Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Epigenetic regulation of T cell exhaustion

Abstract

Chronic antigen stimulation during viral infections and cancer can lead to T cell exhaustion, which is characterized by reduced effector function and proliferation, and the expression of inhibitory immune checkpoint receptors. Recent studies have demonstrated that T cell exhaustion results in wholescale epigenetic remodeling that confers phenotypic stability to these cells and prevents T cell reinvigoration by checkpoint blockade. Here, we review foundational technologies to profile the epigenome at multiple scales, including mapping the locations of transcription factors and histone modifications, DNA methylation and three-dimensional genome conformation. We discuss how these technologies have elucidated the development and epigenetic regulation of exhausted T cells and functional implications across viral infection, cancer, autoimmunity and engineered T cell therapies. Finally, we cover emerging multi-omic and genome engineering technologies, current and upcoming opportunities to apply these to T cell exhaustion, and therapeutic opportunities for T cell engineering in the clinic.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Epigenetic regulation of gene expression.
Fig. 2: CD8+ T cell development and key mediators of T cell exhaustion.
Fig. 3: Emerging technologies for studying the epigenome.
Fig. 4: Opportunities for epigenetic engineering in the clinic.

References

  1. Germain, R. N. T cell development and the CD4–CD8 lineage decision. Nat. Rev. Immunol. 2, 309–322 (2002).

    CAS  PubMed  Google Scholar 

  2. Wherry, E. J. T cell exhaustion. Nat. Immunol. 12, 492–499 (2011).

    CAS  PubMed  Google Scholar 

  3. McLane, L. M., Abdel-Hakeem, M. S. & Wherry, E. J. CD8+ T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 37, 457–495 (2019).

  4. Bengsch, B. et al. Epigenomic-guided mass cytometry profiling reveals disease-specific features of exhausted CD8+ T cells. Immunity 48, 1029–1045 (2018).

  5. Miller, B. C. et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Sen, D. R. et al. The epigenetic landscape of T cell exhaustion. Science 354, 1165–1169 (2016). This paper used ATAC–seq to define the chromatin accessibility landscape of exhausted CD8+ T cells in LCMV clone-13 infection, which was conserved in exhausted human T cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Pauken, K. E. et al. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 354, 1160–1165 (2016). This paper demonstrates that, although PD-L1 blockade induces transient transcriptional reprogramming of TEX cells, the epigenetic imprint of exhaustion is stable.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Philip, M. et al. Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature 545, 452–456 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mognol, G. P. et al. Exhaustion-associated regulatory regions in CD8+ tumor-infiltrating T cells. Proc. Natl Acad. Sci. USA 114, E2776–E2785 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Allis, C. D. & Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 17, 487–500 (2016).

    CAS  PubMed  Google Scholar 

  11. Andersson, R. & Sandelin, A. Determinants of enhancer and promoter activities of regulatory elements. Nat. Rev. Genet. 21, 71–87 (2020).

    CAS  PubMed  Google Scholar 

  12. Orphanides, G., Lagrange, T. & Reinberg, D. The general transcription factors of RNA polymerase II. Genes Dev. 10, 2657–2683 (1996).

    CAS  PubMed  Google Scholar 

  13. Schoenfelder, S. & Fraser, P. Long-range enhancer–promoter contacts in gene expression control. Nat. Rev. Genet. 20, 437–455 (2019).

    CAS  PubMed  Google Scholar 

  14. Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).

    CAS  PubMed  Google Scholar 

  15. Lovén, J. et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153, 320–334 (2013).

    PubMed  PubMed Central  Google Scholar 

  16. Whyte, W. A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Vahedi, G. et al. Super-enhancers delineate disease-associated regulatory nodes in T cells. Nature 520, 558–562 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Kornberg, R. D. Chromatin structure: a repeating unit of histones and DNA. Science 184, 868–871 (1974).

    CAS  PubMed  Google Scholar 

  19. Olins, D. E. & Olins, A. L. Chromatin history: our view from the bridge. Nat. Rev. Mol. Cell Biol. 4, 809–814 (2003).

    CAS  PubMed  Google Scholar 

  20. Kornberg, R. D. & Lorch, Y. Chromatin structure and transcription. Annu. Rev. Cell Biol. 8, 563–587 (1992).

    CAS  PubMed  Google Scholar 

  21. Jang, M. K. et al. The bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II-dependent transcription. Mol. Cell 19, 523–534 (2005).

    CAS  PubMed  Google Scholar 

  22. Yang, Z. et al. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol. Cell 19, 535–545 (2005).

    CAS  PubMed  Google Scholar 

  23. Bernstein, B. E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem. Cell 125, 315–326 (2006).

    CAS  PubMed  Google Scholar 

  24. Russ, B. E. et al. Distinct epigenetic signatures delineate transcriptional programs during virus-specific CD8+ T cell differentiation. Immunity 41, 853–865 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Solomon, M. J., Larsen, P. L. & Varshavsky, A. Mapping protein–DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53, 937–947 (1988).

    CAS  PubMed  Google Scholar 

  26. Mikkelsen, T. S. et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448, 553–560 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    CAS  PubMed  Google Scholar 

  28. Johnson, D. S., Mortazavi, A., Myers, R. M. & Wold, B. Genome-wide mapping of in vivo protein–DNA interactions. Science 316, 1497–1502 (2007).

    CAS  PubMed  Google Scholar 

  29. Schmid, M., Durussel, T. & Laemmli, U. K. ChIC and ChEC; genomic mapping of chromatin proteins. Mol. Cell 16, 147–157 (2004).

    CAS  PubMed  Google Scholar 

  30. Ku, W. L. et al. Single-cell chromatin immunocleavage sequencing to profile histone modification. Nat. Methods 16, 323–325 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).

    PubMed  PubMed Central  Google Scholar 

  32. Skene, P. J. & Henikoff, S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife 6, e21856 (2017).

    PubMed  PubMed Central  Google Scholar 

  33. Carter, B. et al. Mapping histone modifications in low cell number and single cells using antibody-guided chromatin tagmentation (ACT-seq). Nat. Commun. 10, 3747 (2019).

    PubMed  PubMed Central  Google Scholar 

  34. Chen, Y. et al. BATF regulates progenitor to cytolytic effector CD8+ T cell transition during chronic viral infection. Nat. Immunol. 22, 996–1007 (2021).

    CAS  PubMed  Google Scholar 

  35. Chen, Z. et al. In vivo CD8+ T cell CRISPR screening reveals control by Fli1 in infection and cancer. Cell 184, 1262–1280 (2021). This paper uses in vivo screens in LCMV infection with an sgRNA pool targeting transcription factors to uncover a role for Fli1 in the effector T cell response. Fli1-deficient T cells demonstrated improved T cell immunity in multiple infection and tumor models.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ford, B. R. et al. Altered co-stimulatory signals and hypoxia support chromatin landscapes limiting the functional potential of exhausted T cells in cancer. Preprint at BioRxiv https://doi.org/10.1101/2021.07.11.451947 (2021).

  37. Wu, S. J. et al. Single-cell CUT&Tag analysis of chromatin modifications in differentiation and tumor progression. Nat. Biotechnol. 39, 819–824 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bartosovic, M., Kabbe, M. & Castelo-Branco, G. Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues. Nat. Biotechnol. 39, 825–835 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Luecken, M. D. & Theis, F. J. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol. Syst. Biol. 15, e8746 (2019).

  40. Dunham, I. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    CAS  Google Scholar 

  41. Wu, C. The 5′ ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I. Nature 286, 854–860 (1980).

    CAS  PubMed  Google Scholar 

  42. Boyle, A. P. et al. High-resolution mapping and characterization of open chromatin across the genome. Cell 132, 311–322 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Schones, D. E. et al. Dynamic regulation of nucleosome positioning in the human genome. Cell 132, 887–898 (2008).

    CAS  PubMed  Google Scholar 

  44. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Schep, A. N. et al. Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions. Genome Res. 25, 1757–1770 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat. Methods 14, 975–978 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Corces, M. R. et al. An improved ATAC–seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14, 959–962 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Jin, W. et al. Genome-wide detection of DNase I hypersensitive sites in single cells and FFPE tissue samples. Nature 528, 142–146 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lu, F. et al. Establishing chromatin regulatory landscape during mouse preimplantation development. Cell 165, 1375–1388 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Satpathy, A. T. et al. Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion. Nat. Biotechnol. 37, 925–936 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Greenberg, M. V. C. & Bourc’his, D. The diverse roles of DNA methylation in mammalian development and disease. Nat. Rev. Mol. Cell Biol. 20, 590–607 (2019).

    CAS  PubMed  Google Scholar 

  52. Harris, C. J. et al. A DNA methylation reader complex that enhances gene transcription. Science 362, 1182–1186 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wu, X. & Zhang, Y. TET-mediated active DNA demethylation: mechanism, function and beyond. Nat. Rev. Genet. 18, 517–534 (2017).

    CAS  PubMed  Google Scholar 

  54. Okano, M., Bell, D. W., Haber, D. A. & Li, E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257 (1999).

    CAS  PubMed  Google Scholar 

  55. Frommer, M. et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl Acad. Sci. USA 89, 1827–1831 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Meissner, A. et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766–770 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462, 315–322 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    CAS  PubMed  Google Scholar 

  60. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Davidson, I. F. et al. DNA loop extrusion by human cohesin. Science 366, 1338–1345 (2019).

    CAS  PubMed  Google Scholar 

  63. Vian, L. et al. The energetics and physiological impact of cohesin extrusion. Cell 173, 1165–1178 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Fullwood, M. J. et al. An oestrogen-receptor-α-bound human chromatin interactome. Nature 462, 58–64 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Mumbach, M. R. et al. HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat. Methods 13, 919–922 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Mumbach, M. R. et al. Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements. Nat. Genet. 49, 1602–1612 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Gennert, D. G. et al. Dynamic chromatin regulatory landscape of human CAR T cell exhaustion. Proc. Natl Acad. Sci. USA 118, e2104758118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Curtsinger, J. M. & Mescher, M. F. Inflammatory cytokines as a third signal for T cell activation. Curr. Opin. Immunol. 22, 333–340 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang, N. & Bevan, M. J. CD8+ T cells: foot soldiers of the immune system. Immunity 35, 161–168 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kaech, S. M. et al. Selective expression of the interleukin 7 receptor identifies effector CD8+ T cells that give rise to long-lived memory cells. Nat. Immunol. 4, 1191–1198 (2003).

  72. Joshi, N. S. et al. Inflammation directs memory precursor and short-lived effector CD8+ T cell fates via the graded expression of T-bet transcription factor. Immunity 27, 281–295 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Youngblood, B. et al. Effector CD8+ T cells dedifferentiate into long-lived memory cells. Nature 552, 404–409 (2017).

  74. Akondy, R. S. et al. Origin and differentiation of human memory CD8+ T cells after vaccination. Nature 552, 362–367 (2017).

  75. Pritykin, Y. et al. A unified atlas of CD8+ T cell dysfunctional states in cancer and infection. Mol. Cell 81, 2477–2493 (2021).

  76. Day, C. L. et al. PD-1 expression on HIV-specific T cells is associated with T cell exhaustion and disease progression. Nature 443, 350–354 (2006).

    CAS  PubMed  Google Scholar 

  77. Trautmann, L. et al. Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nat. Med. 12, 1198–1202 (2006).

    CAS  PubMed  Google Scholar 

  78. McKinney, E. F., Lee, J. C., Jayne, D. R. W., Lyons, P. A. & Smith, K. G. C. T cell exhaustion, co-stimulation and clinical outcome in autoimmunity and infection. Nature 523, 612–616 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Li, H. et al. Dysfunctional CD8+ T cells form a proliferative, dynamically regulated compartment within human melanoma. Cell 176, 775–789 (2019).

    CAS  PubMed  Google Scholar 

  80. Im, S. J. et al. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537, 417–421 (2016). This paper identified progenitor TEX cells, demonstrated that these cells are the TEX cell subset that proliferates in response to PD-1 blockade, and showed that TCF1 is required for the formation of these cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Yost, K. E. et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat. Med. 25, 1251–1259 (2019). This paper used single-cell RNA and T cell receptor sequencing on patient TILs before and after anti-PD-1 therapy. The authors demonstrate that a large fraction of clonally expanded T cells after treatment is not detectable before treatment, suggesting that PD-1 blockade serves to recruit new T cell clones from the periphery.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Lynn, R. C. et al. c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature 576, 293–300 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Zajac, A. J. et al. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med. 188, 2205–2213 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Gallimore, A. et al. Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes. J. Exp. Med. 187, 1383–1393 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Wherry, E. J. et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27, 670–684 (2007).

    CAS  PubMed  Google Scholar 

  87. Scott-Browne, J. P. et al. Dynamic changes in chromatin accessibility occur in CD8+ T cells responding to viral infection. Immunity 45, 1327–1340 (2016).

  88. Hudson, W. H. et al. Proliferating transitory T cells with an effector-like transcriptional signature emerge from PD-1+ stem-like CD8+ T cells during chronic infection. Immunity 51, 1043–1058 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Zander, R. et al. CD4+ T cell help is required for the formation of a cytolytic CD8+ T cell subset that protects against chronic infection and cancer. Immunity 51, 1028–1042 (2019).

  90. Raju, S. et al. Identification of a T-bethi quiescent exhausted CD8+ T cell subpopulation that can differentiate into TIM3+CX3CR1+ effectors and memory-like cells. J. Immunol. 206, 2924–2936 (2021).

  91. Beltra, J.-C. et al. Developmental relationships of four exhausted CD8+ T cell subsets reveals underlying transcriptional and epigenetic landscape control mechanisms. Immunity 52, 825–841 (2020).

  92. Gabriel, S. S. et al. Transforming growth factor-β-regulated mTOR activity preserves cellular metabolism to maintain long-term T cell responses in chronic infection. Immunity 54, 1698–1714 (2021).

    CAS  PubMed  Google Scholar 

  93. Daniel, B. et al. Divergent clonal differentiation trajectories of T cell exhaustion. Preprint at BioRxiv https://doi.org/10.1101/2021.12.16.472900 (2021).

  94. Shakiba, M. et al. TCR signal strength defines distinct mechanisms of T cell dysfunction and cancer evasion. J. Exp. Med. 219, e20201966 (2022).

    CAS  PubMed  Google Scholar 

  95. Burger, M. L. et al. Antigen dominance hierarchies shape TCF1+ progenitor CD8+ T cell phenotypes in tumors. Cell 184, 4996–5014 (2021).

  96. Good, C. R. et al. An NK-like CAR T cell transition in CAR T cell dysfunction. Cell 184, 6081–6100 (2021).

    CAS  PubMed  Google Scholar 

  97. Yao, C. et al. BACH2 enforces the transcriptional and epigenetic programs of stem-like CD8+ T cells. Nat. Immunol. 22, 370–380 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Utzschneider, D. T. et al. Early precursor T cells establish and propagate T cell exhaustion in chronic infection. Nat. Immunol. 21, 1256–1266 (2020).

    CAS  PubMed  Google Scholar 

  99. Yao, C. et al. Single-cell RNA-seq reveals TOX as a key regulator of CD8+ T cell persistence in chronic infection. Nat. Immunol. 20, 890–901 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Alfei, F. et al. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature 571, 265–269 (2019).

    CAS  PubMed  Google Scholar 

  101. Khan, O. et al. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature 571, 211–218 (2019).

  102. Scott, A. C. et al. TOX is a critical regulator of tumour-specific T cell differentiation. Nature 571, 270–274 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Seo, H. et al. TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+ T cell exhaustion. Proc. Natl Acad. Sci. USA 116, 12410–12415 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Martinez, G. J. et al. The transcription factor NFAT promotes exhaustion of activated CD8+ T cells. Immunity 42, 265–278 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Barber, D. L. et al. Restoring function in exhausted CD8+ T cells during chronic viral infection. Nature 439, 682–687 (2006). This paper reports that PD-1 is a marker of TEX cells and that antibody blockade of PD-L1 results in enhanced T cell expansion and improved viral control.

    CAS  PubMed  Google Scholar 

  106. Velu, V. et al. Enhancing SIV-specific immunity in vivo by PD-1 blockade. Nature 458, 206–210 (2009).

    CAS  PubMed  Google Scholar 

  107. Utzschneider, D. T. et al. T cells maintain an exhausted phenotype after antigen withdrawal and population reexpansion. Nat. Immunol. 14, 603–610 (2013).

    CAS  PubMed  Google Scholar 

  108. Abdel-Hakeem, M. S. et al. Epigenetic scarring of exhausted T cells hinders memory differentiation upon eliminating chronic antigenic stimulation. Nat. Immunol. 22, 1008–1019 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Yates, K. B. et al. Epigenetic scars of CD8+ T cell exhaustion persist after cure of chronic infection in humans. Nat. Immunol. 22, 1020–1029 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Tonnerre, P. et al. Differentiation of exhausted CD8+ T cells after termination of chronic antigen stimulation stops short of achieving functional T cell memory. Nat. Immunol. 22, 1030–1041 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Ghoneim, H. E. et al. De novo epigenetic programs inhibit PD-1 blockade-mediated T cell rejuvenation. Cell 170, 142–157 (2017). This paper defines de novo DNA methylation programs acquired by TEX cells and shows that genetic or pharmacologic inhibition of methylation synergizes with anti-PD-L1 treatment to enhance T cell responses.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Prinzing, B. et al. Deleting DNMT3A in CAR T cells prevents exhaustion and enhances antitumor activity. Sci. Transl. Med. 13, eabh0272 (2021).

  113. Xia, Y. et al. BCL6-dependent TCF-1+ progenitor cells maintain effector and helper CD4 T cell responses to persistent antigen. Preprint at BioRxiv https://doi.org/10.1101/2021.08.06.455141 (2021).

  114. Schietinger, A. et al. Tumor-specific T cell dysfunction is a dynamic antigen-driven differentiation program initiated early during tumorigenesis. Immunity 45, 389–401 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Utzschneider, D. T. et al. High antigen levels induce an exhausted phenotype in a chronic infection without impairing T cell expansion and survival. J. Exp. Med. 213, 1819–1834 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial. Science 337, 816–821 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Cong, L. et al. Multiplex genome engineering using CRISPR–Cas systems. Science 339, 819–823 (2013).

  118. Qi, L. S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Gilbert, L. A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR–Cas9 complex. Nature 517, 583–588 (2015).

    CAS  PubMed  Google Scholar 

  121. Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells using the CRISPR–Cas9 system. Science 343, 80–84 (2014).

    CAS  PubMed  Google Scholar 

  122. Shalem, O. et al. Genome-scale CRISPR–Cas9 knockout screening in human cells. Science 343, 84–87 (2014).

    CAS  PubMed  Google Scholar 

  123. Gilbert, L. A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Canver, M. C. et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 527, 192–197 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Fulco, C. P. et al. Systematic mapping of functional enhancer–promoter connections with CRISPR interference. Science 354, 769–773 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Simeonov, D. R. et al. Discovery of stimulation-responsive immune enhancers with CRISPR activation. Nature 549, 111–115 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Shifrut, E. et al. Genome-wide CRISPR screens in primary human T cells reveal key regulators of immune function. Cell 175, 1958–1971 (2018). This paper demonstrates how lentiviral sgRNA pools can be used together with electroporation of Cas9 protein to enable genome-scale genetic screens in primary human T cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Platt, R. J. et al. CRISPR–Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Parnas, O. et al. A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell 162, 675–686 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Schumann, K. et al. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. Proc. Natl Acad. Sci. USA 112, 10437–10442 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Roth, T. L. et al. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature 559, 405–409 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Henriksson, J. et al. Genome-wide CRISPR screens in T helper cells reveal pervasive crosstalk between activation and differentiation. Cell 176, 882–896 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Dong, M. B. et al. Systematic immunotherapy target discovery using genome-scale in vivo CRISPR screens in CD8+ T cells. Cell 178, 1189–1204 (2019).

  134. Schmidt, R. et al. CRISPR activation and interference screens decode stimulation responses in primary human T cells. Science 375, eabj4008 (2022).

    CAS  PubMed  Google Scholar 

  135. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Han, A., Glanville, J., Hansmann, L. & Davis, M. M. Linking T cell receptor sequence to functional phenotype at the single-cell level. Nat. Biotechnol. 32, 684–692 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Bendall, S. C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Replogle, J. M. et al. Combinatorial single-cell CRISPR screens by direct guide RNA capture and targeted sequencing. Nat. Biotechnol. 38, 954–961 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Ma, S. et al. Chromatin potential identified by shared single-cell profiling of RNA and chromatin. Cell 183, 1103–1116 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Adamson, B. et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167, 1867–1882 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Jaitin, D. A. et al. Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-seq. Cell 167, 1883–1896 (2016).

    CAS  PubMed  Google Scholar 

  143. Dixit, A. et al. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Rubin, A. J. et al. Coupled single-cell CRISPR screening and epigenomic profiling reveals causal gene regulatory networks. Cell 176, 361–376 (2019).

    CAS  PubMed  Google Scholar 

  145. Pierce, S. E., Granja, J. M. & Greenleaf, W. J. High-throughput single-cell chromatin accessibility CRISPR screens enable unbiased identification of regulatory networks in cancer. Nat. Commun. 12, 2969 (2021). This paper introduces a method for simultaneous profiling of single-cell ATAC–seq measurements and CRISPR perturbations in single cells, in a manner compatible with the widely used 10x Genomics commercial platform.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Mimitou, E. P. et al. Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells. Nat. Biotechnol. 39, 1246–1258 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Plasschaert, L. W. et al. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature 560, 377–381 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Park, J.-E. et al. A cell atlas of human thymic development defines T cell repertoire formation. Science 367, eaay3224 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Singer, M. et al. A distinct gene module for dysfunction uncoupled from activation in tumor-infiltrating T cells. Cell 166, 1500–1511 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Azizi, E. et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174, 1293–1308 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Jerby-Arnon, L. et al. A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade. Cell 175, 984–997 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Mathewson, N. D. et al. Inhibitory CD161 receptor identified in glioma-infiltrating T cells by single-cell analysis. Cell 184, 1281–1298 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Wu, T. D. et al. Peripheral T cell expansion predicts tumour infiltration and clinical response. Nature 579, 274–278 (2020).

    CAS  PubMed  Google Scholar 

  154. Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    PubMed  PubMed Central  Google Scholar 

  155. Lee, D. W. et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385, 517–528 (2015).

    CAS  PubMed  Google Scholar 

  156. Rapoport, A. P. et al. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat. Med. 21, 914–921 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Robbins, P. F. et al. A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T cell receptor: long-term follow-up and correlates with response. Clin. Cancer Res. 21, 1019–1027 (2015).

    CAS  PubMed  Google Scholar 

  158. Fraietta, J. A. et al. Determinants of response and resistance to CD19 chimeric antigen receptor T cell therapy of chronic lymphocytic leukemia. Nat. Med. 24, 563–571 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Long, A. H. et al. 4-1BB co-stimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat. Med. 21, 581–590 (2015). This paper identifies exhaustion as limiting CAR T cell efficacy and defines the role of the CAR co-stimulatory domain in susceptibility to exhaustion. It shows that the 4-1BB domain mitigates exhaustion while the CD28 domain exacerbates exhaustion, providing insight into the enhanced clinical efficacy observed with CAR T cells that incorporate the 4-1BB domain.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Seo, H. et al. BATF and IRF4 cooperate to counter exhaustion in tumor-infiltrating CAR T cells. Nat. Immunol. 22, 983–995 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Chen, J. et al. NR4A transcription factors limit CAR T cell function in solid tumours. Nature 567, 530–534 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Fraietta, J. A. et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature 558, 307–312 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Weber, E. W. et al. Transient rest restores functionality in exhausted CAR T cells through epigenetic remodeling. Science 372, eaba1786 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Eyquem, J. et al. Targeting a CAR to the TRAC locus with CRISPR–Cas9 enhances tumour rejection. Nature 543, 113–117 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Roth, T. L. et al. Pooled knockin targeting for genome engineering of cellular immunotherapies. Cell 181, 728–744 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Stadtmauer, E. A. et al. CRISPR-engineered T cells in patients with refractory cancer. Science 367, eaba7365 (2020). This paper reports a first-in-human phase 1 clinical trial assessing CRISPR-modified T cell therapies. Edited T cells engrafted and persisted in human patients and no toxicities were observed, demonstrating feasibility and safety of CRISPR engineered CAR T cell therapies.

    CAS  PubMed  Google Scholar 

  167. Milner, J. J. et al. Runx3 programs CD8+ T cell residency in non-lymphoid tissues and tumours. Nature 552, 253–257 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Huang, H. et al. In vivo CRISPR screening reveals nutrient signaling processes underpinning CD8+ T cell fate decisions. Cell 184, 1245–1261 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Wei, J. et al. Targeting REGNASE-1 programs long-lived effector T cells for cancer therapy. Nature 576, 471–476 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Pai, J. A. & Satpathy, A. T. High-throughput and single-cell T cell receptor sequencing technologies. Nat. Methods 18, 881–892 (2021).

    CAS  PubMed  Google Scholar 

  171. Bowling, S. et al. An engineered CRISPR–Cas9 mouse line for simultaneous readout of lineage histories and gene expression profiles in single cells. Cell 181, 1410–1422 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Vardhana, S. A. et al. Impaired mitochondrial oxidative phosphorylation limits the self-renewal of T cells exposed to persistent antigen. Nat. Immunol. 21, 1022–1033 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Scharping, N. E. et al. Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. Nat. Immunol. 22, 205–215 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Knemeyer at SciStories for illustrations. This work was supported by the National Institutes of Health awards K08CA230188, U01CA260852 and UM1HG012076, the Parker Institute for Cancer Immunotherapy, a Career Award for Medical Scientists from the Burroughs Wellcome Fund, a Cancer Research Institute Technology Impact Award, a Baxter Foundation Faculty Scholar Award, and a Pew-Stewart Scholars for Cancer Research Award. J.A.B. was supported by a Stanford Graduate Fellowship and a National Science Foundation Graduate Research Fellowship under grant no. DGE-1656518.

Author information

Authors and Affiliations

Authors

Contributions

J.A.B., B.D. and A.T.S. wrote the manuscript.

Corresponding author

Correspondence to Ansuman T. Satpathy.

Ethics declarations

Competing interests

A.T.S. is a scientific founder of Immunai and founder of Cartography Biosciences and receives research funding from Merck Research Laboratories and Allogene Therapeutics. J.A.B and B.D. declare no competing interests.

Peer review

Peer review information

Nature Immunology thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Laurie A. Dempsey, in collaboration with the Nature Immunology team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Belk, J.A., Daniel, B. & Satpathy, A.T. Epigenetic regulation of T cell exhaustion. Nat Immunol 23, 848–860 (2022). https://doi.org/10.1038/s41590-022-01224-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-022-01224-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing