Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Losses and lifetimes of metals in the economy

An Author Correction to this article was published on 31 May 2022

This article has been updated


The consumption of most metals continues to rise following ever-increasing population growth, affluence and technological development. Sustainability considerations urge greater resource efficiency and retention of metals in the economy. We model the fate of a yearly cohort of 61 extracted metals over time and identify where losses are expected to occur through a life-cycle lens. We find that ferrous metals have the longest lifetimes, with 150 years on average, followed by precious, non-ferrous and specialty metals with 61, 50 and 12 years on average, respectively. Production losses are the largest for 15 of the studied metals whereas use losses are the largest for barium, mercury and strontium. Losses to waste management and recycling are the largest for 43 metals, suggesting the need to improve design for better sorting and recycling and to ensure longer-lasting products, in combination with improving waste-management practices. Compared with the United Nations Environmental Programme’s recycling statistics, our results show the importance of taking a life-cycle perspective to estimate losses of metals to develop effective circular economy strategies. We provide the dataset and model used in a machine-readable format to allow further research on metal cycles.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Global cycle of metals.
Fig. 2: Distribution of metal losses per life-cycle phase and average lifetimes of metals in the economy.
Fig. 3: The average lifetimes of metals in the economy versus average global annual production between 2015 and 2019.
Fig. 4: Predicted in-use stocks and losses of metals over two centuries for a yearly cohort of extracted metals.
Fig. 5: Loss rates versus EOL-RR and recycled content.

Data availability

The data compiled for this research as well as the data and results depicted in Figs. 2–5 are provided in Supplementary Data and documented in Supplementary Information. The machine-readable datasets are provided in the standardized Open Dynamic Material Systems Model (ODYM) format67 and are available in an OSF repository at (ref. 68).

Code availability

The Python code is provided in the ODYM format67 and is available at (ref. 68).

Change history


  1. Graedel, T. E., Harper, E. M., Nassar, N. T. & Reck, B. K. On the materials basis of modern society. Proc. Natl Acad. Sci. USA 112, 6295–6300 (2013).

    Article  Google Scholar 

  2. Global Resources Outlook 2019: Natural Resources for the Future We Want (UNEP, 2019).

  3. Wackernagel, M. et al. The importance of resource security for poverty eradication. Nat. Sustain. (2021).

  4. Ali, S. H. et al. Mineral supply for sustainable development requires resource governance. Nature 543, 367–372 (2017).

    CAS  Article  Google Scholar 

  5. Schrijvers, D. et al. A review of methods and data to determine raw material criticality. Resour. Conserv. Recycl. 155, 104617 (2020).

    Article  Google Scholar 

  6. Helbig, C., Schrijvers, D. & Hool, A. Selecting and prioritizing material resources by criticality assessments. One Earth 4, 339–345 (2021).

    Article  Google Scholar 

  7. Charpentier Poncelet, A. et al. Life cycle impact assessment methods for estimating the impacts of dissipative flows of metals. J. Ind. Ecol. (2021).

  8. Moraga, G., Huysveld, S., De Meester, S. & Dewulf, J. Development of circularity indicators based on the in-use occupation of materials. J. Clean. Prod. 279, 123889 (2021).

    Article  Google Scholar 

  9. Reuter, M. A., van Schaik, A., Gutzmer, J., Bartie, N. & Abadías-Llamas, A. Challenges of the circular economy: a material, metallurgical, and product design perspective. Annu. Rev. Mater. Res. 49, 253–274 (2019).

    CAS  Article  Google Scholar 

  10. Ciacci, L., Harper, E. M., Nassar, N. T., Reck, B. K. & Graedel, T. E. Metal dissipation and inefficient recycling intensify climate forcing. Environ. Sci. Technol. 50, 11394–11402 (2016).

    CAS  Article  Google Scholar 

  11. Watari, T. et al. Global metal use targets in line with climate goals. Environ. Sci. Technol. (2020).

  12. Nuss, P. & Eckelman, M. J. Life cycle assessment of metals: a scientific synthesis. PLoS ONE 9, e101298 (2014).

    Article  Google Scholar 

  13. Lamb, W. F. et al. A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018. Environ. Res. Lett. 16, 073005 (2021).

    CAS  Article  Google Scholar 

  14. Beylot, A., Ardente, F., Sala, S. & Zampori, L. Accounting for the dissipation of abiotic resources in LCA: status, key challenges and potential way forward. Resour. Conserv. Recycl. 157, 104748 (2020).

    Article  Google Scholar 

  15. Graedel, T. E. Material flow analysis from origin to evolution. Environ. Sci. Technol. 53, 12188–12196 (2019).

    CAS  Article  Google Scholar 

  16. Chen, W. Q. & Graedel, T. E. Anthropogenic cycles of the elements: a critical review. Environ. Sci. Technol. 46, 8574–8586 (2012).

    CAS  Article  Google Scholar 

  17. Nakamura, S. et al. MaTrace: tracing the fate of materials over time and across products in open-loop recycling. Environ. Sci. Technol. 48, 7207–7214 (2014).

    CAS  Article  Google Scholar 

  18. Recycling Rates of Metals: A Status Report (UNEP, 2011).

  19. Helbig, C., Thorenz, A. & Tuma, A. Quantitative assessment of dissipative losses of 18 metals. Resour. Conserv. Recycl. 153, 104537 (2020).

    Article  Google Scholar 

  20. Graedel, T. E., Harper, E. M., Nassar, N. T., Nuss, P. & Reck, B. K. Criticality of metals and metalloids. Proc. Natl Acad. Sci. USA 112, 4257–4262 (2015).

    CAS  Article  Google Scholar 

  21. Mudd, G. M., Jowitt, S. M. & Werner, T. T. The world’s by-product and critical metal resources part I: uncertainties, current reporting practices, implications and grounds for optimism. Ore Geol. Rev. 86, 924–938 (2017).

    Article  Google Scholar 

  22. Løvik, A. N., Restrepo, E. & Müller, D. B. Byproduct metal availability constrained by dynamics of carrier metal cycle: the gallium–aluminum example. Environ. Sci. Technol. 50, 8453–8461 (2016).

    Article  Google Scholar 

  23. Study on the EU’s List of Critical Raw Materials (2020): Critical Raw Materials Factsheets (European Commission, 2020);

  24. Global Mercury Supply, Trade and Demand (UNEP, 2017).

  25. Burgess, H., Gowans, R. M., Hennessey, T. B., Lattanzi, C. R. & Puritch, E. Technical Report on the Feasibility Study for the NICO Gold–Cobalt–Bismuth–Copper Project Northwest Territories, Canada (Micon International Limited, 2014).

  26. Wietlisbach, S. Latest developments and outlook for magnesium minerals and chemicals: Minerals production, market consumption drivers, new projects and forecast. In Proc. 7th June 2018 Industrial Minerals Congress, Barcelona (Fastmarkets IM, 2018);

  27. Report on Critical Raw Materials for the EU (European Commission, 2014).

  28. Peiró, L. T., Méndez, G. V. & Ayres, R. U. Material flow analysis of scarce metals: sources, functions, end-uses and aspects for future supply. Environ. Sci. Technol. 47, 2939–2947 (2013).

    Article  Google Scholar 

  29. Bertram, M. et al. A regionally-linked, dynamic material flow modelling tool for rolled, extruded and cast aluminium products. Resour. Conserv. Recycl. 125, 48–69 (2017).

    Article  Google Scholar 

  30. Manganese—It Turns Iron into Steel (and Does So Much More) (USGS, 2014).

  31. Ciacci, L., Reck, B. K., Nassar, N. T. & Graedel, T. E. Lost by design. Environ. Sci. Technol. 49, 9443–9451 (2015).

    CAS  Article  Google Scholar 

  32. Zimmermann, T. & Gößling-Reisemann, S. Critical materials and dissipative losses: a screening study. Sci. Total Environ. 461–462, 774–780 (2013).

    Article  Google Scholar 

  33. Rasmussen, K. D., Wenzel, H., Bangs, C., Petavratzi, E. & Liu, G. Platinum demand and potential bottlenecks in the global green transition: a dynamic material flow analysis. Environ. Sci. Technol. (2019).

  34. Reck, B. K. & Graedel, T. E. Challenges in metal recycling. Science 337, 690–695 (2012).

    CAS  Article  Google Scholar 

  35. Meylan, G. & Reck, B. K. The anthropogenic cycle of zinc: status quo and perspectives. Resour. Conserv. Recycl. 123, 1–10 (2017).

    Article  Google Scholar 

  36. Graedel, T. E., Reck, B. K. & Miatto, A. Alloy information helps prioritize material criticality lists. Nat. Commun. 13, 150 (2022).

    CAS  Article  Google Scholar 

  37. Cullen, J. M. Circular economy: theoretical benchmark or perpetual motion machine? J. Ind. Ecol. 21, 483–486 (2017).

    Article  Google Scholar 

  38. Assessing Global Resource Use: A Systems Approach to Resource Efficiency and Pollution Reduction (UNEP, 2017).

  39. Graedel, T. E. Grand challenges in metal life cycles. Nat. Resour. Res. 27, 181–190 (2018).

    CAS  Article  Google Scholar 

  40. Roadmap to a Resource Efficient Europe (European Commission, 2011).

  41. Marscheider-Weidemann, F. et al. Rohstoffe für Zukunftstechnologien 2021 (German Mineral Resources Agency, 2021).

  42. Study on the EU’s List of Critical Raw Materials (2020): Final Report (European Commission, 2020);

  43. Fortier, S. M. et al. Draft Critical Mineral List—Summary of Methodology and Background Information—US Geological Survey Technical Input Document in Response to Secretarial Order No. 3359 Open-File Report 2018–1021 (USGS, 2018);

  44. Blengini, G. A. et al. Recovery of Critical and Other Raw Materials from Mining Waste and Landfills: State of Play on Existing Practices (Publications Office of the European Union, 2019);

  45. Mudd, G. M. Key trends in the resource sustainability of platinum group elements. Ore Geol. Rev. 46, 106–117 (2012).

    Article  Google Scholar 

  46. Nassar, N. T. in Element Recovery and Sustainability (ed. Hunt, A.) 185–206 (The Royal Society of Chemistry, 2013).

  47. Schäfer, P. & Schmidt, M. Discrete-point analysis of the energy demand of primary versus secondary metal production. Environ. Sci. Technol. (2019).

  48. Pauliuk, S., Kondo, Y., Nakamura, S. & Nakajima, K. Regional distribution and losses of end-of-life steel throughout multiple product life cycles—insights from the global multiregional MaTrace model. Resour. Conserv. Recycl. 116, 84–93 (2017).

    Article  Google Scholar 

  49. Godoy León, M. F., Blengini, G. A. & Dewulf, J. Cobalt in end-of-life products in the EU, where does it end up? The MaTrace approach. Resour. Conserv. Recycl. 158, 104842 (2020).

    Article  Google Scholar 

  50. Nakamura, S., Kondo, Y., Nakajima, K., Ohno, H. & Pauliuk, S. Quantifying recycling and losses of Cr and Ni in steel throughout multiple life cycles using MaTrace–alloy. Environ. Sci. Technol. 51, 9469–9476 (2017).

    CAS  Article  Google Scholar 

  51. Helbig, C., Kondo, Y. & Nakamura, S. Simultaneously tracing the fate of seven metals at a global level with MaTrace‐multi. J. Ind. Ecol. (2022).

  52. Lifset, R. J., Eckelman, M. J., Harper, E. M., Hausfather, Z. & Urbina, G. Metal lost and found: dissipative uses and releases of copper in the United States 1975–2000. Sci. Total Environ. 417–418, 138–147 (2012).

    Article  Google Scholar 

  53. Dewulf, J. et al. Towards sustainable resource management: identification and quantification of human actions that compromise the accessibility of metal resources. Resour. Conserv. Recycl. 167, 105403 (2021).

    Article  Google Scholar 

  54. Graedel, T. E. et al. What do we know about metal recycling rates? J. Ind. Ecol. 15, 355–366 (2011).

    CAS  Article  Google Scholar 

  55. Du, X. & Graedel, T. E. Uncovering the global life cycles of the rare earth elements. Sci. Rep. 1, 145 (2011).

    Article  Google Scholar 

  56. Haarman, A. The Anthropogenic Antimony Cycle: Dynamic Analysis of Global Flows and Stocks of Antimony and Associated Environmental Impacts (Delft University of Technology and Leiden University, 2015).

  57. Flow Studies for Recycling Metal Commodities in the United States (USGS, 2004).

  58. Le titane (Ti) – éléments de criticité (BRGM, 2017).

  59. Mineral Commodity Summaries 2020 (USGS, 2020).

  60. Gold Supply and Demand Statistics (World Gold Council, 2021);

  61. Annual Report 2019 (SQM, 2019).

  62. PGM Market Report: May 2020 (Johnson Matthey, 2020).

  63. Nuss, P., Harper, E. M., Nassar, N. T., Reck, B. K. & Graedel, T. E. Criticality of iron and its principal alloying elements. Environ. Sci. Technol. 48, 4171–4177 (2014).

    CAS  Article  Google Scholar 

  64. Weidema, B. P. & Wesnæs, M. S. Data quality management for life cycle inventories—an example of using data quality indicators. J. Clean. Prod. 4, 167–174 (1996).

    Article  Google Scholar 

  65. Graedel, T. E. et al. Methodology of metal criticality determination. Environ. Sci. Technol. 46, 1063–1070 (2012).

    CAS  Article  Google Scholar 

  66. Reichl, C. & Schatz, M. World Mining Data 2021 (Federal Ministry of Agriculture, Regions and Tourism, 2021).

  67. Pauliuk, S. & Heeren, N. ODYM—an open software framework for studying dynamic material systems: principles, implementation, and data structures. J. Ind. Ecol. (2019).

  68. Helbig, C. & Charpentier Poncelet, A. ODYM–MaTrace–dissipation. OSF Registries (2022).

Download references


The PhD research project of A.C.P. was financed by the French Environment and Energy Management Agency (ADEME) and the BRGM. We acknowledge the organizations (in particular, the Center for Industrial Ecology of Yale University and the US Geological Survey) and researchers that produced and published the data underlying this article. We also acknowledge the MaTrace model initially developed by S. Nakamura et al. and thank S. Pauliuk and N. Heeren for developing the open ODYM software framework.

Author information

Authors and Affiliations



The initial design of this research project originates from C.H., A. Thorenz and A. Tuma. A.C.P. and C.H. conducted methodological developments. A.C.P. assembled and documented the data, drafted the article and produced Figs. 1, 2, 4 and 5. C.H. wrote the Python code and produced Fig. 3, the right side of Fig. 4 and Supplementary Figs. 2–62 (the supplementary figures are generated with the code). A.B. and P.L. substantially participated in revising the draft and the final paper. S.M., J.V., B.L., A. Thorenz, A. Tuma and G.S. supervised the work and revised the draft and the final paper.

Corresponding authors

Correspondence to Alexandre Charpentier Poncelet or Christoph Helbig.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Shahana Althaf and Tomer Fishman for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Tables 1–70 and Figs. 1–62.

Reporting Summary

Supplementary Data

This workbook contains all of the compiled data, references and results presented in Figs. 2–5 of the article and Supplementary Figs. 2–62.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Charpentier Poncelet, A., Helbig, C., Loubet, P. et al. Losses and lifetimes of metals in the economy. Nat Sustain (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing