Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Unusual width of the superconducting transition in a hydride

The Original Article was published on 14 October 2020

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Resistive transition in a magnetic field for MgB2 and YBCO.
Fig. 2: Relative broadening of the resistive transition versus magnetic field.

References

  1. 1.

    Snider, E. et al. Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature 586, 373–377 (2020).

    ADS  CAS  Article  Google Scholar 

  2. 2.

    Tinkham, M. Introduction to Superconductivity (McGraw Hill, 1996).

  3. 3.

    Pickard, C. J., Errea, I. & Eremets, M. I. Superconducting hydrides under pressure. Annu. Rev. Condens. Matter Phys. 11, 57–76 (2020).

    CAS  Article  Google Scholar 

  4. 4.

    Kim, Y. B., Hempstead, C. F. & Strnad, A. R. Flux-flow resistance in type-II superconductors. Phys. Rev. 139, A1163 (1965).

    ADS  Article  Google Scholar 

  5. 5.

    Anderson, P. W. & Kim, Y. B. Hard superconductivity: theory of the motion of Abrikosov flux lines. Rev. Mod. Phys. 36, 39 (1964).

    ADS  Article  Google Scholar 

  6. 6.

    Fisher, D. S., Fisher, M. P. A. & Huse, D. A. Thermal fluctuations, quenched disorder, phase transitions, and transport in type-II superconductors. Phys. Rev. B 43, 130–159 (1991).

    ADS  CAS  Article  Google Scholar 

  7. 7.

    Canfield, P. C., Bud’ko, S. L. & Finnemore, D. K. An overview of the basic physical properties of MgB2. Physica C 385, 1–7 (2003).

    ADS  CAS  Article  Google Scholar 

  8. 8.

    Gupta, A. et al. Resistivity broadening, upper critical fields and irreversibility lines in bulk PbMo6S8 and SnMo6S8 Chevrel phase superconductors. Physica C 235–240, 2541–2542 (1994).

    ADS  Article  Google Scholar 

  9. 9.

    Guo, J. et al. Robust zero resistance in a superconducting high-entropy alloy at pressures up to 190 GPa. Proc. Natl Acad. Sci. USA 114, 13144–13147 (2017).

    ADS  CAS  Article  Google Scholar 

  10. 10.

    Kumar, D. et al. Flux pinning and improved critical current density in superconducting boron doped diamond films. J. Phys. Commun. 2, 045015 (2018).

    Article  Google Scholar 

  11. 11.

    Eisaki, H. et al. Competition between magnetism and superconductivity in rare-earth nickel boride carbides. Phys. Rev. B 50, 647(R) (1994).

    ADS  Article  Google Scholar 

  12. 12.

    Iye, Y. et al. The anisotropic superconductivity of RBa2Cu3O7−x (R: Y, Gd and Ho) single crystals. Physica C 153–155, 26–31 (1988).

    ADS  Article  Google Scholar 

  13. 13.

    Kitazawa, K. et al. Broadening mechanism of resistive transition under magnetic field in single crystalline (La1−xSrx)2CuO4. Jpn. J. Appl. Phys. 28, L555 (1989).

    CAS  Article  Google Scholar 

  14. 14.

    Ito, H. et al. Resistive superconducting transition of κ-type BEDT-TTF organic superconductors in a magnetic field. J. Supercond. 7, 667–669 (1994).

    ADS  CAS  Article  Google Scholar 

  15. 15.

    Chen, X. H. et al. Superconductivity at 43 K in SmFeAsO1−xFx. Nature 453, 761–762 (2008).

    ADS  CAS  Article  Google Scholar 

  16. 16.

    Jung, S.-G. et al. Influence of carbon-ion irradiation on the superconducting critical properties of MgB2 thin films. Supercond. Sci. Technol. 32, 025006 (2019).

    ADS  CAS  Article  Google Scholar 

  17. 17.

    Song, J., Fabbris, G., Bi, W., Haskel, D. & Schilling, J. S. Pressure-induced superconductivity in elemental ytterbium metal. Phys. Rev. Lett. 121, 037004 (2018).

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We acknowledge clarifying correspondence with the authors of ref. 1. F.M. was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC) and by an MIF from the Province of Alberta.

Author information

Affiliations

Authors

Contributions

J.E.H. and F.M. contributed equally to all aspects of the preparation of this work.

Corresponding authors

Correspondence to J. E. Hirsch or F. Marsiglio.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hirsch, J.E., Marsiglio, F. Unusual width of the superconducting transition in a hydride. Nature 596, E9–E10 (2021). https://doi.org/10.1038/s41586-021-03595-z

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links