Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fault-tolerant control of an error-corrected qubit


Quantum error correction protects fragile quantum information by encoding it into a larger quantum system1,2. These extra degrees of freedom enable the detection and correction of errors, but also increase the control complexity of the encoded logical qubit. Fault-tolerant circuits contain the spread of errors while controlling the logical qubit, and are essential for realizing error suppression in practice3,4,5,6. Although fault-tolerant design works in principle, it has not previously been demonstrated in an error-corrected physical system with native noise characteristics. Here we experimentally demonstrate fault-tolerant circuits for the preparation, measurement, rotation and stabilizer measurement of a Bacon–Shor logical qubit using 13 trapped ion qubits. When we compare these fault-tolerant protocols to non-fault-tolerant protocols, we see significant reductions in the error rates of the logical primitives in the presence of noise. The result of fault-tolerant design is an average state preparation and measurement error of 0.6 per cent and a Clifford gate error of 0.3 per cent after offline error correction. In addition, we prepare magic states with fidelities that exceed the distillation threshold7, demonstrating all of the key single-qubit ingredients required for universal fault-tolerant control. These results demonstrate that fault-tolerant circuits enable highly accurate logical primitives in current quantum systems. With improved two-qubit gates and the use of intermediate measurements, a stabilized logical qubit can be achieved.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The Bacon–Shor subsystem code implemented on a 15-ion chain.
Fig. 2: Fault-tolerant logical qubit-state preparation.
Fig. 3: Manipulating logical states.
Fig. 4: Detection of arbitrary single-qubit errors.

Data availability

The data that support the findings of this study are available from the corresponding author upon request. Source data are provided with this paper.

Code availability

The code used for the analyses is available from the corresponding author upon request.


  1. 1.

    Shor, P. W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Knill, E. & Laflamme, R. Theory of quantum error-correcting codes. Phys. Rev. A 55, 900–911 (1997).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  3. 3.

    Shor, P. W. Fault-tolerant quantum computation. In Proc. 37th Conference on Foundations of Computer Science (1996).

  4. 4.

    Knill, E., Laflamme, R. & Zurek, W. Threshold accuracy for quantum computation. Preprint at (1996).

  5. 5.

    Gottesman, D. Theory of fault-tolerant quantum computation. Phys. Rev. A 57, 127–137 (1998).

    ADS  CAS  Article  Google Scholar 

  6. 6.

    Aharonov, D. & Ben-Or, M. Fault-tolerant quantum computation with constant error rate. SIAM J. Comput. (2008).

  7. 7.

    Bravyi, S. & Kitaev, A. Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev. A 71, 022316 (2005).

    ADS  MathSciNet  MATH  Article  CAS  Google Scholar 

  8. 8.

    Feynman, R. P. Quantum mechanical computers. Found. Phys. 16, 507–531 (1986).

    ADS  MathSciNet  Article  Google Scholar 

  9. 9.

    Abrams, D. S. & Lloyd, S. Simulation of many-body Fermi systems on a universal quantum computer. Phys. Rev. Lett. 79, 2586–2589 (1997).

    ADS  CAS  Article  Google Scholar 

  10. 10.

    Aspuru-Guzik, A., Dutoi, A. D., Love, P. J. & Head-Gordon, M. Simulated quantum computation of molecular energies. Science 309, 1704–1707 (2005).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Reiher, M., Wiebe, N., Svore, K. M., Wecker, D. & Troyer, M. Elucidating reaction mechanisms on quantum computers. Proc. Natl Acad. Sci. USA 114, 7555–7560 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41, 303–332 (1999).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Von Burg, V. et al. Quantum computing enhanced computational catalysis. Preprint at (2020).

  14. 14.

    Gidney, C. & Ekerå, M. How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits. Preprint at (2019).

  15. 15.

    Gottesman, D. E. Stabilizer Codes and Quantum Error Correction. PhD thesis, California Institute of Technology (1997).

  16. 16.

    Córcoles, A. D. et al. Demonstration of a quantum error detection code using a square lattice of four superconducting qubits. Nat. Commun. 6, 6979 (2015).

  17. 17.

    Takita, M., Cross, A. W., Córcoles, A. D., Chow, J. M. & Gambetta, J. M. Experimental demonstration of fault-tolerant state preparation with superconducting qubits. Phys. Rev. Lett. 119, 180501 (2017).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Linke, N. M. et al. Fault-tolerant quantum error detection. Sci. Adv. 3, e1701074 (2017).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Harper, R. & Flammia, S. T. Fault-tolerant logical gates in the IBM quantum experience. Phys. Rev. Lett. 122, 080504 (2019).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Andersen, C. K. et al. Repeated quantum error detection in a surface code. Nat. Phys. 16, 875–880 (2020).

    CAS  Article  Google Scholar 

  21. 21.

    Cory, D. G. et al. Experimental quantum error correction. Phys. Rev. Lett. 81, 2152–2155 (1998).

    ADS  CAS  Article  Google Scholar 

  22. 22.

    Chiaverini, J. et al. Realization of quantum error correction. Nature 432, 602–605 (2004).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Schindler, P. et al. Experimental repetitive quantum error correction. Science 332, 1059–1061 (2011).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Reed, M. D. et al. Realization of three-qubit quantum error correction with superconducting circuits. Nature 482, 382–385 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  25. 25.

    Riste, D. et al. Detecting bit-flip errors in a logical qubit using stabilizer measurements. Nat. Commun. 6, 6983 (2015).

    Article  CAS  Google Scholar 

  26. 26.

    Kelly, J. et al. State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519, 66–69 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  27. 27.

    Gong, M. et al. Experimental verification of five-qubit quantum error correction with superconducting qubits. Preprint at (2019).

  28. 28.

    Nigg, D. et al. Quantum computations on a topologically encoded qubit. Science 345, 302–305 (2014).

    ADS  MathSciNet  CAS  PubMed  MATH  Article  PubMed Central  Google Scholar 

  29. 29.

    Luo, Y. H. et al. Quantum teleportation of physical qubits into logical code-spaces. Preprint at (2020).

  30. 30.

    Heeres, R. W. et al. Implementing a universal gate set on a logical qubit encoded in an oscillator. Nat. Commun. 8, 94 (2017).

    CAS  Article  Google Scholar 

  31. 31.

    Flühmann, C. et al. Encoding a qubit in a trapped-ion mechanical oscillator. Nature 566, 513–517 (2019).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  32. 32.

    Ofek, N. et al. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 441–445 (2016).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Campagne-Ibarcq, P. et al. Quantum error correction of a qubit encoded in grid states of an oscillator. Nature 584, 368–372 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    de Neeve, B., Nguyen, T. L., Behrle, T. & Home, J. Error correction of a logical grid state qubit by dissipative pumping. Preprint at (2020).

  35. 35.

    Wilhelm Maunz, P. L. High Optical Access Trap 2.0 Report No. SAND2016-0796R (Sandia National Laboratories, 2016).

  36. 36.

    Debnath, S. et al. Demonstration of a small programmable quantum computer with atomic qubits. Nature 563, 63–66 (2016).

    ADS  Article  CAS  Google Scholar 

  37. 37.

    Wright, K. et al. Benchmarking an 11-qubit quantum computer. Nat. Commun. 10, 5464 (2019).

    Article  CAS  Google Scholar 

  38. 38.

    Bacon, D. Operator quantum error-correcting subsystems for self-correcting quantum memories. Phys. Rev. A 73, 012340 (2006).

    ADS  Article  CAS  Google Scholar 

  39. 39.

    Aliferis, P. & Cross, A. W. Subsystem fault tolerance with the Bacon–Shor code. Phys. Rev. Lett. 98, 220502 (2007).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  40. 40.

    Debroy, D. M., Li, M., Huang, S. & Brown, K. R. Logical performance of 9 qubit compass codes in ion traps with crosstalk errors. Quantum Sci. Technol. 5, 034002 (2020).

    ADS  Article  Google Scholar 

  41. 41.

    Li, M., Miller, D. & Brown, K. R. Direct measurement of Bacon–Shor code stabilizers. Phys. Rev. A 98, 050301 (2018).

    Article  Google Scholar 

  42. 42.

    Terhal, B. M. Quantum error correction for quantum memories. Rev. Mod. Phys. 87, 307–346 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  43. 43.

    Dennis, E., Kitaev, A., Landahl, A. & Preskill, J. Topological quantum memory. J. Math. Phys. 43, 4452–4505 (2002).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  44. 44.

    Li, M., Miller, D., Newman, M., Wu, Y. & Brown, K. R. 2D compass codes. Phys. Rev. 9, 021041 (2019).

    CAS  Article  Google Scholar 

  45. 45.

    Reichardt, B. W. Quantum universality from magic states distillation applied to CSS codes. Quantum Inf. Process. 4, 251–264 (2005).

    MathSciNet  MATH  Article  Google Scholar 

  46. 46.

    Lidar, D. A., Chuang, I. L. & Whaley, K. B. Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594–2597 (1998).

    ADS  CAS  Article  Google Scholar 

  47. 47.

    Kielpinski, D et al. A decoherence-free quantum memory using trapped ions. Science 291, 1013–1015 (2001).

    ADS  CAS  PubMed  Article  Google Scholar 

  48. 48.

    Hu, J., Liang, Q., Rengaswamy, N. & Calderbank, R. Mitigating coherent noise by balancing weight-2z-stabilizers. Preprint at (2020).

  49. 49.

    Eastin, B. & Knill, E. Restrictions on transversal encoded quantum gate sets. Phys. Rev. Lett. 102,110502 (2009).

    ADS  PubMed  Article  CAS  Google Scholar 

  50. 50.

    Cetina, M. et al. Quantum gates on individually-addressed atomic qubits subject to noisy transverse motion. Preprint at (2020).

  51. 51.

    Kielpinski, D., Monroe, C. & Wineland, D. J. Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Home, J. P. et al. Complete methods set for scalable ion trap quantum information processing. Science 325, 1227–1230 (2009).

    ADS  MathSciNet  CAS  PubMed  MATH  Article  PubMed Central  Google Scholar 

  53. 53.

    Pino, J. M. et al. Demonstration of the QCCD trapped-ion quantum computer architecture. Preprint at (2020).

  54. 54.

    Brown, K. R., Harrow, A. W. & Chuang, I. L. Arbitrarily accurate composite pulse sequences. Phys. Rev. A 70, 052318 (2004).

    ADS  Article  CAS  Google Scholar 

  55. 55.

    Mølmer, K. & Sørensen, A. Multiparticle entanglement of hot trapped ions. Phys. Rev. Lett. 82, 1835–1838 (1999).

    ADS  Article  Google Scholar 

  56. 56.

    Maslov, D. Basic circuit compilation techniques for an ion-trap quantum machine. New J. Phys. 19, 023035 (2017).

    ADS  Article  Google Scholar 

Download references


This work was performed at the University of Maryland with no material support from IonQ. We acknowledge discussions with N. M. Linke and the contributions of J. Mizrahi, K. Hudek, J. Amini, K. Beck and M. Goldman to the experimental setup. This work is supported by the ARO through the IARPA LogiQ programme, the NSF STAQ Program, the AFOSR MURIs on Dissipation Engineering in Open Quantum Systems and Quantum Interactive Protocols for Quantum Computation, and the ARO MURI on Modular Quantum Circuits. L.E. and D.M.D. are also funded by NSF award DMR-1747426.

Author information




L.E. collected and analysed the data. L.E., D.M.D., C.N. and M.N. wrote the manuscript and designed figures. M.C. and C.M. led construction of the experimental apparatus with contributions from L.E., C.N., A.R., D.Z. and D.B. Theory support was provided by D.M.D., M.N., M.L. and K.R.B. C.M. and K.R.B. supervised the project. All authors discussed results and contributed to the manuscript.

Corresponding author

Correspondence to Laird Egan.

Ethics declarations

Competing interests

K.R.B. is a scientific advisor for IonQ, Inc. and has a personal financial interest in the company.

Additional information

Peer review information Nature thanks Daniel Gottesman, Jonathan Home, Philipp Schindler and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Stabilizer measurement circuits.

a, b, Non-fault-tolerant (a, red, right) and fault-tolerant (b, blue, right) stabilizer measurement orderings, performed on a FT-encoded \(|0{\rangle }_{{\rm{L}}}\) state (a, b, blue, left). In both cases, a variable error Z(θ) is introduced on the ancilla qubit in the middle of the stabilizer measurement operation. These circuits were used to generate the data in Fig. 2a. c, Direct measurement of the full error syndrome. Various single-qubit ‘errors’ are introduced on any one of the data qubits to generate different ancilla measurement outcomes. This circuit was used to generate the data in Fig. 2b.

Supplementary information

Supplementary Information

This file contains Supplementary Information, including Supplementary Figs. 1–16, Tables 1–5 and additional references.

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Egan, L., Debroy, D.M., Noel, C. et al. Fault-tolerant control of an error-corrected qubit. Nature 598, 281–286 (2021).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links