Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Deep continental roots and cratons


The formation and preservation of cratons—the oldest parts of the continents, comprising over 60 per cent of the continental landmass—remains an enduring problem. Key to craton development is how and when the thick strong mantle roots that underlie these regions formed and evolved. Peridotite melting residues forming cratonic lithospheric roots mostly originated via relatively low-pressure melting and were subsequently transported to greater depth by thickening produced by lateral accretion and compression. The longest-lived cratons were assembled during Mesoarchean and Palaeoproterozoic times, creating the stable mantle roots 150 to 250 kilometres thick that are critical to preserving Earth’s early continents and central to defining the cratons, although we extend the definition of cratons to include extensive regions of long-stable Mesoproterozoic crust also underpinned by thick lithospheric roots. The production of widespread thick and strong lithosphere via the process of orogenic thickening, possibly in several cycles, was fundamental to the eventual emergence of extensive continental landmasses—the cratons.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Defining cratonic regions with seismic imaging of continental mantle lithosphere.
Fig. 2: Estimating depth of melt extraction for lithospheric peridotites.
Fig. 3: Geodynamic modelling of possible craton formation processes: lateral compression and plume residue dispersal.


  1. 1.

    Artemieva, I. M. The Lithosphere: An Interdisciplinary Approach 794 (Cambridge Univ. Press, 2011).

  2. 2.

    Jordan, T. H. Continental tectosphere. Rev. Geophys. 13, 1–12 (1975). This paper was key to recognizing the fast seismic wave speeds and deep thermal boundary layers beneath parts of the continents, and the need for compositional compensation of the negative thermal buoyancy of the continental lithosphere.

    ADS  Google Scholar 

  3. 3.

    Eaton, D. W. & Claire Perry, H. K. Ephemeral isopycnicity of cratonic mantle keels. Nat. Geosci. 6, 967–970 (2013).

    ADS  CAS  Google Scholar 

  4. 4.

    Gibson, S. A., Rooks, E. E., Day, J. A., Petrone, C. M. & Leat, P. T. The role of sub-continental mantle as both “sink” and “source” in deep Earth volatile cycles. Geochim. Cosmochim. Acta 275, 140−162 (2020).

    ADS  CAS  Google Scholar 

  5. 5.

    Hoggard, M. A. et al. Global distribution of sediment-hosted metals controlled by craton edge stability. Nat. Geosci. 13, 504–510 (2020).

    ADS  CAS  Google Scholar 

  6. 6.

    Kober, L. Der Bau der Erde (Gebrüder Borntraeger, 1921).

  7. 7.

    Kennedy, W. Q. The structural differentiation of Africa in the Pan-African (±500 m.y.) tectonic episode. In Annual Report of the Research Institute of African Geology 48–49 (Univ. Leeds, 1964). This paper laid the foundations of recognizing stability as a key part of continental evolution and mineralization, inspiring ref. 8 (Clifford, 1966).

  8. 8.

    Clifford, T. N. Tectono-metallogenetic units and metallogenetic provinces of Africa. Earth Planet. Sci. Lett. 1, 421–434 (1966).

    ADS  CAS  Google Scholar 

  9. 9.

    de Wit, M. J. & Hart, R. A. Earth’s earliest continental lithosphere, hydrothermal flux and crustal recycling. Lithos 30, 309–335 (1993).

    ADS  Google Scholar 

  10. 10.

    Bleeker, W. Archaean tectonics: a review, with illustrations from the Slave craton. Geol. Soc. Lond. Spec. Publ. 199, 151–181 (2002).

    ADS  Google Scholar 

  11. 11.

    Priyatkina, N., Khudoley, A. K., Collins, W. J., Kuznetsov, N. B. & Huang, H.-Q. Detrital zircon record of Meso- and Neoproterozoic sedimentary basins in northern part of the Siberian Craton: characterizing buried crust of the basement. Precambr. Res. 285, 21–38 (2016).

    ADS  CAS  Google Scholar 

  12. 12.

    Santos, J. O. S. et al. Duration of the trans-Amazonian cycle and its correlation within South America based on U-Pb SHRIMP geochronology of the La Plata craton, Uruguay. Int. Geol. Rev. 45, 27–48 (2003).

    Google Scholar 

  13. 13.

    Carneiro, M. A., Júnior, I. M. D. C. & Teixeira, W. Petrologia, geoquímica e geocronologia dos diques máficos do complexo metamórfico bonfim setentrional (quadrilátero ferrífero) e suas implicações na evolução crustal do craton do São Francisco meridional. Rev. Brasil. Geocienc. 28, 29–44 (1998).

    CAS  Google Scholar 

  14. 14.

    Jordan, T. H. Composition and development of the continental tectosphere. Nature 274, 544–548 (1978). Furthered the notion of the compositionally induced robustness of continents to convective disruption and proposed a compressional thickening model for the origin of deep continental roots

    ADS  CAS  Google Scholar 

  15. 15.

    Boyd, F. R. & Gurney, J. J. Diamonds and the African lithosphere. Science 232, 472–477 (1986).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Pearson, D. G. The age of continental roots. Lithos 48, 171–194 (1999).

    ADS  CAS  Google Scholar 

  17. 17.

    Hawkesworth, C. J., Cawood, P. A., Dhuime, B. & Kemp, T. I. S. Earth’s continental lithosphere through time. Annu. Rev. Earth Planet. Sci. 45, 169–198 (2017).

    ADS  CAS  Google Scholar 

  18. 18.

    Sleep, N. H., Ebinger, C. J. & Kendall, J. M. Deflection of mantle plume material by cratonic keels. Geol. Soc. Lond. Spec. Publ. 199, 135−150 (2003).

    Google Scholar 

  19. 19.

    Foley, S. F. Rejuvenation and erosion of the cratonic lithosphere. Nat. Geosci. 1, 503–510 (2008).

    ADS  CAS  Google Scholar 

  20. 20.

    Wang, H., van Hunen, J. & Pearson, D. G. The thinning of subcontinental lithosphere: the roles of plume impact and metasomatic weakening. Geochem. Geophys. Geosyst. 16, 1156–1171 (2015).

    ADS  Google Scholar 

  21. 21.

    Simons, F. J., Zielhuis, A. & van der Hilst, R. D. The deep structure of the Australian continent from surface wave tomography. Lithos 48, 17–43 (1999). This paper revealed the widespread presence of very deep mantle roots beneath western Australia, outside of Archean nuclei.

    ADS  CAS  Google Scholar 

  22. 22.

    James, D. E., Fouch, M. J., VanDecar, J. C., van der Lee, S. & Kaapvaal-Seismic-Group. Tectospheric structure beneath Southern Africa. Geophys. Res. Lett. 28, 2485–2488 (2001).

    ADS  Google Scholar 

  23. 23.

    Schaeffer, A. & Lebedev, S. in The Earth’s Heterogeneous Mantle 3–46 (Springer, 2015).

  24. 24.

    Schaeffer, A. J. & Lebedev, S. Imaging the North American continent using waveform inversion of global and USArray data. Earth Planet. Sci. Lett. 402, 26–41 (2014).

    ADS  CAS  Google Scholar 

  25. 25.

    Ortiz, K. et al. Upper mantle P and S wave velocity structure of the Kalahari Craton and surrounding Proterozoic terranes, southern Africa. Geophys. Res. Lett. 46, 9509–9518 (2019).

    ADS  Google Scholar 

  26. 26.

    McKenzie, D. & Priestley, K. The influence of lithospheric thickness variations on continental evolution. Lithos 102, 1–11 (2008).

    ADS  CAS  Google Scholar 

  27. 27.

    Artemieva, I. M. Global 1°×1° thermal model TC1 for the continental lithosphere: implications for lithosphere secular evolution. Tectonophysics 416, 245–277 (2006).

    ADS  Google Scholar 

  28. 28.

    Menzies, M. A., Fan, W.-M. & Zhang, M. Paleozoic and Cenozoic lithoprobes and the loss of >120 km of Archean lithosphere, Sino-Korean craton, China. In Magmatic Processes and Plate Tectonics 71–81 (Geological Soc., 1993). This paper was the first to propose the dramatic lithospheric thinning beneath the eastern North China Craton.

  29. 29.

    Carlson, R. W. & Irving, A. J. Depletion and enrichment history of subcontinental lithospheric mantle—an Os, Sr, Nd and Pb isotopic study of ultramafic xenoliths from the Northwestern Wyoming Craton. Earth Planet. Sci. Lett. 126, 457–472 (1994).

    ADS  CAS  Google Scholar 

  30. 30.

    Gao, S., Rudnick, R. L., Carlson, R. W., McDonough, W. F. & Liu, Y. S. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth Planet. Sci. Lett. 198, 307–322 (2002). This paper convincingly demonstrates, using peridotite dating, that the ancient deep root of the North China Craton was replaced by shallow young lithosphere.

    ADS  CAS  Google Scholar 

  31. 31.

    Snyder, D. B., Humphreys, E. & Pearson, D. G. Construction and destruction of some North American cratons. Tectonophysics 694, 464–485 (2017).

    ADS  CAS  Google Scholar 

  32. 32.

    Ringwood, A. E. Composition and Petrology of the Earth’s Upper Mantle (McGraw-Hill, 1975).

  33. 33.

    Afonso, J. C. & Schutt, D. L. The effects of polybaric partial melting on density and seismic velocities of mantle restites. Lithos 134/135, 289–303 (2012).

    ADS  Google Scholar 

  34. 34.

    Bernstein, S., Kelemen, P. B. & Brooks, C. K. Highly depleted spinel harzburgite xenoliths in Tertiary dikes from East Greenland. Earth Planet. Sci. Lett. 154, 221–235 (1998).

    ADS  CAS  Google Scholar 

  35. 35.

    Walter, M. J. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J. Petrol. 39, 29–60 (1998). These benchmark melting experiments calibrated much of our understanding of how the composition of mantle melt residues vary with melt fraction.

    ADS  CAS  Google Scholar 

  36. 36.

    Herzberg, C. Geodynamic information in peridotite petrology. J. Petrol. 45, 2507–2530 (2004).

    ADS  CAS  Google Scholar 

  37. 37.

    Bernstein, S., Kelemen, P. B. & Hanghøj, K. Consistent olivine Mg# in cratonic mantle reflects Archean mantle melting to the exhaustion of orthopyroxene. Geology 35, 459–462 (2007). This paper used olivine composition to recognize the ultra-depleted harzburgite/dunite nature of cratonic mantle, prior to ubiquitous metasomatism of these protoliths.

    ADS  CAS  Google Scholar 

  38. 38.

    Afonso, J. C. et al. 3-D multiobservable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. I: A priori petrological information and geophysical observables. J. Geophys. Res. Solid Earth 118, 2586–2617 (2013).

    ADS  Google Scholar 

  39. 39.

    Baptiste, V. & Tommasi, A. Petrophysical constraints on the seismic properties of the Kaapvaal craton mantle root. Solid Earth 5, 45−63 (2014).

    ADS  Google Scholar 

  40. 40.

    Peslier, A. H., Schönbächler, M., Busemann, H. & Karato, S.-I. Water in the Earth’s interior: distribution and origin. Space Sci. Rev. 212, 743–810 (2017).

    ADS  CAS  Google Scholar 

  41. 41.

    Doin, M. P., Fleitout, L. & Christensen, U. Mantle convection and stability of depleted and undepleted continental lithosphere. J. Geophys. Res. Solid Earth 102, 2771–2787 (1997). This paper and ref. 42 (Lenardic, 1999) are the pioneering dynamical models exploring the factors controlling cratonic mantle root stability.

    Google Scholar 

  42. 42.

    Lenardic, A. & Moresi, L. N. Some thoughts on the stability of cratonic lithosphere: effects of buoyancy and viscosity. J. Geophys. Res. Solid Earth 104 (B6), 12747–12758 (1999).

    Google Scholar 

  43. 43.

    Artemieva, I. M., Thybo, H. & Cherepanova, Y. Isopycnicity of cratonic mantle restricted to kimberlite provinces. Earth Planet. Sci. Lett. 505, 13–19 (2019).

    ADS  CAS  Google Scholar 

  44. 44.

    Snyder, D. B. & Lockhart, G. Does seismically anisotropic subcontinental mantle lithosphere require metasomatic wehrlite-pyroxenite dyke stockworks? Lithos 112, 961–965 (2009).

    ADS  Google Scholar 

  45. 45.

    Smith, D., Griffin, W. L., Ryan, C. G. & Sie, S. H. Trace-element zonation in garnets from The Thumb—heating and melt infiltration below the Colorado Plateau. Contrib. Mineral. Petrol. 107, 60–79 (1991).

    ADS  CAS  Google Scholar 

  46. 46.

    Kopylova, M. G. & Russell, J. K. Chemical stratification of cratonic lithosphere: constraints from the Northern Slave craton, Canada. Earth Planet. Sci. Lett. 181, 71–87 (2000).

    ADS  CAS  Google Scholar 

  47. 47.

    Pearson, D. G. & Wittig, N. in Treatise on Geochemistry 2nd edn, 255–292 (Elsevier, 2014).

  48. 48.

    Hanghoj, K., Kelemen, P., Bernstein, S., Blusztajn, J. & Frei, R. Osmium isotopes in the Wiedemann Fjord mantle xenoliths: a unique record of cratonic mantle formation by melt depletion in the Archaean. Geochem. Geophys. Geosyst. 2, 2000GC000085 (2001).

    Google Scholar 

  49. 49.

    Pearson, D. G., Irvine, G. J. & Carlson, R. W. G., K. M. & Ionov, D. A. The development of lithospheric mantle keels beneath the earliest continents: time constraints using PGE and Re-Os isotope systematics. In The Early Earth: Physical, Chemical and Biological Development Vol. 199, 65–90 (Geological Society of London, Special Publication, 2002).

  50. 50.

    Smith, D. & Boyd, F. R. Compositional zonation in garnets in peridotite xenoliths. Contrib. Mineral. Petrol. 112, 134–147 (1992).

    ADS  CAS  Google Scholar 

  51. 51.

    van Achterbergh, E., Griffin, W. L. & Stiefenhofer, J. Metasomatism in mantle xenoliths from the Letlhakane kimberlites: estimation of element fluxes. Contrib. Mineral. Petrol. 141, 397–414 (2001).

    ADS  Google Scholar 

  52. 52.

    Shimizu, N., Pokhilenko, N. P., Boyd, F. R. & Pearson, D. G. Geochemical characteristics of mantle xenoliths from Udachnaya kimberlite pipe. Geol. Geof. 38, 194–205 (1997).

    CAS  Google Scholar 

  53. 53.

    Simon, N. S. C., Irvine, G. J., Davies, G. R., Pearson, D. G. & Carlson, R. W. The origin of garnet and clinopyroxene in “depleted” Kaapvaal peridotites. Lithos 71, 289–322 (2003).

    ADS  CAS  Google Scholar 

  54. 54.

    Boyd, F. R. et al. Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths. Contrib. Mineral. Petrol. 128, 228–246 (1997).

    ADS  CAS  Google Scholar 

  55. 55.

    Griffin, W. L., O’Reilly, S. Y., Afonso, J. C. & Begg, G. C. The composition and evolution of lithospheric mantle: a re-evaluation and its tectonic implications. J. Petrol. 50, 1185–1204 (2009).

    ADS  CAS  Google Scholar 

  56. 56.

    Aulbach, S. Craton nucleation and formation of thick lithospheric roots. Lithos 149, 16–30 (2012).

    ADS  CAS  Google Scholar 

  57. 57.

    Pearson, D. G. et al. Characteristics and origin of the mantle root beneath the Murowa diamond mine: implications for craton and diamond formation. In Geoscience and Exploration of the Argyle, Bunder, Diavik and Murowa Diamond Deposits Vol. 20 (eds Davy. A. T. et al.) Ch. 19, 403–424 (Society of Economic Geologists Special Publication, 2018).

  58. 58.

    Bernstein, S., Hanghøj, K., Kelemen, P. B. & Brooks, C. K. Ultra-depleted, shallow cratonic mantle beneath West Greenland: dunitic xenoliths from Ubekendt Ejland. Contrib. Mineral. Petrol. 152, 335–347 (2006).

    ADS  CAS  Google Scholar 

  59. 59.

    Wittig, N. et al. Origin of cratonic lithospheric mantle roots: a geochemical study of peridotites from the North Atlantic Craton, West Greenland. Earth Planet. Sci. Lett. 274, 24–33 (2008).

    ADS  CAS  Google Scholar 

  60. 60.

    Boyd, F. R. Compositional distinction between oceanic and cratonic lithosphere. Earth Planet. Sci. Lett. 96, 15–26 (1989). This paper documented the striking compositional contrast between modern oceanic and cratonic mantle lithosphere and proposed that the latter is comprised of residues from komatiite extraction.

    ADS  CAS  Google Scholar 

  61. 61.

    Pearson, D. G. et al. Re-Os, Sm-Nd, and Rb-Sr isotope evidence for thick archean lithospheric mantle beneath the Siberian Craton modified by multistage metasomatism. Geochim. Cosmochim. Acta 59, 959–977 (1995).

    ADS  CAS  Google Scholar 

  62. 62.

    Brey, G. P. & Shu, Q. The birth, growth and ageing of the Kaapvaal subcratonic mantle. Mineral. Petrol. 112, 23–41 (2018).

    ADS  CAS  Google Scholar 

  63. 63.

    Canil, D. Mildly incompatible elements in peridotites and the origins of mantle lithosphere. Lithos 77, 375–393 (2004).

    ADS  CAS  Google Scholar 

  64. 64.

    Gibson, S. A., Malarkey, J. & Day, J. A. Melt depletion and enrichment beneath the Western Kaapvaal Craton: evidence from Finsch peridotite xenoliths. J. Petrol. 49, 1817–1852 (2008).

    ADS  CAS  Google Scholar 

  65. 65.

    Helmstaedt, H. H. & Schulze, D. J. Southern African kimberlites and their mantle sample: implications for Archean tectonics and lithosphere evolution. In Kimberlites and Related Rocks (eds Ross, J. et al.) Vol. 1, 358–368 (GSA Spec. Publ. 14, Blackwell, 1989).

  66. 66.

    Herzberg, C. & Rudnick, R. Formation of cratonic lithosphere: an integrated thermal and petrological model. Lithos 149, 4–15 (2012).

    ADS  CAS  Google Scholar 

  67. 67.

    Kelemen, P. B., Hart, S. R. & Bernstein, S. Silica enrichment in the continental upper mantle via melt/rock reaction. Earth Planet. Sci. Lett. 164, 387–406 (1998). This paper was first to outline a quantitative metasomatic origin for orthopyroxene enrichment in cratonic mantle, using trace elements to document low-pressure melt extraction followed by higher-pressure growth of metamorphic garnet.

    ADS  CAS  Google Scholar 

  68. 68.

    Lee, C.-T. A., Luffi, P. & Chin, E. J. Building and destroying continental mantle. Annu. Rev. Earth Planet. Sci. 39, 59–90 (2011).

    ADS  CAS  Google Scholar 

  69. 69.

    Lee, C. T. A. in Archean Geodynamics and Environments 89–110 (Geophysical Monograph, American Geophysical Union, 2006).

  70. 70.

    Servali, A. & Korenaga, J. Oceanic origin of continental mantle lithosphere. Geology 46, 1047–1050 (2018).

    ADS  CAS  Google Scholar 

  71. 71.

    Stachel, T., Viljoen, K. S., Brey, G. & Harris, J. W. Metasomatic processes in lherzolitic and harzburgitic domains of diamondiferous lithospheric mantle: REE in garnets from xenoliths and inclusions in diamonds. Earth Planet. Sci. Lett. 159, 1–12 (1998). This paper used garnet Cr systematics to document high-pressure metamorphic origin of cratonic peridotites from low pressure melt residues.

    ADS  CAS  Google Scholar 

  72. 72.

    Tainton, K. M. & McKenzie, D. The generation of kimberlites, lamproites, and their source rocks. J. Petrol. 35, 787–817 (1994).

    ADS  CAS  Google Scholar 

  73. 73.

    Parman, S. W., Grove, T. L., Dann, J. C. & De Wit, M. J. A subduction origin for komatiites and cratonic lithospheric mantle. S. Afr. J. Geol. 107, 107–118 (2004).

    Google Scholar 

  74. 74.

    Carlson, R. W., Pearson, D. G. & James, D. E. Physical, chemical, and chronological characteristics of continental mantle. Rev. Geophys. 43, (2005).

  75. 75.

    Simon, N. S. C., Carlson, R. W., Pearson, D. G. & Davies, G. R. The origin and evolution of the Kaapvaal cratonic lithospheric mantle. J. Petrol. 48, 589–625 (2007).

    ADS  CAS  Google Scholar 

  76. 76.

    Pearson, D. G. & Wittig, N. Formation of Archaean continental lithosphere and its diamonds: the root of the problem. J. Geol. Soc. Lond. 165, 895–914 (2008).

    Google Scholar 

  77. 77.

    Pearson, D. G., Carlson, R. W., Shirey, S. B., Boyd, F. R. & Nixon, P. H. Stabilization of Archean lithospheric mantle—a Re-Os isotope study of peridotite xenoliths from the Kaapvaal Craton. Earth Planet. Sci. Lett. 134, 341–357 (1995).

    ADS  CAS  Google Scholar 

  78. 78.

    Walter, M. J. Melt extraction and compositional variability in the mantle. In Treatise on Geochemistry Vol. 2, Ch. 8, 363–394 (Elsevier, 2003).

  79. 79.

    Bell, D. R. et al. Silica and volatile-element metasomatism of Archean mantle: a xenolith-scale example from the Kaapvaal Craton. Contrib. Mineral. Petrol. 150, 251–267 (2005).

    ADS  CAS  Google Scholar 

  80. 80.

    Ganne, J. & Feng, X. Primary magmas and mantle temperatures through time. Geochem. Geophys. Geosyst. 18, 872–888 (2017).

    ADS  CAS  Google Scholar 

  81. 81.

    Pearson, D. G. & Wittig, N. The formation and evolution of the subcontinental mantle lithosphere—evidence from mantle xenoliths. In Treatise of Geochemistry Vol. 3 The Mantle and Core Ch. 3.6, 255–292 (2014).

  82. 82.

    Shu, Q. et al. The evolution of the Kaapvaal craton: a multi-isotopic perspective from lithospheric peridotites from Finsch diamond mine. Precambr. Res. 331, 105380 (2019).

    ADS  CAS  Google Scholar 

  83. 83.

    Su, B. & Chen, Y. Making cratonic lithospheric mantle. J. Geophys. Res. Solid Earth 123, 7688–7706 (2018).

    ADS  CAS  Google Scholar 

  84. 84.

    Gibson, S. A. & Mills, S. On the nature and origin of garnet in highly-refractory Archean lithospheric mantle: constraints from garnet exsolved in Kaapvaal craton orthopyroxenes. Mineral. Mag. 81, 781–809 (2017).

    CAS  Google Scholar 

  85. 85.

    Canil, D. & Lee, C. T. A. Were deep cratonic mantle roots hydrated in Archean oceans? Geology 37, 667–670 (2009).

    ADS  CAS  Google Scholar 

  86. 86.

    Schulze, D. J. Calcium anomalies in the mantle and a subducted metaserpentinite origin for diamonds. Nature 319, 483–485 (1986). Initial exploration of the idea of subducted precursors to deep cratonic roots.

    ADS  CAS  Google Scholar 

  87. 87.

    Perchuk, A. L., Gerya, T. V., Zakharov, V. S. & Griffin, W. L. Building cratonic keels in precambrian plate tectonics. Nature 586, 395–401 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Regier, M. et al. An oxygen isotope test for the origin of Archean mantle roots. Geochem. Persp. Lett. 9, 6–10 (2018).

    Google Scholar 

  89. 89.

    Liu, J. et al. Plume-driven recratonization of deep continental lithosphere. Nature 592, 732–736 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Lee, C.-T. A. & Chin, E. J. Calculating melting temperatures and pressures of peridotite protoliths: implications for the origin of cratonic mantle. Earth Planet. Sci. Lett. 403, 273–286 (2014).

    ADS  CAS  Google Scholar 

  91. 91.

    Scott, J. et al. Continent stabilisation by lateral accretion of subduction zone-processed depleted mantle residues; insights from Zealandia. Earth Planet. Sci. Lett. 507, 175–186 (2019).

    ADS  CAS  Google Scholar 

  92. 92.

    Brandon, A. D., Snow, J. E., Walker, R. J., Morgan, J. W. & Mock, T. D. 190Pt-186Os and 187Re-187Os systematics of abyssal peridotites. Earth Planet. Sci. Lett. 177, 319–335 (2000).

    ADS  CAS  Google Scholar 

  93. 93.

    Harvey, J. et al. Ancient melt extraction from the oceanic upper mantle revealed by Re–Os isotopes in abyssal peridotites from the Mid-Atlantic ridge. Earth Planet. Sci. Lett. 244, 606–621 (2006).

    ADS  CAS  Google Scholar 

  94. 94.

    Kramers, J. D. Lead, uranium, strontium, potassium and rubidium in inclusion-bearing diamonds and mantle-derived xenoliths from southern Africa. Earth Planet. Sci. Lett. 42, 58–70 (1979).

    ADS  CAS  Google Scholar 

  95. 95.

    Menzies, M. & Murthy, V. R. Enriched mantle: Nd and Sr isotopes in diopsides from kimberlite nodules. Nature 283, 634–636 (1980). Along with ref. 94 (Kramers, 1979) and ref. 96 (Richardson, 1984), this is a pioneering study defining the geochemical evidence for the longevity of cratonic roots.

    ADS  CAS  Google Scholar 

  96. 96.

    Richardson, S. H., Gurney, J. J., Erlank, A. J. & Harris, J. W. Origin of diamonds in old enriched mantle. Nature 310, 198–202 (1984).

    ADS  CAS  Google Scholar 

  97. 97.

    Walker, R. J., Carlson, R. W., Shirey, S. B. & Boyd, F. R. Os, Sr, Nd, and Pb isotope systematics of southern African peridotite xenoliths—implications for the chemical evolution of subcontinental mantle. Geochim. Cosmochim. Acta 53, 1583–1595 (1989).These authors were the first to document melt-depletion ages in cratons using Re-Os isotopes.

    ADS  CAS  Google Scholar 

  98. 98.

    Carlson, R. W. et al. Re-Os systematics of lithospheric peridotites: Implications for lithosphere formation and preservation. In The J.B. Dawson Volume, Proceedings of the VIIth International Kimberlite Conference (eds Gurney, J. J. Gurney, J. L. Pascoe, M. D. & Richardson, S. H.) 99–108 (Red Roof Design, 1999).

  99. 99.

    Griffin, W. L., Spetsius, Z. V., Pearson, N. J. & O’Reilly, S. Y. In situ Re-Os analysis of sulfide inclusions in kimberlitic olivine: new constraints on depletion events in the Siberian lithospheric mantle. Geochem. Geophys. Geosyst. 3, (2002).

  100. 100.

    Irvine, G. J., Pearson, D. G. & Carlson, R. W. Lithospheric mantle evolution of the Kaapvaal Craton: a Re-Os isotope study of peridotite xenoliths from Lesotho kimberlites. Geophys. Res. Lett. 28, 2505–2508 (2001).

    ADS  CAS  Google Scholar 

  101. 101.

    Rudnick, R. L. & Walker, R. J. Interpreting ages from Re-Os isotopes in peridotites. Lithos 112, 1083–1095 (2009).

    ADS  Google Scholar 

  102. 102.

    Liu, J. et al. Mapping lithospheric boundaries using Os isotopes of mantle xenoliths: an example from the North China Craton. Geochim. Cosmochim. Acta 75, 3881–3902 (2011).

    ADS  CAS  Google Scholar 

  103. 103.

    Luguet, A. & Pearson, G. Dating mantle peridotites using Re-Os isotopes: the complex message from whole rocks, base metal sulfides, and platinum group minerals. Am. Mineral. 104, 165–189 (2019).

    ADS  Google Scholar 

  104. 104.

    Griffin, W. L. et al. The world turns over: Hadean–Archean crust–mantle evolution. Lithos 189, 2–15 (2014).

    ADS  CAS  Google Scholar 

  105. 105.

    Meibom, A. et al. Re-Os isotopic evidence for long-lived heterogeneity and equilibration processes in the Earth’s upper mantle. Nature 419, 705–708 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  106. 106.

    Pearson, D. G., Parman, S. W. & Nowell, G. M. A link between large mantle melting events and continent growth seen in osmium isotopes. Nature 449, 202–205 (2007).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Bragagni, A. et al. The geological record of base metal sulfides in the cratonic mantle: a microscale 187Os/188Os study of peridotite xenoliths from Somerset Island, Rae Craton (Canada). Geochim. Cosmochim. Acta 216, 264–285 (2017).

    ADS  CAS  Google Scholar 

  108. 108.

    van Acken, D. et al. Mesoarchean melting and Neoarchean to Paleoproterozoic metasomatism during the formation of the cratonic mantle keel beneath West Greenland. Geochim. Cosmochim. Acta 203, 37–53 (2017).

    ADS  Google Scholar 

  109. 109.

    Wainwright, A. N., Luguet, A., Fonseca, R. O. C. & Pearson, D. G. Investigating metasomatic effects on the 187Os isotopic signature: a case study on micrometric base metal sulphides in metasomatised peridotite from the Letlhakane kimberlite (Botswana). Lithos 232, 35–48 (2015).

    ADS  CAS  Google Scholar 

  110. 110.

    Beall, A. P., Moresi, L. & Cooper, C. M. Formation of cratonic lithosphere during the initiation of plate tectonics. Geology 46, 487–490 (2018).

    ADS  CAS  Google Scholar 

  111. 111.

    Doucet, L. S., Ionov, D. A. & Golovin, A. V. Paleoproterozoic formation age for the Siberian cratonic mantle: Hf and Nd isotope data on refractory peridotite xenoliths from the Udachnaya kimberlite. Chem. Geol. 391, 42–55 (2015).

    ADS  CAS  Google Scholar 

  112. 112.

    Ionov, D. A., Liu, Z., Golovin, A. V., Korsakov, A. V. & Xu, Y. The age and origin of cratonic lithospheric mantle: Archean dunites vs. Paleoproterozoic harzburgites from the Udachnaya kimberlite, Siberian craton. Geochim. Cosmochim. Acta 281, 67–90 (2020).

    ADS  CAS  Google Scholar 

  113. 113.

    Liu, J. et al. Diamondiferous Paleoproterozoic mantle roots beneath Arctic Canada: a study of mantle xenoliths from Parry Peninsula and Central Victoria Island. Geochim. Cosmochim. Acta 239, 284–311 (2018).

    ADS  CAS  Google Scholar 

  114. 114.

    Czas, J., Pearson, D. G., Stachel, T., Kjarsgaard, B. A. & Read, G. H. A Palaeoproterozoic diamond-bearing lithospheric mantle root beneath the Archean Sask Craton, Canada. Lithos 356/357, 105301 (2020).

    Google Scholar 

  115. 115.

    Luguet, A. et al. An integrated petrological, geochemical and Re-Os isotope study of peridotite xenoliths from the Argyle lamproite, Western Australia and implications for cratonic diamond occurrences. Lithos 112, 1096–1108 (2009).

    ADS  Google Scholar 

  116. 116.

    Wittig, N. et al. Formation of the North Atlantic Craton: timing and mechanisms constrained from Re-Os isotope and PGE data of peridotite xenoliths from SW Greenland. Chem. Geol. 276, 166–187 (2010).

    ADS  CAS  Google Scholar 

  117. 117.

    Griffin, W. L., Graham, S., O’Reilly, S. Y. & Pearson, N. J. Lithosphere evolution beneath the Kaapvaal Craton: Re–Os systematics of sulfides in mantle-derived peridotites. Chem. Geol. 208, 89–118 (2004).

    ADS  CAS  Google Scholar 

  118. 118.

    Schoene, B., de Wit, M. J. & Bowring, S. A. Mesoarchean assembly and stabilization of the eastern Kaapvaal craton: a structural-thermochronological perspective. Tectonics 27, (2008).

  119. 119.

    Eglington, B. Evolution of the Namaqua-Natal Belt, southern Africa—a geochronological and isotope geochemical review. J. Afr. Earth Sci. 46, 93–111 (2006).

    ADS  CAS  Google Scholar 

  120. 120.

    Janney, P. E. et al. Age, composition and thermal characteristics of South African off-craton mantle lithosphere: evidence for a multi-stage history. J. Petrol. 51, 1849–1890 (2010).

    ADS  CAS  Google Scholar 

  121. 121.

    Eglington, B. M. & Armstrong, R. A. The Kaapvaal Craton and adjacent orogens, southern Africa: a geochronological database and overview of the geological development of the craton. S. Afr. J. Geol. 107, 13–32 (2004).

    Google Scholar 

  122. 122.

    Mather, K. A., Pearson, D. G., McKenzie, D., Kjarsgaard, B. A. & Priestley, K. Constraints on the depth and thermal history of cratonic lithosphere from peridotite xenoliths, xenocrysts and seismology. Lithos 125, 729–742 (2011).

    ADS  CAS  Google Scholar 

  123. 123.

    Ionov, D. A., Carlson, R. W., Doucet, L. S., Golovin, A. V. & Oleinikov, O. B. The age and history of the lithospheric mantle of the Siberian craton: Re–Os and PGE study of peridotite xenoliths from the Obnazhennaya kimberlite. Earth Planet. Sci. Lett. 428, 108–119 (2015).

    ADS  CAS  Google Scholar 

  124. 124.

    Pernet-Fisher, J. F. et al. Plume impingement on the Siberian SCLM: evidence from Re-Os isotope systematics. Lithos 218–219, 141–154 (2015).

    ADS  Google Scholar 

  125. 125.

    Liu, J. et al. Age and evolution of the deep continental root beneath the central Rae craton, northern Canada. Precambr. Res. 272, 168–184 (2016).

    ADS  CAS  Google Scholar 

  126. 126.

    Smit, K. V., Pearson, D. G., Stachel, T. & Seller, M. Peridotites from Attawapiskat, Canada: Mesoproterozoic reworking of Palaeoarchaean lithospheric mantle beneath the Northern Superior Superterrane. J. Petrol. 55, 1829–1863 (2014).

    ADS  CAS  Google Scholar 

  127. 127.

    Liu, J., Scott, J. M., Martin, C. E. & Pearson, D. G. The longevity of Archean mantle residues in the convecting upper mantle and their role in young continent formation. Earth Planet. Sci. Lett. 424, 109–118 (2015).

    ADS  CAS  Google Scholar 

  128. 128.

    Kamber, B. S. & Tomlinson, E. L. Petrological, mineralogical and geochemical peculiarities of Archean cratons. Chem. Geol. 511, 123–151 (2019).

    ADS  CAS  Google Scholar 

  129. 129.

    Cawood, P. A. et al. Accretionary orogens through Earth history. Geol. Soc. Lond. Spec. Publ. 318, (2009).

  130. 130.

    Herzberg, C., Condie, K. & Korenaga, J. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010).

    ADS  CAS  Google Scholar 

  131. 131.

    Li, X., Kind, R., Yuan, X., Wolbern, I. & Hanka, W. Rejuvenation of the lithosphere by the Hawaiin plume. Nature 427, 827–829 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Sand, K. K. et al. The lithospheric mantle below southern West Greenland: a geothermobarometric approach to diamond potential and mantle stratigraphy. Lithos 112, 1155–1166 (2009).

    ADS  Google Scholar 

  133. 133.

    Bernstein, S., Szilas, K. & Kelemen, P. B. Highly depleted cratonic mantle in West Greenland extending into diamond stability field in the Proterozoic. Lithos 168–169, 160–172 (2013).

    ADS  Google Scholar 

  134. 134.

    Hamilton, M. A., Pearson, D. G., Thompson, R. N., Kelley, S. P. & Emeleus, C. H. Rapid eruption of Skye lavas inferred from precise U-Pb and Ar-Ar dating of the Rum and Cuillin plutonic complexes. Nature 394, 260–263 (1998).

    ADS  CAS  Google Scholar 

  135. 135.

    Nixon, P. H. Kimberlites in the south-west Pacific. Nature 287, 718–720 (1980). The study was the first to recognise thick oceanic lithospheric mantle and deeply derived oceanic magmas.

    ADS  Google Scholar 

  136. 136.

    Ishikawa, A., Pearson, D. G. & Dale, C. W. Ancient Os isotope signatures from the Ontong Java Plateau lithosphere: tracing lithospheric accretion history. Earth Planet. Sci. Lett. 301, 159–170 (2011).

    ADS  CAS  Google Scholar 

  137. 137.

    Celli, N. L., Lebedev, S., Schaeffer, A. J. & Gaina, C. African cratonic lithosphere carved by mantle plumes. Nat. Commun. 11, 92 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  138. 138.

    Ayalew, D. & Gibson, S. L. Head-to-tail transition of the Afar mantle plume: geochemical evidence from a Miocene bimodal basalt–rhyolite succession in the Ethiopian Large Igneous Province. Lithos 112, 461–476 (2009).

    ADS  CAS  Google Scholar 

  139. 139.

    Capitanio, F. A., Nebel, O. & Cawood, P. A. Thermochemical lithosphere differentiation and the origin of cratonic mantle. Nature 588, 89–94 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  140. 140.

    Moyen, J. F. & van Hunen, J. Short-term episodicity of Archaean plate tectonics. Geology 40, 451–454 (2012).

    ADS  Google Scholar 

  141. 141.

    Wang, H., van Hunen, J. & Pearson, D. G. Making Archean cratonic roots by lateral compression: a two-stage thickening and stabilization model. Tectonophysics 746, 562–571 (2018).

    ADS  Google Scholar 

  142. 142.

    Oxburgh, E. R. & Parmentier, E. M. Thermal processes in the formation of continental lithosphere. Phil. Trans. R. Soc. Math. Phys. Eng. Sci. 288, 415–425 (1978).

    ADS  Google Scholar 

  143. 143.

    Jordan, T. H. Structure and formation of the continental lithosphere. J. Petrol. Special Lithosphere Issue (Oceanic and Continental Lithosphere; Similarities and Differences) 11–37 (1988).

  144. 144.

    McKenzie, D., Jackson, J. & Priestley, K. Thermal structure of oceanic and continental lithosphere. Earth Planet. Sci. Lett. 233, 337–349 (2005).

    ADS  CAS  Google Scholar 

  145. 145.

    McKenzie, D. & Priestley, K. Speculations on the formation of cratons and cratonic basins. Earth Planet. Sci. Lett. 435, 94–104 (2016).

    ADS  Google Scholar 

  146. 146.

    Gray, R. & Pysklywec, R. N. Geodynamic models of mature continental collision: Evolution of an orogen from lithospheric subduction to continental retreat/delamination. J. Geophys. Res. Solid Earth 117, (2012).

  147. 147.

    Nicolas, A., Boudier, F. & Boullier, M. Mechanisms of flow in naturally and experimentally deformed peridotites. Am. J. Sci. 273, 853–876 (1973). Key study relating olivine flow in experiments, with real rock structures and seismic anisotropy.

    ADS  CAS  Google Scholar 

  148. 148.

    Liddell, M. V., Bastow, I. D., Darbyshire, F., Gilligan, A. & Pugh, S. The formation of Laurentia: evidence from shear wave splitting. Earth Planet. Sci. Lett. 479, 170–178 (2017).

    ADS  CAS  Google Scholar 

  149. 149.

    Priestley, K., Ho, T. & McKenzie, D. The formation of continental roots. Geology 49, 190−194 (2020).

    ADS  Google Scholar 

  150. 150.

    Hoffman, P. F. United plates of America, the birth of a craton: Early Proterozoic assembly and growth of Laurentia. Annu. Rev. Earth Planet. Sci. 16, 543–603 (1988).

    ADS  Google Scholar 

  151. 151.

    Percival, J. A. & Pysklywec, R. N. Are Archean lithospheric keels inverted? Earth Planet. Sci. Lett. 254, 393–403 (2007).

    ADS  CAS  Google Scholar 

  152. 152.

    Van Kranendonk, M. J., Smithies, R. H., Hickman, A. H. & Champion, D. C. Secular tectonic evolution of Archean continental crust: interplay between horizontal and vertical processes in the formation of the Pilbara Craton, Australia. Terra Nova 19, 1–38 (2007).

    ADS  Google Scholar 

  153. 153.

    Francheteau, J. et al. High heat flow in southern Tibet. Nature 307, 32−36 (1984).

    Google Scholar 

  154. 154.

    England, P. C. & Thompson, A. B. in Collisional Tectonics (eds Coward, M. P. & Reis, A. C.) Vol. 19, 83–94 (The Geological Society of London Special Publication, 1986).

  155. 155.

    Davis, W. J., Fryer, B. J. & King, J. E. Geochemistry and evolution of Late Archean plutonism and its significance to the tectonic development of the Slave Craton. Precambr. Res. 67, 207–241 (1994).

    ADS  Google Scholar 

  156. 156.

    Peterson, T. D., Scott, J. M. J., LeCheminant, A. N., Jefferson, C. W. & Pehrsson, S. J. The Kivalliq Igneous Suite: anorogenic bimodal magmatism at 1.75 Ga in the western Churchill Province, Canada. Precambr. Res. 262, 101–119 (2015).

    ADS  CAS  Google Scholar 

  157. 157.

    Weller, O. M., Copley, A., Miller, W. G. R., Palin, R. M. & Dyck, B. The relationship between mantle potential temperature and oceanic lithosphere buoyancy. Earth Planet. Sci. Lett. 518, 86–99 (2019).

    ADS  CAS  Google Scholar 

  158. 158.

    Rudnick, R. L. & Fountain, D. M. Nature and composition of the lower continental crust—a lower crustal perspective. Rev. Geophys. 33, 267–309 (1995).

    ADS  Google Scholar 

  159. 159.

    Reimink, J. R., Davies, J. H. F. L. & Ielpi, A. Global zircon analysis records a gradual rise of continental crust throughout the Neoarchean. Earth Planet. Sci. Lett. 554, 116654 (2021).

    CAS  Google Scholar 

  160. 160.

    Stern, T. A. et al. in Continental Plate Boundary, Tectonics at South Island, New Zealand (eds O’kaya, D., Stern, T. & Davey, F.) Vol. 175, 207–233 (American Geophysical Union, Geophysical Monograph, 2007).

  161. 161.

    Crameri, F., Shephard, G. E. & Heron, P. J. The misuse of colour in science communication. Nat. Commun. 11, 5444 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  162. 162.

    Moresi, L.-N. & Solomatov, V. S. Numerical investigation of 2D convection with extremely large viscosity variations. Phys. Fluids 7, 2154–2162 (1995).

    ADS  MATH  Google Scholar 

  163. 163.

    Zhong, S., Zuber, M. T., Moresi, L. & Michael, G. Role of temperature-dependent viscosity and surface plates in spherical shell models of mantle convection. J. Geophys. Res. 105, 11063–11082 (2000).

    ADS  Google Scholar 

  164. 164.

    van Hunen, J., Zhong, S., Shapiro, N. M. & Ritzwoller, M. H. New evidence for dislocation creep from 3-D geodynamic modeling of the Pacific upper mantle structure. Earth Planet. Sci. Lett. 238, 146–155 (2005).

    ADS  Google Scholar 

  165. 165.

    Christensen, U. & Yuen, D. Layered convection induced by phase transitions. J. Geophys. Res. 90, 10291–10300 (1985).

    ADS  Google Scholar 

  166. 166.

    King, S. D. et al. A community benchmark for 2-D Cartesian compressible convection in the Earth’s mantle. Geophys. J. 180, 73–87 (2010).

    ADS  Google Scholar 

  167. 167.

    Katz, R. F. A new parameterization of hydrous mantle melting. Geochem. Geophys. Geosyst. 4, (2003).

  168. 168.

    Schutt, D. L. & Lesher, C. E. Effects of melt depletion on the density and seismic velocity of garnet and spinel lherzolite. J. Geophys. Res. 111, B05401 (2006).

    ADS  Google Scholar 

  169. 169.

    Chesley, J. T., Rudnick, R. L. & Lee, C. T. Re-Os systematics of mantle xenoliths from the East African Rift: age, structure, and history of the Tanzanian craton. Geochim. Cosmochim. Acta 63, 1203–1217 (1999).

    ADS  CAS  Google Scholar 

  170. 170.

    Pearson, D. G., Irvine, G. J., Ionov, D. A., Boyd, F. R. & Dreibus, G. E. Re-Os isotope systematics and platinum group element fractionation during mantle melt extraction: a study of massif and xenolith peridotite suites. Chem. Geol. 208, 29–59 (2004).

    ADS  CAS  Google Scholar 

  171. 171.

    Alard, O., Griffin, W. L., Pearson, N. J., Lorand, J.-P. & O’Reilly, S. Y. New insights into the Re–Os systematics of sub-continental lithospheric mantle from in situ analysis of sulphides. Earth Planet. Sci. Lett. 203, 651–663 (2002).

    ADS  CAS  Google Scholar 

  172. 172.

    Aulbach, S. et al. Mantle formation and evolution, Slave Craton: constraints from HSE abundances and Re–Os isotope systematics of sulfide inclusions in mantle xenocrysts. Chem. Geol. 208, 61–88 (2004).

    ADS  CAS  Google Scholar 

  173. 173.

    Korenaga, J. Urey ratio and the structure and evolution of Earth’s mantle. Rev. Geophys. 46, (2008).

Download references


D.G.P. is grateful for a Canada Excellence Research Chair, which allowed the development of the data and ideas presented. A University of Otago, William Evans Visiting Fellowship was crucial to completing this manuscript. Modelling performed by L.H.W. was funded by Research Council of Norway (grant 280567). We thank P. Cawood for constructive comments.

Author information




D.G.P. wrote the manuscript, with major contributions to the various concepts covered by J.M.S., T.C., J.L., A.S., L.H.W., J.v.H., P.B.K. and K.S. J.M.S. drafted the figures. A.S. provided the seismology models, L.H.W. performed the geodynamic models, augmented by J.v.H. J.L. performed the trace element modelling.

Corresponding author

Correspondence to D. Graham Pearson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Peter Cawood, Jolante van Wijk and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Figure 1a & 1b, and Supplementary Location Notes to Box 3a and 3b.

Supplementary Video 1

Video of dynamic model of lateral compression of cratonic mantle showing temperature and degree of melt depletion in the mantle. See “On-line Methods” for model methodology and caption to Figure 3 for further details.

Supplementary Video 2

Video of dynamic model of lateral compression of cratonic mantle showing temperature and viscosity in the mantle. See “On-line Methods” for model methodology and caption to Figure 3 for further details.

Supplementary Video 3

Video of the dynamics of the dispersion of mantle melting residues produced by mantle plumes showing temperature and extent of melt depletion in the mantle. See “On-line Methods” for model methodology and caption to Figure 3 for further details.

Supplementary Video 4

Video of the dynamics of the dispersion of mantle melting residues produced by mantle plumes showing temperature and viscosity in the mantle. See “On-line Methods” for model methodology and caption to Figure 3 for further details.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pearson, D.G., Scott, J.M., Liu, J. et al. Deep continental roots and cratons. Nature 596, 199–210 (2021).

Download citation


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing