(001). Beilstein J. Nanotechnol. 6, 2242–2251 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Kokalj, A. XCrySDen—a new program for displaying crystalline structures and electron densities. J. Mol. Graph. Model. 17, 176–179 (1999).

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

The computations were run on the supercomputer MARCONI at CINECA, Bologna, Italy. This work has been partially supported by the project ‘MADAM—Metal Activated 2D cArbon-based platforMs’ funded by the Italian MIUR (PRIN 2017), grant 2017NYPHN8, MIUR (PRIN 2015: SMARTNESS, 2015K7FZLH; PRIN 2017: Multi-e, 20179337R7) and the MAECI Italy–China Bilateral Project (GINSENG, PGR00953). The Cariparo Foundation is acknowledged for funding (Project Synergy, Progetti di Eccellenza 2018). The University of Wrocław is also acknowledged for financial support 1010/S/IFD. We thank Alessandro Facchin for technical support with the EC-STM instrumentation.

Author information

Affiliations

Authors

Contributions

Investigation: T.K., A.B., M.L. and D.P. Data analysis: T.K., A.B., M.L., D.P. and H.L. Conceptualization: T.K., S.A. and C.D.V. Draft writing: T.K., A.B., S.A., C.D.V., C.D. and G.G. Supervision, S.A. and G.G. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Stefano Agnoli.

Ethics declarations

Competing interests

The authors declare no competing interests

Additional information

Peer review information Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–4, Figs. 1–22 and notes 1–3.

Supplementary Video 1

Series of potentiodynamic STM images during HER for Gr/Fe (1.8 ML)/Pt(111) system

Supplementary Video 2

Series of potentiodynamic STM images during HER for Gr/Pt(111) system

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kosmala, T., Baby, A., Lunardon, M. et al. Operando visualization of the hydrogen evolution reaction with atomic-scale precision at different metal–graphene interfaces. Nat Catal 4, 850–859 (2021). https://doi.org/10.1038/s41929-021-00682-2

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing