Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Strongly correlated electron–photon systems

Abstract

An important goal of modern condensed-matter physics involves the search for states of matter with emergent properties and desirable functionalities. Although the tools for material design remain relatively limited, notable advances have been recently achieved by controlling interactions at heterointerfaces, precise alignment of low-dimensional materials and the use of extreme pressures. Here we highlight a paradigm based on controlling light–matter interactions, which provides a way to manipulate and synthesize strongly correlated quantum matter. We consider the case in which both electron–electron and electron–photon interactions are strong and give rise to a variety of phenomena. Photon-mediated superconductivity, cavity fractional quantum Hall physics and optically driven topological phenomena in low dimensions are among the frontiers discussed in this Perspective, which highlights a field that we term here ‘strongly correlated electron–photon science’.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Regimes in quantum optics.
Fig. 2: Floquet topological physics.
Fig. 3: Driven quantum material.
Fig. 4: Optical enhancement of superconductivity.
Fig. 5: Correlated material in optical cavities.

References

  1. Hwang, H. et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103–113 (2012).

    ADS  MathSciNet  CAS  PubMed  Article  Google Scholar 

  2. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  3. Drozdov, A. P. et al. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  4. Lodhal, P., Mahmodian, S. & Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347–400 (2015).

    ADS  MathSciNet  Article  CAS  Google Scholar 

  5. Berry, J. et al. Sensitivity optimization for NV-diamond magnetometry. Rev. Mod. Phys. 92, 015004 (2020).

    ADS  Article  Google Scholar 

  6. Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011). This work demonstrates targeted optical suppression of stripe order to enhance superconductivity.

    ADS  CAS  PubMed  Article  Google Scholar 

  7. Disa, A. et al. Polarizing an antiferromagnet by optical engineering of the crystal field. Nat. Phys. 16, 937–941 (2020).

    CAS  Article  Google Scholar 

  8. Shin, D. et al. Phonon-driven spin-Floquet magneto-valleytronics in MoS2. Nat. Commun. 9, 638 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  9. Nova, T. F., Disa, A. S., Fechnerand, M. & Cavalleri, A. Metastable ferroelectricity in optically strained SrTiO3. Science 364, 1075–1079 (2019). This paper experimentally demonstrates how an electromagnetic field can induce ferroelectric order at high temperature in a quantum paraelectric material.

    ADS  CAS  PubMed  Article  Google Scholar 

  10. Li, X. et al. Terahertz field-induced ferroelectricity in quantum paraelectric SrTiO3. Science 364, 1079–1082 (2019). This paper experimentally demonstrates how an electromagnetic field can induce ferroelectric order at high temperature in a quantum paraelectric material.

    ADS  CAS  PubMed  Article  Google Scholar 

  11. Wang, Y. H. et al. Observation of Floquet–Bloch states on the surface of a topological insulator. Science 342, 453–457 (2013). Experimental demonstration of Floquet band-stucture engineering in a solid.

    ADS  CAS  PubMed  Article  Google Scholar 

  12. McIver, J. et al. Light-induced anomalous Hall effect in graphene. Nat. Phys. 16, 38–41 (2020). Transport experiment demonstrating a Floquet topological insulator.

    CAS  PubMed  Article  Google Scholar 

  13. Ebbesen, T. W. Hybrid light–matter states in a molecular and material science perspective. Acc. Chem. Res. 49, 2403–2412 (2016).

    CAS  PubMed  Article  Google Scholar 

  14. Schlawin, F., Cavalleri, A. & Jaksch, D. Cavity-mediated electron–photon superconductivity. Phys. Rev. Lett. 122, 133602 (2019). Early theorerical proposal for cavity-mediated superconductivity.

    ADS  CAS  PubMed  Article  Google Scholar 

  15. Curtis, J. B., Raines, Z. M., Allocca, A. A., Hafezi, M. & Galitski, V. M. Cavity quantum Eliashberg enhancement of superconductivity. Phys. Rev. Lett. 122, 167002 (2018). Early theoretical proposal for cavity-mediated superconductivity.

    ADS  Article  Google Scholar 

  16. Hübener, H. et al. Engineering quantum materials with chiral optical cavities. Nat. Mater. 20, 438–442 (2020).

    ADS  Article  CAS  Google Scholar 

  17. Scalari, G. et al. Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial. Science 335, 1323–1326 (2012). Demonstration of strong light–matter coupling in a two-dimensional electron system.

    ADS  CAS  PubMed  Article  Google Scholar 

  18. Zhang, Q. et al. Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons. Nat. Phys 12, 1005–1011 (2016).

    CAS  Article  Google Scholar 

  19. Li, X. et al. Vacuum Bloch–Siegert shift in Landau polaritons with ultra-high cooperativity. Nat. Photon. 12, 324–329 (2018).

    ADS  CAS  Article  Google Scholar 

  20. Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).

    CAS  Article  Google Scholar 

  21. Claassen, M., Kennes, D. M., Zingl, M., Sentef, M. A. & Rubio, A. Universal optical control of chiral superconductors and Majorana modes. Nat. Phys. 15, 766–770 (2019).

    CAS  Article  Google Scholar 

  22. Latini, S. et al. Cavity control of excitons in two-dimensional materials. Nano Lett. 19, 3473–3479 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Sentef, M. A., Ruggenthaler, M. & Rubio, A. Cavity quantum-electrodynamical polaritonically enhanced electron–phonon coupling and its influence on superconductivity. Sci. Adv. 4, eaau6969 (2018). Early theoretical proposal for cavity-mediated superconductivity.

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Thomas, A. et al. Exploring superconductivity under strong coupling with the vacuum electromagnetic field. Preprint at https://arxiv.org/abs/1911.01459 (2019).

  25. Ashida, Y. et al. Quantum electrodynamic control of matter: cavity-enhanced ferroelectric phase transition. Phys. Rev. 10, 041027 (2020).

    CAS  Article  Google Scholar 

  26. Boyd, R. W. Nonlinear Optics (Academic Press, 2003).

  27. Basov, D. N., Averitt, R. D. & Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 16, 1077–1088 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  28. Haroche, S. & Raimond, J.-M. Exploring the Quantum: Atoms, Cavities, and Photons (Oxford Univ. Press, 2006).

  29. Birnbaum, K. M. et al. Theory of photon blockade by an optical cavity with one trapped atom. Nature 436, 87–90 (2005).

    ADS  CAS  PubMed  Article  Google Scholar 

  30. Ma, R. et al. A dissipatively stabilized Mott insulator of photons. Nature 566, 51–55 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  31. Matsunaga, R. et al. Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor. Science 345, 1145–1149 (2014).

    ADS  MathSciNet  CAS  PubMed  MATH  Article  Google Scholar 

  32. Basov, D. N., Asenjo-Garcia, A., Schuck, P. J., Zhu, X. & Rubio, A. Polariton panorama. Nanophotonics 10, 549–577 (2021).

    Article  Google Scholar 

  33. Basov, D. N., Fogler, F. N. & García de Abajo, F. J. Polaritons in van der Waals materials. Science 354, aag1992 (2016).

    PubMed  Article  CAS  Google Scholar 

  34. Oka, T. & Aoki, H. Floquet theory of photo-induced topological phase transitions: application to graphene. Phys. Rev. B 79, 081406(R) (2009). Early theoretical proposal for the realization of Floquet topological insulators in graphene.

    ADS  Article  CAS  Google Scholar 

  35. Lindner, N., Refael, G. & Galitski, V. Floquet topological insulator in semiconductor quantum wells. Nat. Phys. 7, 490–495 (2011). Early theoretical proposal for the realization of Floquet topological insulators in semi-conductors.

    CAS  Article  Google Scholar 

  36. Jotzu, G. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  37. Moessner, R. & Sondhi, S. L. Equilibration and order in quantum Floquet matter. Nat. Phys. 13, 424–428 (2017).

    CAS  Article  Google Scholar 

  38. Sato, S. A. et al. Microscopic theory for the light-induced anomalous Hall effect in graphene. Phys. Rev. B 99, 214302 (2019).

    ADS  CAS  Article  Google Scholar 

  39. Nuske, M. et al. Floquet dynamics in light driven solids. Phys. Rev. Res. 2, 043408 (2020).

    CAS  Article  Google Scholar 

  40. Seetharam, K. I. et al. Controlled population of Floquet–Bloch states via coupling to Bose and Fermi baths. Phys. Rev. X 5, 041050 (2015).

    Google Scholar 

  41. Dehghani, H., Oka, T. & Mitra, A. Out-of-equilibrium electrons and the Hall conductance of a Floquet topological insulator. Phys. Rev. B 91, 155422 (2015).

    ADS  Article  CAS  Google Scholar 

  42. Rudner, M. S. et al. Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems. Phys. Rev. X 3, 031005 (2013).

    CAS  Google Scholar 

  43. Mukherjee, S. Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice. Nat. Commun. 8, 13918 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Berdanier, W. et al. Floquet quantum criticality. Proc. Natl Acad. Sci. USA 115, 9491–9496 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Chen, X. et al. Symmetry protected topological orders and the group cohomology of their symmetry group. Phys. Rev. B 87, 155114 (2013).

    ADS  Article  CAS  Google Scholar 

  46. Vishwanath, A., Potter, A. C. & Morimoto, T. Classification of interacting topological Floquet phases in one dimension. Phys. Rev. X 6, 041001 (2016).

    Google Scholar 

  47. Khemani, V. et al. Phase structure of driven quantum systems. Phys. Rev. Lett. 116, 250401 (2016).

    ADS  PubMed  Article  CAS  Google Scholar 

  48. Else, D. V., Bauer, B. & Nayak, C. Floquet time crystals. Phys. Rev. Lett. 117, 090402 (2016).

    ADS  PubMed  Article  Google Scholar 

  49. Zhang, J. et al. Observation of a discrete time crystal. Nature 543, 217–220 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  50. Choi, S. et al. Observation of discrete time-crystalline order in a disordered dipolar many-body system. Nature 543, 221–225 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. Mentnik, J. H., Balzer, K. & Eckstein, M. Ultrafast and reversible control of the exchange interaction in Mott insulators. Nat. Commun. 6, 6708 (2015).

    ADS  Article  CAS  Google Scholar 

  52. Claassen, M., Yang, H. C., Moritz, B. & Devereaux, T. P. Dynamical time-reversal symmetry breaking and photo-induced chiral spin liquids in frustrated Mott insulators. Nat. Commun. 8, 1192 (2017). A theoretical proposal to exploit optically induced dynamical symmetry breaking to engineer quantum spin liquids.

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  53. Ghazaryan, A. et al. Light-induced fractional quantum Hall phases in graphene. Phys. Rev. Lett. 119, 247403 (2017). A theoretical proposal for engineering effective interaction in driven fractional quantum Hall systems.

    ADS  PubMed  Article  Google Scholar 

  54. Cian, Z. P. et al. Engineering quantum Hall phases in synthetic bilayer graphene system. Phys. Rev. B 102, 085430 (2020).

    ADS  CAS  Article  Google Scholar 

  55. Lee, C. H. et al. Floquet mechanism for non-Abelian fractional quantum Hall states. Phys. Rev. Lett. 121, 237401 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  56. Dienst, A. et al. Bi-directional ultrafast electric-field gating of interlayer charge transport in a cuprate superconductor. Nat. Photon. 5, 485–488 (2011).

    ADS  CAS  Article  Google Scholar 

  57. Rajasekaran, S. et al. Parametric amplification of a superconducting plasma wave. Nat. Phys. 12, 1012–1016 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Rajasekaran, S. et al. Probing optically silent superfluid stripes in cuprates. Science 369, 575–579 (2018).

    ADS  MathSciNet  MATH  Article  CAS  Google Scholar 

  59. Liu, M. et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487, 354–357 (2012).

    ADS  Article  CAS  Google Scholar 

  60. Kubacka, T. et al. Large-amplitude spin dynamics driven by a THz pulse in resonance with an electromagnon. Science 343, 1333–1336 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  61. Sie, E. et al. An ultrafast symmetry switch in a Weyl semimetal. Nature 565, 61–66 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  62. Foerst, M. et al. Nonlinear phononics as a new ultrafast route to lattice control. Nat. Phys. 7, 854–856 (2011).

    CAS  Article  Google Scholar 

  63. Rini, M. et al. Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 449, 72–74 (2007).

    ADS  CAS  PubMed  Article  Google Scholar 

  64. Tobey, R. I. et al. Ultrafast electronic phase transition in La1/2Sr3/2MnO4 by coherent vibrational excitation: evidence for nonthermal melting of orbital order. Phys. Rev. Lett. 101, 197404 (2008).

    ADS  CAS  PubMed  Article  Google Scholar 

  65. Nova, T. et al. An effective magnetic field from optically driven phonons. Nat. Phys. 13, 132–136 (2017).

    CAS  Article  Google Scholar 

  66. Disa, A. S. Polarizing an antiferromagnet by optical engineering of the crystal field. Nat. Phys. 16, 937–941 (2020).

    CAS  Article  Google Scholar 

  67. Wyatt, A. F. G. et al. Microwave-enhanced critical supercurrents in constricted tin films. Phys. Rev. Lett. 16, 1166–1169 (1966).

    ADS  CAS  Article  Google Scholar 

  68. Dayem, A. H. & Wiegand, J. J. Behavior of thin-film superconducting bridges in a microwave field. Phys. Rev. 155, 419–428 (1967).

    ADS  CAS  Article  Google Scholar 

  69. Churilov, G. E. et al. Non-linear effects in thin superconducting tin films at microwave frequencies. JETP Lett. 6, 222–224 (1967).

  70. Eliashberg, G. M. Film superconductivity stimulated by a high-frequency field. JETP Lett. 11, 114–116 (1970).

    ADS  Google Scholar 

  71. Chang, J.-J. & Scalapino, D. Nonequilibrium superconductivity. J. Low Temp. Phys. 31, 1–32 (1978).

  72. Nicoletti, D. et al. Optically-induced superconductivity in striped La2−xBaxCuO4 by polarization-selective excitation in the near infrared. Phys. Rev. B 90, 100503(R) (2014).

    ADS  Article  CAS  Google Scholar 

  73. Cremin, K. A. et al. Photoenhanced metastable c-axis electrodynamics in stripe-ordered cuprate La1.885Ba0.115CuO4. Proc. Natl Acad. Sci. USA 116, 19875–19879 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. Mitrano, M. et al. Possible light-induced superconductivity in K3C60 at high temperature. Nature 530, 461–464 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. Budden, M. et al. Evidence for metastable photo-induced superconductivity in K3C60. Nat. Phys. 17, 611–618 (2021).

    CAS  Article  Google Scholar 

  76. Buzzi, M. et al. Photomolecular high-temperature superconductivity. Phys. Rev. X 10, 031028 (2020).

    CAS  Google Scholar 

  77. Raines, Z. M. et al. Enhancement of superconductivity via periodic modulation in a three-dimensional model of cuprates. Phys. Rev. B 91, 184506 (2015).

    ADS  Article  CAS  Google Scholar 

  78. Babadi, M. et al. Theory of parametrically amplified electron–phonon superconductivity. Phys. Rev. B 96, 014512 (2017).

    ADS  Article  Google Scholar 

  79. Denny, S. J. et al. Proposed parametric cooling of bilayer cuprate superconductors by terahertz excitation. Phys. Rev. Lett. 114, 137001 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  80. Kennes, D. M. et al. Transient superconductivity from electronic squeezing of optically pumped phonons. Nat. Phys. 13, 479–483 (2017).

    CAS  Article  Google Scholar 

  81. Dehghani, H. et al. Optical enhancement of superconductivity via targeted destruction of charge density waves. Phys. Rev. B 101, 224506 (2020).

    ADS  CAS  Article  Google Scholar 

  82. Haroche, S. & Raimond, J.-M. Exploring the Quantum (Oxford Univ. Press, 2006).

  83. Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  84. Lai, Y. & Haus, H. A. Quantum theory of solitons in optical fibers. I. Time-dependent Hartree approximation. Phys. Rev. A 40, 844–853 (1989).

    ADS  CAS  Article  Google Scholar 

  85. Firstenberg, O. et al. Attractive photons in a quantum nonlinear medium. Nature 502, 71–75 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  86. Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    ADS  Article  Google Scholar 

  87. Latini, S. et al. Phonoritons as hybridized exciton–photon–phonon excitations in a monolayer h-BN optical cavity. Phys. Rev. Lett. 126, 227401 (2021).

    ADS  CAS  PubMed  Article  Google Scholar 

  88. Andolina, G. M. et al. Cavity quantum electrodynamics of strongly correlated electron systems: a no-go theorem for photon condensation. Phys. Rev. B 100, 121109(R) (2019).

    ADS  Article  Google Scholar 

  89. Weisbuch, C. et al. Observation of the coupled exciton–photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992).

    ADS  CAS  PubMed  Article  Google Scholar 

  90. Deng, H. et al. Condensation of semiconductor microcavity exciton polaritons. Science 298, 199–202 (2002).

    ADS  CAS  PubMed  Article  Google Scholar 

  91. Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    ADS  CAS  PubMed  Article  Google Scholar 

  92. Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5, 805–810 (2009).

    CAS  Article  Google Scholar 

  93. Wouters, M. & Carusotto, I. Superfluidity and critical velocity in non-equilibrium Bose Einstein condensates. Phys. Rev. Lett. 105, 020602 (2010).

    ADS  PubMed  Article  CAS  Google Scholar 

  94. Van Regemortel, M. & Wouters, M. Negative drag in non-equilibrium polariton quantum fluids. Phys. Rev. B 89, 085303 (2014).

    ADS  Article  CAS  Google Scholar 

  95. Juggins, R. T. et al. Coherently driven microcavity poalritons and the question of superfluididity. Nat. Commun. 9, 4062 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. Orgiu, E. et al. Conductivity in organic semiconductors hybridized with the vacuum field. Nat. Mater 14, 1123–1129 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  97. Muñoz-Matutano, G. et al. Emergence of quantum correlations from interacting fibre-cavity polaritons. Nat. Mater. 18, 213–218 (2019).

    PubMed  Article  CAS  Google Scholar 

  98. Delteil, A. et al. Towards polariton blockade of confined exciton–polaritons. Nat. Mater. 18, 219–222 (2019).

    CAS  PubMed  Article  Google Scholar 

  99. Cristofolini, P. et al. Coupling quantum tunneling with cavity photons. Science 336, 704–707 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  100. Ravets, S. et al. Polaron polaritons in the integer and fractional quantum Hall regimes. Phys. Rev. Lett. 120, 057401 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  101. Knüppel, P. et al. Nonlinear optics in the fractional quantum Hall regime. Nature 572, 91–94 (2019). Experimental demonstration of nonlinear optical effects in fractional quantum Hall systems.

    ADS  PubMed  Article  CAS  Google Scholar 

  102. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  103. Amo, A. & Bloch, J. Exciton–polaritons in lattices: a non-linear photonic simulator. C. R. Phys. 17, 934–945 (2016).

    ADS  CAS  Article  Google Scholar 

  104. Schneider, C. et al. Exciton–polariton trapping and potential landscape engineering. Rep. Prog. Phys. 80, 016503 (2016).

    ADS  PubMed  Article  CAS  Google Scholar 

  105. St-Jean, P. et al. Lasing in topological edge states of a one-dimensional lattice. Nat. Photon. 11, 651–656 (2017).

    ADS  CAS  Article  Google Scholar 

  106. Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary geometries. Science 358, 636–640 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  107. Harai, G. et al. Topological insulator laser: theory. Science 359, eaar4003 (2018).

    Article  CAS  Google Scholar 

  108. Mittal, S., Goldschmidt, E. & Hafezi, M. A topological source of quantum light. Nature 561, 502–506 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  109. Carusotto, I. et al. Fermionized photons in an array of driven dissipative nonlinear cavities. Phys. Rev. Lett. 103, 033601 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  110. Kapit, E., Hafezi, M. & Simon, S. H. Induced self-stabilization in fractional quantum Hall states of light. Phys. Rev. X 4, 031039 (2014).

    Google Scholar 

  111. Rota, R. et al. Quantum critical regime in a quadratically driven nonlinear photonic lattice. Phys. Rev. Lett. 122, 110405 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  112. Lebreuilly, J. et al. Stabilizing strongly correlated photon fluids with non-Markovian reservoirs. Phys. Rev. A 96, 033828 (2017).

    ADS  Article  Google Scholar 

  113. Latini, S. et al. The ferroelectric photo-groundstate of SrTiO3: cavity materials engineering. Proc. Natl Acad. Sci. USA 118, e2105618118 (2021). Theoretical proposal for a cavity modification of the ground state of a material.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. Graß, T. et al. Optical excitations in compressible and incompressible two-dimensional electron liquids. Phys. Rev. B 101, 155127 (2020).

    ADS  Article  Google Scholar 

  115. Graß, T. et al. Optical control over bulk excitations in fractional quantum Hall systems. Phys. Rev. B 98, 155124 (2018).

    ADS  Article  Google Scholar 

  116. Wang, Z., Shan, J. & Mak, K. F. Valley- and spin-polarized Landau levels in monolayer WSe2. Nat. Nanotechnol. 12, 144–149 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  117. Kennes, D. M. et al. Moiré heterostructures as a condensed matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    CAS  Article  Google Scholar 

  118. Rudner, M. S. & Song, J. Self induced Berry flux and spontaneous non-equilibrium magnetism. Nat. Phys. 15, 1017–1021 (2019).

    CAS  Article  Google Scholar 

  119. Klapwijk, T. M. & de Visser, P. J. The discovery, disappearance and re-emergence of radiation-stimulated superconductivity. Ann. Phys. 417, 168104 (2020).

    CAS  Article  Google Scholar 

  120. Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    ADS  CAS  Article  PubMed  Google Scholar 

  121. Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    ADS  CAS  Article  PubMed  Google Scholar 

  122. Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nat. Photon. 7, 1001–1005 (2013).

    ADS  CAS  Article  Google Scholar 

  123. Barik, S. et al. A topological quantum optics interface. Science 359, 666–668 (2018).

Download references

Acknowledgements

We thank J. Curtis for critical reading of the manuscript. V.G. was supported by NSF DMR-2037158, US-ARO contract number W911NF1310172, and the Simons Foundation. M.H. acknowledges support from AFOSR FA95502010223, FA9550-19-1-0399, ARO W911NF2010232 and ARL W911NF1920181 and the Simons Foundation. J.B. acknowledges financial support from Paris Ile-de-France Région DIM SIRTEQ, H2020-FETFLAG project PhoQus (820392), QUANTERA project Interpol (ANR-QUAN-0003-05), ANR project Quantum Fluids of Light (ANR-16-CE30-0021) and the French RENATECH network. A.R. is supported by the European Research Council (ERC-2015-AdG-694097), Grupos Consolidados (IT1249-19) and the Flatiron Institute, a division of the Simons Foundation. We acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy - Cluster of Excellence Advanced Imaging of Matter (AIM) EXC 2056 – 390715994 and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) -SFB-925 - project 170620586. Support by the Max Planck Institute – New York City Center for Non-Equilibrium Quantum Phenomena.

Author information

Authors and Affiliations

Authors

Contributions

All authors discussed the material and wrote and revised the manuscript together.

Corresponding author

Correspondence to Victor Galitski.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bloch, J., Cavalleri, A., Galitski, V. et al. Strongly correlated electron–photon systems. Nature 606, 41–48 (2022). https://doi.org/10.1038/s41586-022-04726-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-022-04726-w

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing