Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mercury stable isotopes constrain atmospheric sources to the ocean

Subjects

Abstract

Human exposure to toxic mercury (Hg) is dominated by the consumption of seafood1,2. Earth system models suggest that Hg in marine ecosystems is supplied by atmospheric wet and dry Hg(ii) deposition, with a three times smaller contribution from gaseous Hg(0) uptake3,4. Observations of marine Hg(ii) deposition and Hg(0) gas exchange are sparse, however5, leaving the suggested importance of Hg(ii) deposition6 ill-constrained. Here we present the first Hg stable isotope measurements of total Hg (tHg) in surface and deep Atlantic and Mediterranean seawater and use them to quantify atmospheric Hg deposition pathways. We observe overall similar tHg isotope compositions, with median Δ200Hg signatures of 0.02‰, lying in between atmospheric Hg(0) and Hg(ii) deposition end-members. We use a Δ200Hg isotope mass balance to estimate that seawater tHg can be explained by the mixing of 42% (median; interquartile range, 24–50%) atmospheric Hg(ii) gross deposition and 58% (50–76%) Hg(0) gross uptake. We measure and compile additional, global marine Hg isotope data including particulate Hg, sediments and biota and observe a latitudinal Δ200Hg gradient that indicates larger ocean Hg(0) uptake at high latitudes. Our findings suggest that global atmospheric Hg(0) uptake by the oceans is equal to Hg(ii) deposition, which has implications for our understanding of atmospheric Hg dispersal and marine ecosystem recovery.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Depth profiles of seawater Hg species concentrations and total and particulate Hg stable isotope composition at station K2 in the Mediterranean Sea and the North Atlantic.
Fig. 2: Hg stable isotope composition of atmospheric Hg deposition sources (gaseous Hg(0) and Hg(ii) in rainfall), and seawater (total (tHg) and particulate (pHg)).
Fig. 3: Hg stable isotope composition in different ocean basins for total Hg (tHg) and particulate Hg (pHg) in seawater, marine sediments and marine fish.
Fig. 4: Latitudinal variation in atmospheric Hg sources and deposition fluxes to the global ocean.

Data availability

Hg stable isotope and Hg speciation data that support the findings of this study are available from https://doi.org/10.5281/zenodo.4740464Source data are provided with this paper.

References

  1. 1.

    Sunderland, E. M. Mercury exposure from domestic and imported estuarine and marine fish in the U.S. seafood market. Environ. Health Perspect. 115, 235–242 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2.

    Lavoie, R. A., Bouffard, A., Maranger, R. & Amyot, M. Mercury transport and human exposure from global marine fisheries. Sci. Rep. 8, 6705 (2018).

    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

  3. 3.

    Horowitz, H. M. et al. A new mechanism for atmospheric mercury redox chemistry: implications for the global mercury budget. Atmos. Chem. Phys. 17, 6353–6371 (2017).

    CAS  Article  ADS  Google Scholar 

  4. 4.

    Travnikov, O. et al. Multi-model study of mercury dispersion in the atmosphere: atmospheric processes and model evaluation. Atmos. Chem. Phys. 17, 5271–5295 (2017).

    CAS  Article  ADS  Google Scholar 

  5. 5.

    Zhang, L., Zhou, P., Cao, S. & Zhao, Y. Atmospheric mercury deposition over the land surfaces and the associated uncertainties in observations and simulations: a critical review. Atmos. Chem. Phys. 19, 15587–15608 (2019).

    CAS  Article  ADS  Google Scholar 

  6. 6.

    Zhang, Y. et al. A coupled global atmosphere-ocean model for air-sea exchange of mercury: insights into wet deposition and atmospheric redox chemistry. Environ. Sci. Technol. 53, 5052–5061 (2019).

    CAS  PubMed  Article  ADS  Google Scholar 

  7. 7.

    Sheehan, M. C. et al. Global methylmercury exposure from seafood consumption and risk of developmental neurotoxicity: a systematic review. Bull. World Health Organ. 92, 254–269 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Mason, R. P. & Fitzgerald, W. F. Alkylmercury species in the Equatorial Pacific. Nature 347, 457–459 (1990).

    CAS  Article  ADS  Google Scholar 

  9. 9.

    Selin, N. E. Global biogeochemical cycling of mercury: a review. Ann. Rev. Environ. Resour. 34, 43–63 (2009).

    Article  Google Scholar 

  10. 10.

    Fitzgerald, W. F., Lamborg, C. H. & Hammerschmidt, C. R. Marine biogeochemical cycling of mercury. Chem. Rev. 107, 641–662 (2007).

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Li, C. et al. Unequal anthropogenic enrichment of mercury in Earth’s northern and southern hemispheres. ACS Earth Space Chem. 4, 2073–2081 (2020).

    CAS  Article  Google Scholar 

  12. 12.

    Outridge, P. M., Mason, R. P., Wang, F., Guerrero, S. & Heimbürger-Boavida, L. E. Updated global and oceanic mercury budgets for the United Nations Global Mercury Assessment 2018. Environ. Sci. Technol. 52, 11466–11477 (2018).

    CAS  PubMed  Google Scholar 

  13. 13.

    Lamborg, C. H. et al. A global ocean inventory of anthropogenic mercury based on water column measurements. Nature 512, (2014).

  14. 14.

    Schartup, A. T. et al. Climate change and overfishing increase neurotoxicant in marine predators. Nature 572, 648–650 (2019).

    CAS  PubMed  Article  ADS  Google Scholar 

  15. 15.

    Sunderland, E. M. & Mason, R. P. Human impacts on open ocean mercury concentrations. Global Biogeochem. Cycles 21, GB4022 (2007).

    Article  ADS  CAS  Google Scholar 

  16. 16.

    Amos, H. M. et al. Global biogeochemical implications of mercury discharges from rivers and sediment burial. Environ. Sci. Technol. 48, 9514–9522 (2014).

    CAS  PubMed  Article  ADS  Google Scholar 

  17. 17.

    Zhang, Y. et al. Biogeochemical drivers of the fate of riverine mercury discharged to the global and Arctic oceans. Global Biogeochem. Cycles 29, 854–864 (2015).

    CAS  Article  ADS  Google Scholar 

  18. 18.

    Zhang, Y., Jaegle, L., Thompson, L. & Streets, D. G. Six centuries of changing oceanic mercury. Global Biogeochem. Cycles 28, 1251–1261 (2014).

    CAS  Article  ADS  Google Scholar 

  19. 19.

    Soerensen, A. L. et al. Elemental mercury concentrations and fluxes in the tropical atmosphere and ocean. Environ. Sci. Technol. 48, 11312–11319 (2014).

    CAS  PubMed  Article  ADS  Google Scholar 

  20. 20.

    Kuss, J., Zülicke, C., Pohl, C. & Schneider, B. Atlantic mercury emission determined from continuous analysis of the elemental mercury sea-air concentration difference within transects between 50°N and 50°S. Global Biogeochem. Cycles 25, GB3021 (2011).

    Article  ADS  CAS  Google Scholar 

  21. 21.

    Wang, J., Xie, Z., Wang, F. & Kang, H. Gaseous elemental mercury in the marine boundary layer and air-sea flux in the Southern Ocean in austral summer. Sci. Total Environ. 603–604, 510–518 (2017).

    PubMed  ADS  Google Scholar 

  22. 22.

    Krabbenhoft, D. P. & Sunderland, E. M. Global change and mercury. Science 341, 1457–1458 (2013).

    CAS  PubMed  Article  ADS  Google Scholar 

  23. 23.

    Enrico, M. et al. Atmospheric mercury transfer to peat bogs dominated by gaseous elemental mercury dry deposition. Environ. Sci. Technol. 50, 2405–2412 (2016).

    CAS  PubMed  Article  ADS  Google Scholar 

  24. 24.

    Demers, J. D., Blum, J. D. & Zak, D. R. Mercury isotopes in a forested ecosystem: implications for air-surface exchange dynamics and the global mercury cycle. Global Biogeochem. Cycles 27, 222–238 (2013).

    CAS  Article  ADS  Google Scholar 

  25. 25.

    Obrist, D. et al. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution. Nature 547, 201–204 (2017).

    CAS  PubMed  Article  ADS  Google Scholar 

  26. 26.

    Chen, J., Hintelmann, H., Feng, X. & Dimock, B. Unusual fractionation of both odd and even mercury isotopes in precipitation from Peterborough, ON, Canada. Geochim. Cosmochim. Acta 90, 33–46 (2012).

    CAS  Article  ADS  Google Scholar 

  27. 27.

    Fu, X. W. et al. Mass-independent fractionation of even and odd mercury isotopes during atmospheric mercury redox reactions. Environ. Sci. Technol. 55, 10164–10174 (2021).

  28. 28.

    Enrico, M. et al. Holocene atmospheric mercury levels reconstructed from peat bog mercury stable isotopes. Environ. Sci. Technol. 51, 5899–5906 (2017).

    CAS  PubMed  Article  ADS  Google Scholar 

  29. 29.

    Štrok, M., Baya, P. A. & Hintelmann, H. The mercury isotope composition of Arctic coastal seawater. C.R. Geosci. 347, 368–376 (2015).

    Article  ADS  Google Scholar 

  30. 30.

    Motta, L. C. et al. Mercury cycling in the North Pacific subtropical gyre as revealed by mercury stable isotope ratios. Global Biogeochem. Cycles 33, 777–794 (2019).

    CAS  Article  ADS  Google Scholar 

  31. 31.

    Bowman, K. L., Lamborg, C. H. & Agather, A. M. A global perspective on mercury cycling in the ocean. Sci. Total Environ. 710, 136166 (2020).

    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

  32. 32.

    Cossa, D., Averty, B. & Pirrone, N. The origin of methylmercury in open Mediterranean waters. Limnol. Oceanogr. 54, 3 (2009).

    Article  Google Scholar 

  33. 33.

    Heimbürger, L.-E. et al. Methyl mercury distributions in relation to the presence of nanoand picophytoplankton in an oceanic water column (Ligurian Sea, north-western Mediterranean). Geochim. Cosmochim. Acta 74, 5549–5559 (2010).

    Article  ADS  CAS  Google Scholar 

  34. 34.

    Cossa, D. et al. Mercury distribution and transport in the North Atlantic Ocean along the GEOTRACES-GA01 transect. Biogeosciences 15, 2309–2323 (2018).

    CAS  Article  ADS  Google Scholar 

  35. 35.

    Gehrke, G. E., Blum, J. D. & Meyers, P. A. The geochemical behavior and isotopic composition of Hg in a mid-Pleistocene western Mediterranean sapropel. Geochim. Cosmochim. Acta 73, 1651–1665 (2009).

    CAS  Article  ADS  Google Scholar 

  36. 36.

    Ogrinc, N., Hintelmann, H., Kotnik, J., Horvatl, M. & Pirrone, N. Sources of mercury in deep-sea sediments of the Mediterranean Sea as revealed by mercury stable isotopes. Sci. Rep. 9, 11626 (2019).

    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

  37. 37.

    Zhang, Y. et al. Biogeochemical drivers of the fate of riverine mercury discharged to the global and Arctic oceans. Global Biogeochem. Cycles 29, 854–864 (2015).

    CAS  Article  ADS  Google Scholar 

  38. 38.

    Shah, V. & Jaeglé, L. Subtropical subsidence and surface deposition of oxidized mercury produced in the free troposphere. Atmos. Chem. Phys. 17, 8999–9017 (2017).

    CAS  Article  ADS  Google Scholar 

  39. 39.

    Rolison, J. M., Landing, W. M., Cohen, M. D., Luke, W. & Salters, V. J. M. Isotopic composition of species-specific atmospheric Hg in a coastal environment. Chem. Geol. 336, 37–49 (2012).

    Article  ADS  CAS  Google Scholar 

  40. 40.

    Washburn, S. J., Blum, J. D., Motta, L. C., Bergquist, B. A. & Weiss-Penzias, P. Isotopic composition of Hg in fogwaters of coastal California. Environ. Sci. Technol. Lett. 8, 3–8 (2020).

    Article  CAS  Google Scholar 

  41. 41.

    Yu, B. et al. New evidence for atmospheric mercury transformations in the marine boundary layer from stable mercury isotopes. Atmos. Chem. Phys. 20, 9713–9723 (2020).

    CAS  Article  ADS  Google Scholar 

  42. 42.

    Demers, J. D., Sherman, L. S., Blum, J. D., Marsik, F. J. & Dvonch, J. T. Coupling atmospheric mercury isotope ratios and meteorology to identify sources of mercury impacting a coastal urban-industrial region near Pensacola, Florida, USA. Global Biogeochem. Cycles 29, 1689–1705 (2015).

    CAS  Article  ADS  Google Scholar 

  43. 43.

    Fu, X. et al. Isotopic composition of gaseous elemental mercury in the marine boundary layer of East China Sea. J. Geophys. Res. Atmos. 123, 7656–7669 (2018).

    CAS  Article  ADS  Google Scholar 

  44. 44.

    Semeniuk, K. & Dastoor, A. Development of a global ocean mercury model with a methylation cycle: outstanding issues. Global Biogeochem. Cycles 31, 400–433 (2017).

    CAS  ADS  Google Scholar 

  45. 45.

    Soerensen, A. L. et al. An improved global model for air-sea exchange of mercury: high concentrations over the North Atlantic. Environ. Sci. Technol. 44, 8574–8580 (2010).

    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

  46. 46.

    Method 1631, Revision E: Mercury in Water by Oxidation, Purge and Trap, and Cold Vapor Atomic Fluorescence Spectrometry (EPA, 2002).

  47. 47.

    Cutter, G. J. et al. Sampling and Sample-handling Protocols for GEOTRACES Cruises. Version 3.0. (2017).

  48. 48.

    Sun, R., Enrico, M., Heimbürger, L.-E., Scott, C. & Sonke, J. E. A double-stage tube furnace-acid-trapping protocol for the pre-concentration of mercury from solid samples for isotopic analysis. Anal. Bioanal.Chem. 405, 6771–6781 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Heimbürger, L. E. et al. Shallow methylmercury production in the marginal sea ice zone of the central Arctic Ocean. Sci. Rep. 5, 10318 (2015).

    PubMed  PubMed Central  Article  ADS  Google Scholar 

  50. 50.

    Jiskra, M., Sonke, J. E., Agnan, Y., Helmig, D. & Obrist, D. Insights from mercury stable isotopes on terrestrial-atmosphere exchange of Hg(0) in the Arctic tundra. Biogeosciences 16, 4051–4064 (2019).

    CAS  Article  ADS  Google Scholar 

  51. 51.

    Blum, J. D. & Bergquist, B. A. Reporting of variations in the natural isotopic composition of mercury. Anal. Bioanal.Chem. 388, 353–359 (2007).

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Jiskra, M. et al. Mercury deposition and re-emission pathways in boreal forest soils investigated with Hg isotope signatures. Environ. Sci. Technol. 49, 7188–7196 (2015).

    CAS  PubMed  Article  ADS  Google Scholar 

  53. 53.

    Bergquist, B. A. & Blum, J. D. Mass-dependent and -independent fractionation of Hg isotopes by photoreduction in aquatic systems. Science 318, 417–420 (2007).

    CAS  PubMed  Article  ADS  Google Scholar 

  54. 54.

    Vermeesch, P. IsoplotR: a free and open toolbox for geochronology. Geosci. Front. 9, 1479–1493 (2018).

    CAS  Article  Google Scholar 

  55. 55.

    Blum, J. D. & Johnson, M. W. Recent developments in mercury stable isotope analysis. Rev. Mineral. Geochem. 82, 733–757 (2017).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants ANR-17-CE34-0010 MERTOX to D.P., FP7-IDEAS-ERC grant no. 258537, and H2020 ERA-PLANET grant no. 689443 via the iCUPE and iGOSP project to J.E.S., Chantier Arctique Francais funding via the Pollution in the Arctic System Project to J.E.S. and L.E.H.B., H2020 Marie Skłodowska-Curie grant no. 657195 and Swiss National Science Foundation grant PZ00P2_174101 to M.J., APOG DECOMAR, MISTRALS AT P&C and the AXA RF grants to L.E.H.B., and the French National Research Agency (ANR-13-BS06-0014, ANR-12-PDOC-0025-01), the French National Centre for Scientific Research (CNRS-LEFE-CYBER), the LabexMER (ANR-10-LABX-19), and Ifremer. We are grateful to G. Sarthou and P. Lherminier, chief scientists of the 2014 GEOVIDE cruise, and to H. Planquette for coordinating clean sampling. We thank M. Rutgers van der Loeff, T. Kanzow and the Alfred-Wegener-Institute for Polar and Marine Research for organizing the 2016 GRIFF cruise. We thank E. de Saint-Léger and F. Pérault of the technical division of INSU for support with operations at sea. We thank L. Laffont for laboratory management and O. Grosso and D. Malengros for technical assistance. We thank L. Metral from MARBEC and F. Ménard from MIO for providing tuna fish samples from the Mediterranean Sea. We thank J. Kuss and H. Horowitz for discussion on gas exchange model parameterization. We thank the captains, crew and sampling teams onboard the RV Antedon II, RV Pourquoi Pas? and FS Polarstern for their support at sea. Thanks also go to the shipboard participants, captain and crew of the N/O l’Atalante for obtaining sediment samples from the 2015 VESPA cruise. VESPA was funded by the French Ministry of Research and Higher Education, with support from the governments of New Zealand and New Caledonia.

Author information

Affiliations

Authors

Contributions

L.E.H.B., J.E.S., M.J. and D.P. conceived the study. L.E.H.B., M.J., D.P., M.P., M.V.P., M.M.D. and J.E.S. performed sampling. J.E.S., M.J. and L.E.H.B. developed and applied the tHg isotope pre-concentration methods. J.E.S., M.J., J.M. and J.C. performed isotope measurements. M.M.D., M.V.P., A.D., L.E.H.B., M.J., J.M., D.P. and M.T. performed additional laboratory work. M.J., J.E.S. and L.E.H.B. analysed the data. J.E.S. and M.J. wrote the draft paper, which was improved by contributions from L.E.H.B. and D.P., and commented on by all authors.

Corresponding authors

Correspondence to Martin Jiskra, Lars-Eric Heimbürger-Boavida or Jeroen E. Sonke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Summary of marine Hg(ii) deposition and Hg(0) air-sea exchange fluxes.

Gross fluxes (solid arrows, Mg y−1) are based on published model estimates3. Hg(0) exchange is bidirectional, meaning that despite surface ocean Hg(0) supersaturation and large Hg(0) evasion, Hg(0) invasion is substantial. Marine Δ200Hg signatures of 0.04‰ indicate a relatively more important contribution of the atmospheric Hg(0) end-member to marine Hg than current 3D models suggest. This indicates that either 3D model Hg(ii) deposition is overestimated or that Hg(0) invasion is underestimated (black dotted arrows, indicating 2–3 times lower or 2–3 times higher fluxes, required to fit Δ200Hg data).

Extended Data Fig. 2 Maps of sampling locations for total and particulate Hg isotopes.

Top: sampling locations K2 in the Mediterranean Sea (purple), Atlantic Ocean (yellow) and Fram Strait (green). Bottom: magnification of the four Mediterranean locations, with main station K2 (large purple circle), and pHg station K1 and Julio (small purple circles), and Endoume pier in Marseille Bay (grey square). Maps were made with Ocean Data View (Schlitzer, Reiner, Ocean Data View, odv.awi.de, 2021).

Extended Data Fig. 3 Latitudinal distribution of Hg(ii) wet deposition.

Annual mean Hg(ii) wet deposition (µg m−2 y−1) at oceanic locations in the northern and southern hemispheres (NH, SH), binned in 5° latitude. Mean values (± standard deviation, SD) were calculated when sufficient data was available per 5° latitude band, and interpolated using polynomial fitting when no data were available (in which case a mean observed SD of 30% was applied). MDN, mercury deposition network; GMOS, global mercury observation system; USA, CAN, PR, United States of America, Canada, Puerto Rico.

Source data

Extended Data Fig. 4 Latitudinal distribution of dissolved gaseous Hg (DGM) concentrations.

Mean (± standard deviation) DGM are binned in 5° latitude bands, and equal weight was given to each study. Polar studies, affected by sea ice show unusually high concentrations (mean 219 fM in the Arctic, mean 138 fM around Antarctica) for high latitude waters and were excluded in 5° latitude binning (replaced in calculations by ‘open water only’ DGM data at 55–60°S and 75–80°N).

Source data

Extended Data Fig. 5 Atmospheric deposition pathways of the zonal reference model.

a, Marine Hg(ii) gross deposition, Hg(0) gross invasion, Hg(0) gross evasion, and net Hg flux [Hg(ii) deposition + Hg(0) invasion – Hg(0) evasion]; all in µg m−2 y−1 with evasion shown as negative numbers. Hg(0) invasion is driven by observed atmospheric Hg(0) and wind speed. Hg(ii) deposition is dominated by Hg(ii) wet deposition. Hg(0) evasion is driven by DGM concentrations and wind speed. The net Hg evasion trends shows important net deposition in the northern hemisphere, and net evasion in the southern hemisphere. b, Reference model Hg gross deposition fluxes (µg m−2 y−1) as a function of latitude used in estimating marine Δ200Hg in Fig. 4a (main text). Hg(ii) wet deposition observations as in Extended Data Fig. 3; Hg(ii) dry deposition was fixed at 5 µg m−2 y−1, and constrained as 40% of total Hg(ii) deposition38, since no dry deposition observations over oceans exist. Hg(0) invasion (ocean uptake, same as in top panel) is calculated from the observed inter-hemispheric atmospheric gaseous Hg(0) gradient3, wind and sea surface temperature (Copernicus), and the latest Hg(0) air–sea gas exchange model (see Supplementary Information).

Source data

Extended Data Fig. 6 Estimated latitudinal variation in Δ200Hg of atmospheric Hg(ii) deposition.

The small variation is caused by the variable contributions (Extended Data Figure 5) of Hg(ii) wet deposition with Δ200Hg of 0.16‰, and Hg(ii) dry deposition with Δ200Hg of 0.10‰ (Extended Data Table 1). The dashed line represents the median and the shaded area the interquartile range (IQR).

Source data

Extended Data Fig. 7 Variation of Δ204Hg in marine samples.

a, Δ204Hg versus Δ200Hg. The dashed line represents the York regression using IsoplotR54 for all marine samples (Δ200Hg = −0.32(±0.06) Δ204Hg +  (0.03±0.004), (± se), MSWD = 0.213). b, Δ204Hg boxplot for 5° latitudinal intervals. Marine samples are shown in boxes, where the bold horizontal line represents the median, the boxes the interquartile range, the whiskers 1.5 times the IQR and outliers are represented by dots. The solid line represents the predicted Δ204Hg based on the observational relationship between Δ204Hg and Δ200Hg in terrestrial samples by Blum and Johnson, 201755. The dashed line represents the predicted Δ204Hg derived from the York regression shown in panel a. Δ204Hg data are available for 339 out of 791 marine samples. Note that for pHg and tHg samples presented here, Δ204Hg was not measured because of the low abundance of the 204Hg isotope, and unavailability of a second 1013 Ω amplifier.

Source data

Extended Data Table 1 Summary of Hg stable isotope data
Extended Data Table 2 Modelled contribution of Hg(ii) from wet and dry deposition

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–3 and references.

Peer Review File

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiskra, M., Heimbürger-Boavida, LE., Desgranges, MM. et al. Mercury stable isotopes constrain atmospheric sources to the ocean. Nature 597, 678–682 (2021). https://doi.org/10.1038/s41586-021-03859-8

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing