Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Single-photon nonlinearity at room temperature

Abstract

The recent progress in nanotechnology1,2 and single-molecule spectroscopy3,4,5 paves the way for emergent cost-effective organic quantum optical technologies with potential applications in useful devices operating at ambient conditions. We harness a π-conjugated ladder-type polymer strongly coupled to a microcavity forming hybrid light–matter states, so-called exciton-polaritons, to create exciton-polariton condensates with quantum fluid properties. Obeying Bose statistics, exciton-polaritons exhibit an extreme nonlinearity when undergoing bosonic stimulation6, which we have managed to trigger at the single-photon level, thereby providing an efficient way for all-optical ultrafast control over the macroscopic condensate wavefunction. Here, we utilize stable excitons dressed with high-energy molecular vibrations, allowing for single-photon nonlinear operation at ambient conditions. This opens new horizons for practical implementations like sub-picosecond switching, amplification and all-optical logic at the fundamental quantum limit.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The principle of the extreme nonlinearity in organics.
Fig. 2: Attojoule polariton switch.
Fig. 3: Polariton switching contrast towards the single-photon level.
Fig. 4: Single-photon switching for single-shot condensate realizations.

Data availability

All data supporting this study are openly available from the University of Southampton repository at https://doi.org/10.5258/SOTON/D1374.

References

  1. 1.

    Chikkaraddy, R. et al. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535, 127–130 (2016).

    ADS  CAS  Article  Google Scholar 

  2. 2.

    Hail, C. U. et al. Nanoprinting organic molecules at the quantum level. Nat. Commun. 10, 1880 (2019).

    ADS  Article  Google Scholar 

  3. 3.

    Maser, A., Gmeiner, B., Utikal, T., Götzinger, S. & Sandoghdar, V. Few-photon coherent nonlinear optics with a single molecule. Nat. Photon. 10, 450–453 (2016).

    ADS  CAS  Article  Google Scholar 

  4. 4.

    Wang, D. et al. Coherent coupling of a single molecule to a scanning Fabry-Perot microcavity. Phys. Rev. X 7, 021014 (2017).

    Google Scholar 

  5. 5.

    Wang, D. et al. Turning a molecule into a coherent two-level quantum system. Nat. Phys. 15, 483–489 (2019).

    CAS  Article  Google Scholar 

  6. 6.

    Zasedatelev, A. V. et al. A room-temperature organic polariton transistor. Nat. Photon. 13, 378–383 (2019).

    ADS  CAS  Article  Google Scholar 

  7. 7.

    Walmsley, I. A. Quantum optics: science and technology in a new light. Science 348, 525–530 (2015).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  8. 8.

    Chang, D. E., Vuletić, V. & Lukin, M. D. Quantum nonlinear optics—photon by photon. Nat. Photon. 6, 685–694 (2014).

    ADS  Article  Google Scholar 

  9. 9.

    Reiserer, A., Ritter, S. & Rempe, G. Nondestructive detection of an optical photon. Science 342, 1349–1351 (2013).

    ADS  CAS  Article  Google Scholar 

  10. 10.

    Shomroni, I. et al. All-optical routing of single photons by a one-atom switch controlled by a single photon. Science 346, 903–906 (2014).

    ADS  Article  Google Scholar 

  11. 11.

    Tiecke, T. G. et al. Nanophotonic quantum phase switch with a single atom. Nature 508, 241–244 (2014).

    ADS  CAS  Article  Google Scholar 

  12. 12.

    Hacker, B., Welte, S., Rempe, S. & Ritter, S. A photon–photon quantum gate based on a single atom in an optical resonator. Nature 536, 193–196 (2016).

    ADS  CAS  Article  Google Scholar 

  13. 13.

    Volz, T. et al. Ultrafast all-optical switching by single photons. Nat. Photon. 6, 605–609 (2012).

    ADS  Article  Google Scholar 

  14. 14.

    Giesz, V. et al. Coherent manipulation of a solid-state artificial atom with few photons. Nat. Commun. 7, 11986 (2016).

    ADS  CAS  Article  Google Scholar 

  15. 15.

    Sun, S., Kim, H., Luo, Z., Solomon, G. S. & Waks, E. A single-photon switch and transistor enabled by a solid-state quantum memory. Science 361, 57–60 (2018).

    ADS  CAS  Article  Google Scholar 

  16. 16.

    Dietrich, C. P., Fiore, A., Thompson, M. G., Kamp, M. & Höfling, S. GaAs integrated quantum photonics: towards compact and multi-functional quantum photonic integrated circuits. Laser Photon. Rev. 10, 870–894 (2016).

    ADS  CAS  Article  Google Scholar 

  17. 17.

    Peyronel, T. et al. Quantum nonlinear optics with single photons enabled by strongly interacting atoms. Nature 488, 57–60 (2012).

    ADS  CAS  Article  Google Scholar 

  18. 18.

    Chen, W. et al. All-optical switch and transistor gated by one stored photon. Science 341, 768–770 (2013).

    ADS  CAS  Article  Google Scholar 

  19. 19.

    Gorniaczyk, H., Tresp, C., Schmidt, J., Fedder, H. & Hofferberth, S. Single-photon transistor mediated by interstate Rydberg interactions. Phys. Rev. Lett. 113, 053601 (2014).

    ADS  CAS  Article  Google Scholar 

  20. 20.

    Sanvitto, D. & Kéna-Cohen, S. The road towards polaritonic devices. Nat. Mater. 15, 1061–1073 (2016).

    ADS  CAS  Article  Google Scholar 

  21. 21.

    Deng, H., Haug, H. & Yamamoto, Y. Exciton-polariton Bose-Einstein condensation. Rev. Mod. Phys. 82, 1489–1537 (2010).

    ADS  CAS  Article  Google Scholar 

  22. 22.

    Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    ADS  CAS  Article  Google Scholar 

  23. 23.

    Plumhof, J. D., Stöferle, T., Mai, L., Scherf, U. & Mahrt, R. F. Room-temperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer. Nat. Mater. 13, 247–252 (2014).

    ADS  CAS  Article  Google Scholar 

  24. 24.

    Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    ADS  Article  Google Scholar 

  25. 25.

    Lerario, G. et al. Room-temperature superfluidity in a polariton condensate. Nat. Phys. 13, 837–841 (2017).

    CAS  Article  Google Scholar 

  26. 26.

    Sun, Z. & Snoke, D. W. Optical switching with organics. Nat. Photon. 13, 370–371 (2019).

    ADS  CAS  Article  Google Scholar 

  27. 27.

    Baranikov, A. V. et al. All-optical cascadable universal logic gate with sub-picosecond operation. Preprint at https://arxiv.org/abs/2005.04802 (2020).

  28. 28.

    Tartakovskii, A. I. et al. Raman scattering in strongly coupled organic semiconductor microcavities. Phys. Rev. B 63, 121302 (2001).

    ADS  Article  Google Scholar 

  29. 29.

    Coles, D. M. et al. Vibrationally assisted polariton-relaxation processes in strongly coupled organic-semiconductor microcavities. Adv. Funct. Mater. 21, 3691–3696 (2011).

    CAS  Article  Google Scholar 

  30. 30.

    Grant, R. T. et al. Efficient radiative pumping of polaritons in a strongly coupled microcavity by a fluorescent molecular dye. Adv. Opt. Mater. 4, 1615–1623 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    Daskalakis, K. S., Maier, S. A. & Kéna-Cohen, S. Spatial coherence and stability in a disordered organic polariton condensate. Phys. Rev. Lett. 115, 035301 (2015).

    ADS  CAS  Article  Google Scholar 

  32. 32.

    Bobrovska, N. et al. Dynamical instability of a nonequilibrium exciton-polariton condensate. ACS Photon. 5, 111–118 (2018).

    CAS  Article  Google Scholar 

  33. 33.

    Scherf, U., Bohnen, A. & Müllen, K. Polyarylenes and poly(arylenevinylene)s, 9 The oxidized states of a (1,4-phenylene) ladder polymer. Makromol. Chem. 193, 1127–1133 (1992).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge A. Putintsev for technical support. This work was supported by the Russian Science Foundation (RSF) grant no. 20-72-10145 and the UK’s Engineering and Physical Sciences Research Council grant EP/M025330/1 on Hybrid Polaritonics. E.S.A. and V.Yu.Sh. thank the Foundation for the Advancement of Theoretical Physics and Mathematics Basis. Yu.E.L. acknowledges Basic Research Program at the National Research University HSE, D.U., F.S. and T.S. acknowledge support by QuantERA project RouTe (SNSF grant no. 20QT21 175389). P.G.L, D.U., T.S. and R.F.M. acknowledge support by European H2020-FETOPEN project POLLOC (Grant No. 899141).

Author information

Affiliations

Authors

Contributions

A.V.Z., A.V.B. and D.S. performed the experiments and analysed the data. D.U., F.S., T.S. and R.F.M. contributed to the design and fabrication of the organic microcavity. U.S. synthesized the organic material. V.Yu.Sh., E.S.A. and Yu.E.L. developed microscopic theory and carried out numerical simulations. A.V.Z. and P.G.L. designed and led the research. The manuscript was written through contributions from all authors. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Anton V. Zasedatelev or Pavlos G. Lagoudakis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–7, including text and data, Supplementary Figs. 1–22, Table 1 and references.

Peer Review File

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zasedatelev, A.V., Baranikov, A.V., Sannikov, D. et al. Single-photon nonlinearity at room temperature. Nature 597, 493–497 (2021). https://doi.org/10.1038/s41586-021-03866-9

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links