Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Efficient Fizeau drag from Dirac electrons in monolayer graphene

Abstract

Fizeau demonstrated in 1850 that the speed of light can be modified when it is propagating in moving media1. However, such control of the light speed has not been achieved efficiently with a fast-moving electron media by passing an electrical current. Because the strong electromagnetic coupling between the electron and light leads to the collective excitation of plasmon polaritons, it is hypothesized that Fizeau drag in electron flow systems manifests as a plasmonic Doppler effect. Experimental observation of the plasmonic Doppler effect in electronic systems has been challenge because the plasmon propagation speed is much faster than the electron drift velocity in conventional noble metals. Here we report direct observation of Fizeau drag of plasmon polaritons in strongly biased monolayer graphene by exploiting the high electron mobility and the slow plasmon propagation of massless Dirac electrons. The large bias current in graphene creates a fast-drifting Dirac electron medium hosting the plasmon polariton. This results in non-reciprocal plasmon propagation, where plasmons moving with the drifting electron media propagate at an enhanced speed. We measure the Doppler-shifted plasmon wavelength using cryogenic near-field infrared nanoscopy, which directly images the plasmon polariton mode in the biased graphene at low temperature. We observe a plasmon wavelength difference of up to 3.6 per cent between a plasmon moving with and a plasmon moving against the drifting electron media. Our findings on the plasmonic Doppler effect provide opportunities for electrical control of non-reciprocal surface plasmon polaritons in non-equilibrium systems.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic view of the Doppler effect in a graphene device.
Fig. 2: Near-field signal of the propagating plasmons under different driving currents.
Fig. 3: Gating dependence of graphene plasmon wavelength.
Fig. 4: Graphene plasmon dispersion and Doppler-induced wavelength shift.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Foucault, L. Méthode générale pour mesurer la vitesse de la lumière dans l’air et les milieux transparents. Vitesses relatives de la lumière dans l’air et dans l’eau. Projet d’expérience sur la vitesse de propagation du calorique rayonnant. C. R. Acad. Sci. 30, 551–560 (1850).

    Google Scholar 

  2. 2.

    Christensen, T. in From Classical to Quantum Plasmonics in Three and Two Dimensions 13–35 (Springer, 2017).

  3. 3.

    Maier, S. A. Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007).

  4. 4.

    Jablan, M., Soljačić, M. & Buljan, H. Plasmons in graphene: fundamental properties and potential applications. Proc. IEEE 101, 1689–1704 (2013).

    CAS  Article  Google Scholar 

  5. 5.

    Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017).

    ADS  CAS  Article  Google Scholar 

  6. 6.

    Novotny, L. & Hecht, B. Principles of Nano-optics (Cambridge Univ. Press, 2012).

  7. 7.

    Kauranen, M. & Zayats, A. V. Nonlinear plasmonics. Nat. Photon. 6, 737–748 (2012).

    ADS  CAS  Article  Google Scholar 

  8. 8.

    Bozhevolnyi, S. I., Martin-Moreno, L. & Garcia-Vidal, F. Quantum Plasmonics (Springer, 2017).

  9. 9.

    Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    ADS  CAS  Article  Google Scholar 

  10. 10.

    Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photon. 8, 899–907 (2014).

    ADS  CAS  Article  Google Scholar 

  11. 11.

    Castro Neto, A. H., Guinea, F., Peres, N. M., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    ADS  CAS  Article  Google Scholar 

  12. 12.

    Ni, G. et al. Fundamental limits to graphene plasmonics. Nature 557, 530–533 (2018).

    ADS  CAS  Article  Google Scholar 

  13. 13.

    Koppens, F. H., Chang, D. E. & Garcia de Abajo, F. J. Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett. 11, 3370–3377 (2011).

    ADS  CAS  Article  Google Scholar 

  14. 14.

    Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

    ADS  CAS  Article  Google Scholar 

  15. 15.

    Mak, K. F. et al. Measurement of the optical conductivity of graphene. Phys. Rev. Lett. 101, 196405 (2008).

    ADS  Article  Google Scholar 

  16. 16.

    Zhang, Y., Small, J. P., Pontius, W. V. & Kim, P. Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices. Appl. Phys. Lett. 86, 073104 (2005).

    ADS  Article  Google Scholar 

  17. 17.

    Yu, Y.-J. et al. Tuning the graphene work function by electric field effect. Nano Lett. 9, 3430–3434 (2009).

    ADS  CAS  Article  Google Scholar 

  18. 18.

    Dorgan, V. E., Bae, M.-H. & Pop, E. Mobility and saturation velocity in graphene on SiO2. Appl. Phys. Lett. 97, 082112 (2010).

    ADS  Article  Google Scholar 

  19. 19.

    Woessner, A. et al. Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421–425 (2015).

    ADS  CAS  Article  Google Scholar 

  20. 20.

    Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    ADS  CAS  Article  Google Scholar 

  21. 21.

    Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    ADS  CAS  Article  Google Scholar 

  22. 22.

    Jablan, M., Buljan, H. & Soljačić, M. Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009).

    ADS  Article  Google Scholar 

  23. 23.

    Ramamoorthy, H. et al. “Freeing” graphene from its substrate: observing intrinsic velocity saturation with rapid electrical pulsing. Nano Lett. 16, 399–403 (2016).

    ADS  CAS  Article  Google Scholar 

  24. 24.

    Borgnia, D. S., Phan, T. V. & Levitov, L. S. Quasi-relativistic Doppler effect and non-reciprocal plasmons in graphene. Preprint at https://arxiv.org/abs/1512.09044 (2015).

  25. 25.

    Correas-Serrano, D. & Gomez-Diaz, J. Non-reciprocal and collimated surface plasmons in drift-biased graphene metasurfaces. Phys. Rev. B 100, 081410 (2019).

  26. 26.

    Morgado, T. A. & Silveirinha, M. G. Drift-induced unidirectional graphene plasmons. ACS Photon. 5, 4253–4258 (2018).

    CAS  Article  Google Scholar 

  27. 27.

    Sabbaghi, M., Lee, H.-W. & Stauber, T. Electro-optics of current-carrying graphene. Phys. Rev. B 98, 075424 (2018).

    ADS  CAS  Article  Google Scholar 

  28. 28.

    Sabbaghi, M., Lee, H.-W., Stauber, T. & Kim, K. S. Drift-induced modifications to the dynamical polarization of graphene. Phys. Rev. B 92, 195429 (2015).

    ADS  Article  Google Scholar 

  29. 29.

    Wenger, T., Viola, G., Kinaret, J., Fogelström, M. & Tassin, P. Current-controlled light scattering and asymmetric plasmon propagation in graphene. Phys. Rev. B 97, 085419 (2018).

    ADS  CAS  Article  Google Scholar 

  30. 30.

    Van Duppen, B., Tomadin, A., Grigorenko, A. N. & Polini, M. Current-induced birefringent absorption and non-reciprocal plasmons in graphene. 2D Mater. 3, 015011 (2016).

    Article  Google Scholar 

  31. 31.

    Song, J. C. & Rudner, M. S. Chiral plasmons without magnetic field. Proc. Natl Acad. Sci. USA 113, 4658–4663 (2016).

    ADS  CAS  Article  Google Scholar 

  32. 32.

    Hamm, J. M., Page, A. F., Bravo-Abad, J., Garcia-Vidal, F. J. & Hess, O. Nonequilibrium plasmon emission drives ultrafast carrier relaxation dynamics in photoexcited graphene. Phys. Rev. B 93, 041408 (2016).

    ADS  Article  Google Scholar 

  33. 33.

    Morgado, T. A. & Silveirinha, M. G. Negative Landau damping in bilayer graphene. Phys. Rev. Lett. 119, 133901 (2017).

    ADS  Article  Google Scholar 

  34. 34.

    Ni, G. et al. Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene. Nat. Photon. 10, 244–247 (2016).

    ADS  CAS  Article  Google Scholar 

  35. 35.

    Page, A. F., Ballout, F., Hess, O. & Hamm, J. M. Nonequilibrium plasmons with gain in graphene. Phys. Rev. B 91, 075404 (2015).

    ADS  Article  Google Scholar 

  36. 36.

    Lin, X. et al. Unidirectional surface plasmons in nonreciprocal graphene. New J. Phys. 15, 113003 (2013).

    ADS  Article  Google Scholar 

  37. 37.

    Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys. Rev. Lett. 100, 013905 (2008).

    ADS  Article  Google Scholar 

  38. 38.

    Yu, Z., Veronis, G., Wang, Z. & Fan, S. One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal. Phys. Rev. Lett. 100, 023902 (2008).

    ADS  Article  Google Scholar 

  39. 39.

    Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    ADS  CAS  Article  Google Scholar 

  40. 40.

    Ocelic, N., Huber, A. & Hillenbrand, R. Pseudoheterodyne detection for background-free near-field spectroscopy. Appl. Phys. Lett. 89, 101124 (2006).

    ADS  Article  Google Scholar 

  41. 41.

    Kotov, V. N., Uchoa, B., Pereira, V. M., Guinea, F. & Neto, A. C. Electron–electron interactions in graphene: current status and perspectives. Rev. Mod. Phys. 84, 1067–1125 (2012).

    ADS  CAS  Article  Google Scholar 

  42. 42.

    Morgado, T. A. & Silveirinha, M. G. Nonlocal effects and enhanced nonreciprocity in current-driven graphene systems. Phys. Rev. B 102, 075102 (2020).

    ADS  CAS  Article  Google Scholar 

  43. 43.

    Geick, R., Perry, C. & Rupprecht, G. Normal modes in hexagonal boron nitride. Phys. Rev. 146, 543–547 (1966).

    ADS  CAS  Article  Google Scholar 

  44. 44.

    Hwang, C. et al. Fermi velocity engineering in graphene by substrate modification. Sci. Rep. 2, 590 (2012).

    Article  Google Scholar 

  45. 45.

    Dong, Y. et al. Fizeau drag in graphene plasmonics. Nature https://www.nature.com/articles/s41586-021-03640-x (2021). 

  46. 46.

    Ponomarenko, L. et al. Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013).

    ADS  CAS  Article  Google Scholar 

  47. 47.

    Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The device fabrication and characterization and theoretical analysis of the work is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division of the US Department of Energy under contract number DE-AC02-05CH11231 (sp2-Bonded Materials Program KC2207). The cryogenic near-field nanoscopy measurement was supported by the NSF award 1808635. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan and the CREST (JPMJCR15F3), JST.

Author information

Affiliations

Authors

Contributions

F.W. conceived the research. W.Z. and S.Z. carried out the near-field optical measurements. W.Z., S.Z., Sheng Wang, S.Y. and F.W. performed the data analysis. W.Z., S.Z., H.L., Shaoxin Wang, M.I.B.U, S.K., Y.J. and X.X. fabricated the graphene devices. K.W. and T.T. grew the hexagonal boron nitride crystals. All authors discussed the results and wrote the manuscript.

Corresponding author

Correspondence to Feng Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Jiahua Duan, Joel Cox and Hugen Yan for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Graphene channel current at discrete bias voltages in the two-terminal device.

Measurements taken at 25 K at a carrier density of 7.0 × 1012 cm−2.

Extended Data Fig. 2 Near-field signal of the propagating plasmon on the left side of the gold nanobar.

a, b, Illustration of plasmon propagation under negative (a) and positive (b) current flows. c, e, g, Near-field data at −0.4 mA and + 0.4 mA (c), −1.2 mA and + 1.2 mA (e) and −1.9 mA and +1.7 mA (g). d, f, h, The corresponding line profiles for c, e, g, respectively, averaged over the 30 scans. The gold nanobar is located on the right and the graphene plasmons propagate from the right to the left.

Extended Data Fig. 3 Near-field signal of the propagating plasmon on the right side of the gold nanobar.

a, b, Illustration of plasmon propagation under negative (a) and positive (b) current flows. c, e, Near-field data at −0.4 mA and +0.4 mA (c) and −1.2 mA and +1.2 mA (e). d, f, The corresponding line profiles c, e, respectively, averaged over the 30 scans. The gold nanobar is located on the left and the graphene plasmons propagate from the left to the right.

Extended Data Fig. 4 Comparison of the Doppler effect between theory and experiment at different carrier drift velocities in the second device.

The width of the graphene channel is w = 2.5 μm and the carrier density is estimated to be |n| = 7.0 × 1012 cm−2.

Extended Data Fig. 5 Breakdown of device under high positive backgate voltages.

The ultrahigh backgate voltage at the positive side triggers a series of gas ionization in high vacuum and damages the sample.

Extended Data Fig. 6 Filtered optical image to enhance the contrast between hBN and graphene.

The alignment angle between the hBN and graphene is around 0.93° and corresponds to a moiré period of around 10.3 nm, which is calculated from the carrier density (ns ≈ 3.98 × 1012 cm−2) at the small resistance peak in our device.The white line indicates the straight graphene edge and the yellow line shows the top hBN edge.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, W., Zhao, S., Li, H. et al. Efficient Fizeau drag from Dirac electrons in monolayer graphene. Nature 594, 517–521 (2021). https://doi.org/10.1038/s41586-021-03574-4

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing