Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Carbon-efficient carbon dioxide electrolysers

Abstract

The electroreduction of CO2 (CO2R) is the conversion of CO2 to renewable fuels and feedstocks, a promising technology that could support the transition from fossil to renewable sources in the chemical industry. Today the viability of CO2R technology is limited by carbonate formation via the reaction of reactant CO2 with hydroxides and the energy cost incurred to regenerate the reactant. In this Review, we analyse the literature on four emerging high single pass CO2 conversion approaches: CO2 regeneration from carbonate, CO2R in acidic media, cascade CO2R-COR and CO2R direct from a capture liquid. We analyse each system, describe the challenges associated with each pathway and outline future research directions towards the goal of ensuring that CO2R is viable and thus scalable.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Carbonate formation and associated energy consumption/production penalty in alkaline and neutral media CO2R.
Fig. 2: Carbon-efficient technologies for CO2R.
Fig. 3: Performance and energy assessment of literature benchmark carbon-efficient and conventional alkaline/neutral media CO2R systems and challenges associated with carbon-efficient routes.

References

  1. Oil 2018: Analysis and Forecasts to 2023 (International Energy Agency, 2018); https://www.iea.org/reports/oil-2018

  2. Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

    CAS  Article  Google Scholar 

  3. The Future of Petrochemicals: Towards a More Sustainable Chemical Industry (International Energy Agency, 2018); https://iea.org/reports/the-future-of-petrochemicals

  4. Boulamanti, A. & Moya, J. A. Energy Efficiency and GHG Emissions: Prospective Scenarios for the Chemical and Petrochemical Industry EUR 28471 EN (Publications Office of the European Union, 2017).

  5. Jordaan, S. M. & Wang, C. Electrocatalytic conversion of carbon dioxide for the Paris goals. Nat. Catal. 4, 915–920 (2021).

    Article  Google Scholar 

  6. Shin, H., Hansen, K. U. & Jiao, F. Techno-economic assessment of low-temperature carbon dioxide electrolysis. Nat. Sustain. 4, 911–919 (2021).

    Article  Google Scholar 

  7. de Luna, P. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019).

    Article  CAS  Google Scholar 

  8. Leow, W. R. et al. Chloride-mediated selective electrosynthesis of ethylene and propylene oxides at high current density. Science 368, 1228–1233 (2020).

    CAS  Article  Google Scholar 

  9. Ozden, A. et al. Cascade CO2 electroreduction enables efficient carbonate-free production of ethylene. Joule 5, 706–719 (2021).

    CAS  Article  Google Scholar 

  10. Ozden, A. et al. High-rate and efficient ethylene electrosynthesis using a catalyst/promoter/transport layer. ACS Energy Lett. 5, 2811–2818 (2020).

    CAS  Article  Google Scholar 

  11. Xia, C. et al. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 4, 776–785 (2019).

    CAS  Article  Google Scholar 

  12. Miao, R. K. et al. Electroosmotic flow steers neutral products and enables concentrated ethanol electroproduction from CO2. Joule 5, 2742–2753 (2021).

    CAS  Article  Google Scholar 

  13. Wang, X. & Song, C. Carbon capture from flue gas and the atmosphere: a perspective. Front. Energy Res. 8, 560849 (2020).

    Article  Google Scholar 

  14. Gilassi, S., Taghavi, S. M., Rodrigue, D. & Kaliaguine, S. Techno-economic evaluation of membrane and enzymatic-absorption processes for CO2 capture from flue-gas. Sep. Purif. Technol. 248, 116941 (2020).

    CAS  Article  Google Scholar 

  15. Haaf, M., Anantharaman, R., Roussanaly, S., Ströhle, J. & Epple, B. CO2 capture from waste-to-energy plants: techno-economic assessment of novel integration concepts of calcium looping technology. Resour. Conserv. Recycl. 162, 104973 (2020).

    Article  Google Scholar 

  16. Daneshvar, E., Wicker, R. J., Show, P. L. & Bhatnagar, A. Biologically-mediated carbon capture and utilization by microalgae towards sustainable CO2 biofixation and biomass valorization – a review. Chem. Eng. 427, 130884 (2022).

    CAS  Article  Google Scholar 

  17. Goli, A. et al. An overview of biological processes and their potential for CO2 capture. J. Environ. Manage. 183, 41–58 (2016).

    CAS  Article  Google Scholar 

  18. Hepburn, C. et al. The technological and economic prospects for CO2 utilization and removal. Nature 575, 87–97 (2019).

    CAS  Article  Google Scholar 

  19. Li, L. et al. Stable, active CO2 reduction to formate via redox-modulated stabilization of active sites. Nat. Commun. 12, 5223 (2021).

    CAS  Article  Google Scholar 

  20. Hansen, K. U. & Jiao, F. Creating the right environment. Nat. Energy 6, 1005–1006 (2021).

    Article  Google Scholar 

  21. Jouny, M., Luc, W. & Jiao, F. General techo-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).

    CAS  Article  Google Scholar 

  22. Verma, S., Kim, B., Jhong, H.-R. M., Ma, S. & Kenis, P. J. A. A gross-margin model for defining technoeconomic benchmarks in the electroreduction of CO2. ChemSusChem 9, 1972–1979 (2016).

    CAS  Article  Google Scholar 

  23. Sisler, J. et al. Ethylene electrosynthesis: a comparative techno-economic analysis of alkaline vs membrane electrode assembly vs CO2-CO-C2H4 tandems. ACS Energy Lett. 6, 997–1002 (2021).

    CAS  Article  Google Scholar 

  24. Ma, D., Jin, T., Xie, K. & Huang, H. An overview of flow cell architecture design and optimization for electrochemical CO2 reduction. J. Mater. Chem. A 9, 20897–20918 (2021).

    CAS  Article  Google Scholar 

  25. Wu, Y., Jiang, Z., Lu, X., Liang, Y. & Wang, H. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575, 639–642 (2019).

    CAS  Article  Google Scholar 

  26. Xu, H. et al. Highly selective electrocatalytic CO2 reduction to ethanol by metallic clusters dynamically formed from atomically dispersed copper. Nat. Energy 5, 623–632 (2020).

    CAS  Article  Google Scholar 

  27. de Arquer, P. F. et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 367, 661–666 (2020).

    Article  CAS  Google Scholar 

  28. Dinh, C. T. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    CAS  Article  Google Scholar 

  29. Ma, W. et al. Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C−C coupling over fluorine-modified copper. Nat. Catal. 3, 478–487 (2020).

    CAS  Article  Google Scholar 

  30. Chen, X. et al. Electrochemical CO2-to-ethylene conversion on polyamine-incorporated Cu electrodes. Nat. Catal. 4, 20–27 (2021).

    Article  CAS  Google Scholar 

  31. Kim, C. et al. Tailored catalyst microenvironments for CO2 electroreduction to multicarbon products on copper using bilayer ionomer coatings. Nat. Energy 6, 1026–1034 (2021).

    CAS  Article  Google Scholar 

  32. Li, F. et al. Molecular tuning of CO2-to-ethylene conversion. Nature 577, 509–513 (2020).

    CAS  Article  Google Scholar 

  33. Wang, Y. et al. Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nat. Catal. 3, 98–106 (2020).

    CAS  Article  Google Scholar 

  34. Li, J. et al. Silica-copper catalyst interfaces enable carbon-carbon coupling towards ethylene electrosynthesis. Nat. Commun. 12, 2808 (2021).

    CAS  Article  Google Scholar 

  35. Liang, S., Altaf, N., Huang, L., Gao, Y. & Wang, Q. Electrolytic cell design for electrochemical CO2 reduction. J. CO2 Util. 35, 90–105 (2020).

  36. Salvatore, D. & Berlinguette, C. P. Voltage matters when reducing CO2 in an electrochemical flow cell. ACS Energy Lett. 5, 215–220 (2020).

    CAS  Article  Google Scholar 

  37. Gabardo, C. M. et al. Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly. Joule 3, 2777–2791 (2019).

    CAS  Article  Google Scholar 

  38. Weng, L.-C., Bell, A. T. & Weber, A. Z. Towards membrane-electrode assembly systems for CO2 reduction: a modelling study. Energy Environ. Sci. 12, 1950–1968 (2019).

    CAS  Article  Google Scholar 

  39. Robinowitz, J. A. & Kanan, M. W. The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem. Nat. Commun. 11, 5231 (2020).

    Article  CAS  Google Scholar 

  40. Ma, M. et al. Insights into the carbon balance for CO2 electroreduction on Cu using gas diffusion electrode reactor designs. Energy Environ. Sci. 13, 977–985 (2020).

    CAS  Article  Google Scholar 

  41. Haas, T., Krause, R., Weber, R., Demler, M. & Schmid, G. Technical photosynthesis involving CO2 electrolysis and fermentation. Nat. Catal. 1, 32–39 (2018).

    CAS  Article  Google Scholar 

  42. Hoang, T. T. H. et al. Nanoporous copper–silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 140, 5791–5797 (2018).

    CAS  Article  Google Scholar 

  43. Ma, S. et al. One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. J. Power Sources 301, 219–228 (2016).

    CAS  Article  Google Scholar 

  44. Keith, D. W., Holmes, G., St. Angelo, D. & Heidel, K. A process for capturing CO2 from the atmosphere. Joule 2, 1573–1594 (2018).

    CAS  Article  Google Scholar 

  45. Ozden, A. et al. Gold adparticles on silver combine low overpotential and high selectivity in electrochemical CO2 conversion. ACS Appl. Energy Mater. 4, 7504–7512 (2021).

    CAS  Article  Google Scholar 

  46. Xu, Y. et al. Low coordination number copper catalysts for electrochemical CO2 methanation in a membrane electrode assembly. Nat. Commun. 12, 2932 (2021).

    CAS  Article  Google Scholar 

  47. Huang, J. E. et al. CO2 electrolysis to multicarbon products in strong acid. Science 372, 1074–1078 (2021).

    CAS  Article  Google Scholar 

  48. Fuels - Higher and Lower Calorific Values (Engineering ToolBox, 2003); https://www.engineeringtoolbox.com/fuels-higher-calorific-values-d_169.html

  49. Ma, M., Kim, S., Chorkendorff, I. & Seger, B. Role of ion-selective membranes in the carbon balance for CO2 electroreduction via gas diffusion electrode reactor designs. Chem. Sci. 11, 8854–8861 (2020).

    CAS  Article  Google Scholar 

  50. Pătru, A., Binninger, T., Pribyl, B. & Schmidt, T. J. Design principles of bipolar electrochemical co-electrolysis cells for efficient reduction of carbon dioxide from gas phase at low temperature. J. Electrochem. Soc. 166, F34 (2019).

    Article  CAS  Google Scholar 

  51. Li, Y. C. et al. CO2 electroreduction from carbonate electrolyte. ACS Energy Lett. 4, 1427–1431 (2019).

    CAS  Article  Google Scholar 

  52. Aeshala, L. M., Uppaluri, R. G. & Verma, A. Effect of cationic and anionic solid polymer electrolyte on direct electrochemical reduction of gaseous CO2 to fuel. J. CO2 Util. 3–4, 49–55 (2013).

  53. Lizuki, A. et al. Carbon dioxide recovery from carbonate solutions using bipolar membrane electrodialysis. Sep. Purif. Technol. 101, 49–59 (2012).

    Article  CAS  Google Scholar 

  54. Yang, K. et al. Cation-driven increases of CO2 utilization in a bipolar membrane electrode assembly for CO2 electrolysis. ACS Energy Lett. 18, 4291–4298 (2021).

    Article  CAS  Google Scholar 

  55. Li, Y. C. et al. Bipolar membranes inhibit product crossover in CO2 electrolysis cell. Adv. Sustain. Syst. 2, 1700187 (2018).

    Article  CAS  Google Scholar 

  56. Wang, N. et al. Suppressing the liquid product crossover in electrochemical CO2 reduction. SmartMat 2, 12–16 (2021).

    Article  Google Scholar 

  57. Alerte, T. et al. Downstream of the CO2 electrolyzer: assessing the energy intensity of product separation. ACS Energy Lett. 6, 4405–4412 (2021).

    CAS  Article  Google Scholar 

  58. Muroyama, A. P., Pătru, A. & Gubler, L. Review–CO2 separation and transport via electrochemical methods. J. Electrochem. Soc. 167, 133504 (2020).

    CAS  Article  Google Scholar 

  59. O’Brien, C. P. et al. Single pass CO2 conversion exceeding 85% in the electrosynthesis of multicarbon products via local CO2 regeneration. ACS Energy Lett. 6, 2952–2959 (2021).

    Article  CAS  Google Scholar 

  60. Bondue, C. J., Graf, M., Goyal, A. & Koper, M. T. M. Suppression of hydrogen evolution in acidic electrolytes by electrochemical CO2 reduction. J. Am. Chem. Soc. 143, 279–285 (2020).

    Article  CAS  Google Scholar 

  61. Li, T. et al. Electrolytic conversion of bicarbonate into CO in a flow cell. Joule 3, 1487–1497 (2019).

    CAS  Article  Google Scholar 

  62. Shen, J. et al. Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin. Nat. Commun. 6, 8177 (2015).

    Article  Google Scholar 

  63. Liu, Y. & McCrory, C. C. L. Modulating the mechanism of electrocatalytic CO2 reduction by cobalt phthalocyanine through polymer coordination and encapsulation. Nat. Commun. 10, 1683 (2019).

    Article  CAS  Google Scholar 

  64. Ooka, H., Figueiredo, M. C. & Koper, M. T. M. Competition between hydrogen evolution and carbon dioxide reduction on copper electrodes in mildly acidic media. Langmuir 33, 9307–9313 (2017).

    CAS  Article  Google Scholar 

  65. Wang, Z., Hou, P., Wang, Y. & Kang, P. Acidic electrochemical reduction of CO2 using nickel nitride on multiwalled carbon nanotube as selective catalyst. ACS Sustain. Chem. Eng. 7, 6106–6112 (2019).

    CAS  Article  Google Scholar 

  66. Ringe, S. et al. Understanding cation effects in electrochemical CO2 reduction. Energy Environ. Sci. 12, 3001–3014 (2019).

    CAS  Article  Google Scholar 

  67. Resasco, J. et al. Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide. J. Am. Chem. Soc. 139, 11277–11287 (2017).

    CAS  Article  Google Scholar 

  68. Delacourt, C., Ridgway, P., Kerr, J. B. & Newman, J. Design of an electrochemical cell making syngas (CO+H2) from CO2 and H2O reduction at room temperature. J. Electrochem. Soc. 155, B42 (2008).

    CAS  Article  Google Scholar 

  69. Salvatore, D. A. et al. Electrolysis of gaseous CO2 to CO in a flow cell with a bipolar membrane. ACS Energy Lett. 3, 149–154 (2018).

    CAS  Article  Google Scholar 

  70. Chatti, M. et al. Intrinsically stable in situ generated electrocatalyst for long-term oxidation of acidic water at up to 80 °C. Nat. Catal. 2, 457–465 (2019).

    CAS  Article  Google Scholar 

  71. Zhu, P. & Wang, H. High-purity and high-concentration liquid fuels through CO2 electroreduction. Nat. Catal. 4, 943–951 (2021).

    CAS  Article  Google Scholar 

  72. Küngas, R. et al. Review – electrochemical CO2 reduction for CO production: comparison of low- and high-temperature electrolysis technologies. J. Electrochem. Soc. 167, 044508 (2020).

    Article  CAS  Google Scholar 

  73. Jouny, M., Hutchings, G. & Jiao, F. Carbon monoxide electroreduction as an emerging platform for carbon utilization. Nat. Catal. 2, 1062–1070 (2019).

    CAS  Article  Google Scholar 

  74. Li, J. et al. Enhanced multi-carbon alcohol electroproduction from CO via modulated hydrogen adsorption. Nat. Commun. 11, 3685 (2020).

    CAS  Article  Google Scholar 

  75. Ripatti, D. S., Veltman, T. R. & Kanan, M. W. Carbon monoxide gas diffusion electrolysis that produces concentrated C2 products with high single-pass conversion. Joule 3, 240–256 (2019).

    CAS  Article  Google Scholar 

  76. Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).

    CAS  Article  Google Scholar 

  77. Luc, W. et al. Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate. Nat. Catal. 2, 423–430 (2019).

    CAS  Article  Google Scholar 

  78. Wang, X. et al. Efficient electrosynthesis of n-propanol from carbon monoxide using a Ag–Ru–Cu catalysts. Nat. Energy 7, 170–176 (2022).

    Article  CAS  Google Scholar 

  79. Skafte, T. L. et al. Selective high-temperature CO2 electrolysis enabled by oxidized carbon intermediates. Nat. Energy 4, 846–855 (2019).

    CAS  Article  Google Scholar 

  80. Yan, J. et al. High-efficiency intermediate temperature solid oxide electrolyzer cells for the conversion of carbon dioxide to fuels. J. Power Sources 252, 79–84 (2014).

    CAS  Article  Google Scholar 

  81. Kutz, B. K. et al. Sustainion imidazolium-functionalized polymers for carbon dioxide electrolysis. Energy Technol. 5, 929–936 (2017).

    CAS  Article  Google Scholar 

  82. Huang, Z. et al. Enhancing cathode performance for CO2 electrolysis with Ce0.9M0.1O2−δ (M=Fe, Co, Ni) catalysts in solid oxide electrolysis cell. J. Energy Chem. 40, 46–51 (2020).

    Article  Google Scholar 

  83. Nechache, A. & Hody, S. Alternative and innovative solid oxide electrolysis cell materials: a short review. Renew. Sustain. Energy Rev. 149, 111322 (2021).

    CAS  Article  Google Scholar 

  84. Temluxame, P. et al. Comparison of ceria and zirconia based electrolytes for solid oxide electrolysis cells. Int. J. Hydrogen Energy 46, 24568–24580 (2021).

    CAS  Article  Google Scholar 

  85. Zurek, J., Margaritis, N., Naumenko, D., Menzler, N. H. & Quadakkers, W. J. Behaviour of metallic materials in simulated service environments of CO2/H2O co-electrolysis systems for power-to-x application. Oxid. Met. 92, 353–377 (2019).

    CAS  Article  Google Scholar 

  86. Xia, R., Lv, J.-J., Ma, X. & Jiao, F. Enhanced multi-carbon selectivity via CO electroreduction approach. J. Catal. 398, 185–191 (2021).

    CAS  Article  Google Scholar 

  87. Sullivan, I. et al. Coupling electrochemical CO2 conversion with CO2 capture. Nat. Catal. 4, 952–958 (2021).

    CAS  Article  Google Scholar 

  88. Zhang, Z. et al. pH matters when reducing CO2 in an electrochemical flow cell. ACS Energy Lett. 5, 3101–3107 (2020).

    CAS  Article  Google Scholar 

  89. Lees, E. W. et al. Electrodes designed for converting bicarbonate into CO. ACS Energy Lett. 5, 2165–2173 (2020).

    CAS  Article  Google Scholar 

  90. Rochelle, G. T. Amine scrubbing for CO2 capture. Science 325, 1652–1654 (2009).

    CAS  Article  Google Scholar 

  91. Chen, L. et al. Electrochemical reduction of carbon dioxide in a monoethanolamine capture medium. ChemSusChem 10, 4109–4118 (2017).

    CAS  Article  Google Scholar 

  92. Khurram, A. et al. Promoting amine-activated electrochemical CO2 conversion with alkali salts. J. Phys. Chem. C. 123, 18222–18231 (2019).

    CAS  Article  Google Scholar 

  93. Lee, G. et al. Electrochemical upgrade of CO2 from amine capture solution. Nat. Energy 6, 46–53 (2021).

    CAS  Article  Google Scholar 

  94. Sturman, M. & Oelgemöller, M. Process parameters in the electrochemical reduction of carbon dioxide to ethylene. ChemBioEng Rev. 8, 149–188 (2021).

    CAS  Article  Google Scholar 

  95. Kiani, A., Jiang, K. & Feron, P. Techno-economic assessment for CO2 capture from air using a conventional liquid-based absorption process. Front. Energy Res. 8, 92 (2020).

    Article  Google Scholar 

  96. Aspelund, A. & Jordal, K. Gas conditioning – the interface between CO2 capture and transport. Int. J. Greenh. Gas Control 1, 343–354 (2007).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the Ontario Research Fund: Research Excellence Program, the Natural Sciences and Engineering Research Council (NSERC) of Canada; and infrastructure funding support from the Canada Foundation for Innovation (CFI) and the Ontario Research Fund. F.P.G.d.A. acknowledges funding from CEX2019-000910-S (MCIN/ AEI/10.13039/501100011033), Fundació Cellex, Fundació Mir-Puig, Generalitat de Catalunya through CERCA and the La Caixa Foundation.

Author information

Authors and Affiliations

Authors

Contributions

D.S. and E.H.S. supervised the work; A.O., D.S. and E.H.S. conceptualized the manuscript; A.O. prepared the first draft of the manuscript with input from D.S., F.P.G.d.A., J.E.H. and J.W.; J.S., R.K.M., C.P.O.'B., G.L., X.W. and A.H.I. assisted in literature review. All authors discussed the results and assisted during manuscript preparation.

Corresponding authors

Correspondence to Edward H. Sargent or David Sinton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Sustainability thanks Feng Jiao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note 1, Table 1, Equations 1–14 and References.

Source data

Source Data Fig. 1

Source Data Fig. 1.

Source Data Fig. 3

Source Data Fig. 3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ozden, A., García de Arquer, F.P., Huang, J.E. et al. Carbon-efficient carbon dioxide electrolysers. Nat Sustain 5, 563–573 (2022). https://doi.org/10.1038/s41893-022-00879-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-022-00879-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing