Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quenching of star formation from a lack of inflowing gas to galaxies

Abstract

Star formation in half of massive galaxies was quenched by the time the Universe was 3 billion years old1. Very low amounts of molecular gas seem to be responsible for this, at least in some cases2,3,4,5,6,7, although morphological gas stabilization, shock heating or activity associated with accretion onto a central supermassive black hole are invoked in other cases8,9,10,11. Recent studies of quenching by gas depletion have been based on upper limits that are insufficiently sensitive to determine this robustly2,3,4,5,6,7, or stacked emission with its problems of averaging8,9. Here we report 1.3 mm observations of dust emission from 6 strongly lensed galaxies where star formation has been quenched, with magnifications of up to a factor of 30. Four of the six galaxies are undetected in dust emission, with an estimated upper limit on the dust mass of 0.0001 times the stellar mass, and by proxy (assuming a Milky Way molecular gas-to-dust ratio) 0.01 times the stellar mass in molecular gas. This is two orders of magnitude less molecular gas per unit stellar mass than seen in star forming galaxies at similar redshifts12,13,14. It remains difficult to extrapolate from these small samples, but these observations establish that gas depletion is responsible for a cessation of star formation in some fraction of high-redshift galaxies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Images of six massive lensed galaxies for which star formation has been quenched.
Fig. 2: Low dust masses for quenched galaxies.
Fig. 3: Low molecular gas masses compared to star forming galaxies.

Data availability

Data that support the findings of this study are publicly available through the ALMA Science Archive under project codes 2018.1.00276.S and 2019.1.00227.S and the Barbara A. Mikulski Archive for Space Telescope under project code HST-GO-15663 (including additional archival data from project codes HST-GO-9722, HST-GO-9836, HST-SNAP-11103, HST-GO-11591, HST-GO-12099, HST-GO-12100, HST-SNAP-12884, HST-GO-13459, HST-SNAP-14098, HST-GO-14205, HST-GO-14496, HST-SNAP-15132 and HST-GO-15466). All HST and ALMA mosaics are publicly available at https://doi.org/10.5281/zenodo.5009315. Derived data and codes supporting the findings of this study are available from the corresponding author upon request. Source data are provided with this paper.

References

  1. 1.

    Muzzin, A. et al. The evolution of the stellar mass functions of star-forming and quiescent galaxies to z=4 from the COSMOS/UltraVISTA survey. Astrophys. J. 777, 18 (2013).

    ADS  Article  Google Scholar 

  2. 2.

    Sargent, M. et al. A direct constraint on the gas content of a massive, passively evolving elliptical galaxy at z = 1.43. Astrophys. J. 806, 20 (2015).

    Article  CAS  Google Scholar 

  3. 3.

    Spilker, J. et al. Molecular gas contents and scaling relations for massive, passive galaxies at intermediate redshifts from the LEGA-C survey. Astrophys. J. 860, 103 (2018).

    ADS  Article  CAS  Google Scholar 

  4. 4.

    Bezanson, R. et al. Extremely low molecular gas content in a compact, quiescent galaxy at z = 1.522. Astrophys. J. 873, 19 (2019).

    Article  CAS  Google Scholar 

  5. 5.

    Zavala, J. et al. On the gas content, star formation efficiency, and environmental quenching of massive galaxies in protoclusters at z ~ 2.0-2.5. Astrophys. J. 887, 183 (2019).

    ADS  CAS  Article  Google Scholar 

  6. 6.

    Caliendo, J. et al. Early science with the large millimeter telescope: constraining the gas fraction of a compact quiescent galaxy at z = 1.883. Astrophys. J. Lett.  910, L7 (2021).

    Article  CAS  Google Scholar 

  7. 7.

    Williams, C. et al. ALMA measures rapidly depleted molecular gas reservoirs in massive quiescent galaxies at z~1.5. Astrophys. J. 908, 54 (2021).

    ADS  CAS  Article  Google Scholar 

  8. 8.

    Gobat, R. et al. The unexpectedly large dust and gas content of quiescent galaxies at z>1.4. Nat. Astron. 2, 239–246 (2018).

    ADS  Article  Google Scholar 

  9. 9.

    Magdis, G. et al. The interstellar medium of quiescent galaxies and its evolution with time. Astron. Astrophys. 647, 33 (2021).

    Article  CAS  Google Scholar 

  10. 10.

    Suess, K. et al. Massive quenched galaxies at z~0.7 retain large molecular gas reservoirs. Astrophys. J. 846, 14 (2017).

    MathSciNet  Article  CAS  Google Scholar 

  11. 11.

    Hayashi, M. et al. Molecular gas reservoirs in cluster galaxies at z = 1.46. Astrophys. J. 856, 118 (2018).

    ADS  Article  CAS  Google Scholar 

  12. 12.

    Tacconi, L. et al. High molecular gas fractions in normal massive star-forming galaxies in the young Universe. Nature 463, 781–784 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  13. 13.

    Genzel, R. et al. Combined CO and dust scaling relations of depletion time and molecular gas fractions with cosmic time, specific star-formation rate, and stellar mass. Astrophys. J. 800, 20 (2015).

    ADS  Article  CAS  Google Scholar 

  14. 14.

    Tacconi, L. et al. PHIBSS: unified scaling relations of gas depletion time and molecular gas fractions. Astrophys. J. 853, 179 (2018).

    ADS  Article  CAS  Google Scholar 

  15. 15.

    Ebeling, H. et al. Thirty-fold: extreme gravitational lensing of a quiescent galaxy at z=1.6. Astrophys. J. 852, 7 (2018).

    Article  CAS  Google Scholar 

  16. 16.

    Newman, N. et al. Resolving quiescent galaxies at z>2. I. Search for gravitationally lensed sources and characterization of their structure, stellar populations, and line emission. Astrophys. J. 862, 125 (2018).

    ADS  Article  CAS  Google Scholar 

  17. 17.

    Toft, S. et al. A massive, dead disk galaxy in the early Universe. Nature 546, 510–513 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Man, A. et al. An exquisitely deep view of quenching galaxies through the gravitational lens: Stellar population, morphology, and ionized gas. Preprint at https://arxiv.org/abs/2106.08338 (2021).

  19. 19.

    Scoville, N. et al. ISM masses and the star formation law at Z = 1 to 6: ALMA observations of dust continuum in 145 galaxies in the COSMOS survey field. Astrophys. J. 820, 83 (2016).

    ADS  Article  Google Scholar 

  20. 20.

    Tadaki, K. et al. Bulge-forming galaxies with an extended rotating disk at z ~ 2. Astrophys. J. 824, 175 (2017).

    Google Scholar 

  21. 21.

    Saintonge, A. et al. xCOLD GASS: the complete IRAM 30 m legacy survey of molecular gas for galaxy evolution studies. Astrophys. J. Suppl. Ser. 233, 22 (2017).

    ADS  Article  CAS  Google Scholar 

  22. 22.

    Li, Z. et al. The evolution of the interstellar medium in post-starburst galaxies. Astrophys. J. 879, 131 (2019).

    ADS  CAS  Article  Google Scholar 

  23. 23.

    Thomas, D. et al. The epochs of early-type galaxy formation as a function of environment. Astrophys. J. 621, 673 (2005).

    ADS  CAS  Article  Google Scholar 

  24. 24.

    Valentino, F. et al. Quiescent galaxies 1.5 billion years after the Big Bang and their progenitors. Astrophys. J. 889, 93 (2020).

    ADS  Article  Google Scholar 

  25. 25.

    Lagos, C. et al. The origin of the atomic and molecular gas contents of early-type galaxies. II. Misaligned gas accretion. Mon. Notices R. Astron. Soc. 448, 1271–1287 (2015).

    ADS  Article  CAS  Google Scholar 

  26. 26.

    Dave, R. et al. SIMBA: cosmological simulations with black hole growth and feedback. Mon. Notices R. Astron. Soc. 486, 2827–2849 (2019).

    ADS  CAS  Article  Google Scholar 

  27. 27.

    Keres, D. et al. How do galaxies get their gas? Mon. Notices R. Astron. Soc. 363, 2–28 (2005).

    ADS  CAS  Article  Google Scholar 

  28. 28.

    Dekel, A. et al. Cold streams in early massive hot haloes as the main mode of galaxy formation. Nature 457, 451–454 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  29. 29.

    Whitaker, K. et al. Constraining the low-mass slope of the star formation sequence at 0.5 < z < 2.5. Astrophys. J. 775, 104 (2014).

    ADS  Article  Google Scholar 

  30. 30.

    Ciotti, L. et al. Radiative feedback from massive black holes in elliptical galaxies: AGN flaring and central starburst fueled by recycled gas. Astrophys. J. 665, 1038–1056 (2007).

    ADS  CAS  Article  Google Scholar 

  31. 31.

    Akhshik, M. et al. Recent star formation in a massive slowly quenched lensed quiescent galaxy at z = 1.88. Astrophys. J. Lett. 907, L8 (2021).

  32. 32.

    Dekel, A. & Birnboim, Y. Galaxy bimodality due to cold flows and shock heating. Mon. Notices R. Astron. Soc. 368, 2–20 (2006).

    ADS  CAS  Article  Google Scholar 

  33. 33.

    Cheung, E. et al. Suppressing star formation in quiescent galaxies with supermassive black hole winds. Nature 533, 504–508 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  34. 34.

    Whitaker, K. et al. Quiescent galaxies in the 3D-HST survey: spectroscopic confirmation of a large number of galaxies with relatively old stellar populations at z~2. Astrophys. J. Lett. 770, 39 (2013).

    ADS  Article  CAS  Google Scholar 

  35. 35.

    Johansson, P. et al. Gravitational heating helps make massive galaxies red and dead. Astrophys. J. Lett. 697, L38–L43 (2009).

    ADS  CAS  Article  Google Scholar 

  36. 36.

    Chabrier, G. Galactic stellar and substellar initial mass function. Publ. Astron. Soc. Pac. 115, 763–795 (2003).

    ADS  Article  Google Scholar 

  37. 37.

    Akhshik, M. et al. REQUIEM-2D methodology: spatially resolved stellar populations of massive lensed quiescent galaxies from Hubble Space Telescope 2D grism spectroscopy. Astrophys. J. 900, 184 (2020).

    ADS  CAS  Article  Google Scholar 

  38. 38.

    Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).

    ADS  Article  Google Scholar 

  39. 39.

    Bruzual, G., & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Notices R. Astron. Soc. 344, 1000–1028 (2003).

    ADS  Article  Google Scholar 

  40. 40.

    Lee, B. et al. The intrinsic characteristics of galaxies on the SFR-M* plane at 1.2 < z < 4. I. The correlation between stellar age, central density, and position relative to the main sequence. Astrophys. J. 853, 131 (2018).

    ADS  Article  CAS  Google Scholar 

  41. 41.

    Salmon, B. et al. Breaking the curve with CANDELS: a Bayesian approach to reveal the non-universality of the dust-attenuation law at high redshift. Astrophys. J. 827, 20 (2016).

    ADS  Article  Google Scholar 

  42. 42.

    Salim, S. et al. Dust attenuation curves in the local universe: demographics and new laws for star-forming galaxies and high-redshift analogs. Astrophys. J. 859, 11 (2018).

    ADS  Article  CAS  Google Scholar 

  43. 43.

    Leja, J. et al. An older, more quiescent universe from panchromatic SED fitting of the 3D-HST survey. Astrophys. J. 877, 140 (2019).

    ADS  CAS  Article  Google Scholar 

  44. 44.

    Conroy, C., Gunn, J., & White, M. The propagation of uncertainties in stellar population synthesis modeling. I. The relevance of uncertain aspects of stellar evolution and the initial mass function to the derived physical properties of galaxies. Astrophys. J. 699, 486–506 (2009).

    ADS  Article  Google Scholar 

  45. 45.

    Kriek, M., & Conroy, C. The dust attenuation law in distant galaxies: evidence for variation with spectral type. Astrophys. J. Lett. 775, 16 (2013).

    ADS  Article  CAS  Google Scholar 

  46. 46.

    Johansson, D., Sigurdarson, H. & Horellou, C. A LABOCA survey of submillimeter galaxies behind galaxy clusters. Astron. Astrophys. 527, 117 (2011).

    ADS  Article  Google Scholar 

  47. 47.

    Greve, T. et al. Submillimeter observations of millimeter bright galaxies discovered by the South Pole Telescope. Astrophys. J. 756, 101 (2012).

    ADS  Article  Google Scholar 

  48. 48.

    Scoville, N. et al. The evolution of interstellar medium mass probed by dust emission: ALMA observations at z = 0.3–2. Astrophys. J. 783, 84 (2014)

    ADS  Article  Google Scholar 

  49. 49.

    Zhang, C. et al. Nearly all massive quiescent disk galaxies have a surprisingly large atomic gas reservoir. Astrophys. J. Lett. 884, 52 (2019).

    ADS  Article  CAS  Google Scholar 

  50. 50.

    Sage, L. et al. The cool ISM in elliptical galaxies. I. A survey of molecular gas. Astrophys. J. 657, 232–240 (2007).

    ADS  CAS  Article  Google Scholar 

  51. 51.

    Li, Q. et al. The dust-to-gas and dust-to-metal ratio in galaxies from z = 0 to 6. Mon. Notices R. Astron. Soc. 490, 1425–1436 (2019).

    ADS  Article  CAS  Google Scholar 

  52. 52.

    Smercina, A. et al. After the fall: the dust and gas in E+A post-starburst galaxies. Astrophys. J. 855, 51 (2018).

    ADS  Article  CAS  Google Scholar 

  53. 53.

    Morishita, T. et al. Extremely low molecular gas content in the vicinity of a red nugget galaxy at z = 1.91. Astrophys. J. 908, 163 (2021).

    ADS  CAS  Article  Google Scholar 

  54. 54.

    Smith, M. et al. The Herschel Reference Survey: dust in early-type galaxies and across the Hubble sequence. Astrophys. J. 748, 123 (2012).

    ADS  Article  Google Scholar 

  55. 55.

    Saintonge, A. et al. Validation of the equilibrium model for galaxy evolution to z~3 through molecular gas and dust observations of lensed star-forming galaxies. Astrophys. J. 778, 2 (2013).

    ADS  Article  CAS  Google Scholar 

  56. 56.

    Franco, M. et al. GOODS-ALMA: the slow downfall of star formation in z = 2-3 massive galaxies. Astron. Astrophys. 643, 30 (2020).

    Article  CAS  Google Scholar 

  57. 57.

    Tacconi, L. et al. Submillimeter galaxies at z~2: evidence for major mergers and constraints on lifetimes, IMF, and CO-H2 conversion factor. Astrophys. J. 680, 246–262 (2008).

    ADS  CAS  Article  Google Scholar 

  58. 58.

    Daddi, E. et al. Very high gas fractions and extended gas reservoirs in z = 1.5 disk galaxies. Astrophys. J. 713, 686–707 (2010).

    ADS  CAS  Article  Google Scholar 

  59. 59.

    Silverman, J. et al. A higher efficiency of converting gas to stars pushes galaxies at z~1.6 well above the star-forming main sequence. Astrophys. J. Lett. 812, L23 (2015).

    ADS  Article  CAS  Google Scholar 

  60. 60.

    Decarli, R. et al. The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: molecular gas reservoirs in high-redshift galaxies. Astrophys. J. 833, 70 (2016).

    ADS  Article  CAS  Google Scholar 

  61. 61.

    Rudnick, G. et al. Deep CO(1-0) observations of z = 1.62 cluster galaxies with substantial molecular gas reservoirs and normal star formation efficiencies. Astrophys. J. 849, 27 (2017).

    ADS  Article  CAS  Google Scholar 

  62. 62.

    Spilker, J. et al. Low gas fractions connect compact star-forming galaxies to their z~2 quiescent descendants. Astrophys. J. 832, 19 (2016).

    ADS  Article  Google Scholar 

  63. 63.

    Aravena, M. et al. The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: the nature of the faintest dusty star-forming galaxies. Astrophys. J. 901, 79 (2020).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This paper makes use of ADS/JAO.ALMA 2018.1.00276.S and ADS/JAO.ALMA 2019.1.00227.S ALMA data. ALMA is a partnership of the European Southern Observatory (ESO; representing its member states), NSF (USA) and NINS (Japan), together with NRC (Canada), MOST and ASIAA (Taiwan) and KASI (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, AUI/NRAO and NAOJ. The NRAO is a facility of the NSF operated under cooperative agreement by Associated Universities. This work uses observations from the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, under NASA contract NAS 5-26555. K.E.W. wishes to acknowledge funding from the Alfred P. Sloan Foundation, HST-GO-14622 and HST-GO-15663. C.C.W. acknowledges support from the NSF Astronomy and Astrophysics Fellowship grant AST-1701546 and from the NIRCam Development Contract NAS50210 from NASA Goddard Space Flight Center to the University of Arizona. S.T. acknowledges support from the ERC Consolidator Grant funding scheme (project ConTExt, grant no. 648179), F.V. from the Carlsberg Foundation Research Grant CF18-0388, and G.E.M. from the Villum Fonden research grant 13160. The Cosmic Dawn Center is funded by the Danish National Research Foundation under grant no. 140. C.P. is supported by the Canadian Space Agency under a contract with NRC Herzberg Astronomy and Astrophysics. M.A. acknowledges support from NASA under award no. 80NSSC19K1418. J.S.S. is a NHFP Hubble Fellow supported by NASA Hubble Fellowship grant no. HF2-51446 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, for NASA, under contract NAS5-26555. A.M. is supported by a Dunlap Fellowship at the Dunlap Institute for Astronomy & Astrophysics, funded through an endowment established by the David Dunlap family and the University of Toronto. D.N. acknowledges support from the NSF via AST-1908137.

Author information

Affiliations

Authors

Contributions

K.E.W. proposed and carried out the observations, conducted the analysis, and wrote the majority of the manuscript. C.C.W. performed the weighted stack of the data, helped to create Figs. 2 and 3, and edited the main text of the manuscript. L.M. performed direct analysis of the ALMA flux densities and created the images in Fig. 1. J.S.S. carried out the reduction and direct analysis of the raw ALMA data. M.A. reduced the HST images, and M.A. and J.L. performed a stellar population synthesis analysis. G.E.M., A.P., S.T. and F.V. helped to interpret the millimetre data and contributed to the dust and gas mass analysis. D.N. helped to interpret the data in the context of cosmological simulation models. All authors, including R.B., G.B.B., J.L., A.M., E.J.N., C.P., K.S. and P.G.v.D., contributed to the overall interpretation of the results and aspects of the analysis and writing.

Corresponding author

Correspondence to Katherine E. Whitaker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Claudia Maraston and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Whitaker, K.E., Williams, C.C., Mowla, L. et al. Quenching of star formation from a lack of inflowing gas to galaxies. Nature 597, 485–488 (2021). https://doi.org/10.1038/s41586-021-03806-7

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links