Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The role of retrotransposable elements in ageing and age-associated diseases

Abstract

The genomes of virtually all organisms contain repetitive sequences that are generated by the activity of transposable elements (transposons). Transposons are mobile genetic elements that can move from one genomic location to another; in this process, they amplify and increase their presence in genomes, sometimes to very high copy numbers. In this Review we discuss new evidence and ideas that the activity of retrotransposons, a major subgroup of transposons overall, influences and even promotes the process of ageing and age-related diseases in complex metazoan organisms, including humans. Retrotransposons have been coevolving with their host genomes since the dawn of life. This relationship has been largely competitive, and transposons have earned epithets such as ‘junk DNA’ and ‘molecular parasites’. Much of our knowledge of the evolution of retrotransposons reflects their activity in the germline and is evident from genome sequence data. Recent research has provided a wealth of information on the activity of retrotransposons in somatic tissues during an individual lifespan, the molecular mechanisms that underlie this activity, and the manner in which these processes intersect with our own physiology, health and well-being.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: L1 life cycle.
Fig. 2: Retrotransposition mechanisms.
Fig. 3: Surveillance of retrotransposons.
Fig. 4: Retrotransposons as agents of ageing and disease.

References

  1. 1.

    Huang, C. R., Burns, K. H. & Boeke, J. D. Active transposition in genomes. Annu. Rev. Genet. 46, 651–675 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Bourque, G. et al. Ten things you should know about transposable elements. Genome Biol. 19, 199 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Molaro, A. & Malik, H. S. Hide and seek: how chromatin-based pathways silence retroelements in the mammalian germline. Curr. Opin. Genet. Dev. 37, 51–58 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Cosby, R. L., Chang, N. C. & Feschotte, C. Host-transposon interactions: conflict, cooperation, and cooption. Genes Dev. 33, 1098–1116 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Pardue, M. L. & DeBaryshe, P. G. Retrotransposons that maintain chromosome ends. Proc. Natl Acad. Sci. USA 108, 20317–20324 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Chuong, E. B., Elde, N. C. & Feschotte, C. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351, 1083–1087 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. 7.

    Burns, K. H. Our conflict with transposable elements and its implications for human disease. Annu. Rev. Pathol. 15, 51–70 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Jacques, P. E., Jeyakani, J. & Bourque, G. The majority of primate-specific regulatory sequences are derived from transposable elements. PLoS Genet. 9, e1003504 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Mita, P. & Boeke, J. D. How retrotransposons shape genome regulation. Curr. Opin. Genet. Dev. 37, 90–100 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Brouha, B. et al. Hot L1s account for the bulk of retrotransposition in the human population. Proc. Natl Acad. Sci. USA 100, 5280–5285 (2003).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Flasch, D. A. et al. Genome-wide de novo L1 retrotransposition connects endonuclease activity with replication. Cell 177, 837–851 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Sultana, T. et al. The landscape of L1 retrotransposons in the human genome is shaped by pre-insertion sequence biases and post-insertion selection. Mol. Cell 74, 555–570 (2019).

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Denli, A. M. et al. Primate-specific ORF0 contributes to retrotransposon-mediated diversity. Cell 163, 583–593 (2015).

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Kulpa, D. A. & Moran, J. V. Cis-preferential LINE-1 reverse transcriptase activity in ribonucleoprotein particles. Nat. Struct. Mol. Biol. 13, 655–660 (2006).

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Khazina, E. et al. Trimeric structure and flexibility of the L1ORF1 protein in human L1 retrotransposition. Nat. Struct. Mol. Biol. 18, 1006–1014 (2011).

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Doucet, A. J., Wilusz, J. E., Miyoshi, T., Liu, Y. & Moran, J. V. A 3′ poly(A) tract is required for LINE-1 retrotransposition. Mol. Cell 60, 728–741 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Mita, P. et al. LINE-1 protein localization and functional dynamics during the cell cycle. eLife 7, e30058 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Cost, G. J., Feng, Q., Jacquier, A. & Boeke, J. D. Human L1 element target-primed reverse transcription in vitro. EMBO J. 21, 5899–5910 (2002). Using biochemical studies, this paper developed the TPRT model of L1 retrotransposition.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. 19.

    Ardeljan, D. et al. Cell fitness screens reveal a conflict between LINE-1 retrotransposition and DNA replication. Nat. Struct. Mol. Biol. 27, 168–178 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Mita, P. et al. BRCA1 and S phase DNA repair pathways restrict LINE-1 retrotransposition in human cells. Nat. Struct. Mol. Biol. 27, 179–191 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Holloway, J. R., Williams, Z. H., Freeman, M. M., Bulow, U. & Coffin, J. M. Gorillas have been infected with the HERV-K (HML-2) endogenous retrovirus much more recently than humans and chimpanzees. Proc. Natl Acad. Sci. USA 116, 1337–1346 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Küry, P. et al. Human endogenous retroviruses in neurological diseases. Trends Mol. Med. 24, 379–394 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  23. 23.

    Wolf, D. & Goff, S. P. Embryonic stem cells use ZFP809 to silence retroviral DNAs. Nature 458, 1201–1204 (2009).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Castro-Diaz, N. et al. Evolutionally dynamic L1 regulation in embryonic stem cells. Genes Dev. 28, 1397–1409 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Jacobs, F. M. et al. An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature 516, 242–245 (2014). The above three papers show that KZFPs provide DNA sequence specificity to target retrotransposon silencing in mammalian genomes, and uncover the role of KZFPs in the co-evolutionary ‘arms race’ of primate L1s with their hosts.

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Bulut-Karslioglu, A. et al. Suv39h-dependent H3K9me3 marks intact retrotransposons and silences LINE elements in mouse embryonic stem cells. Mol. Cell 55, 277–290 (2014).

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Kato, M., Takemoto, K. & Shinkai, Y. A somatic role for the histone methyltransferase Setdb1 in endogenous retrovirus silencing. Nat. Commun. 9, 1683 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  28. 28.

    de Wit, E., Greil, F. & van Steensel, B. Genome-wide HP1 binding in Drosophila: developmental plasticity and genomic targeting signals. Genome Res. 15, 1265–1273 (2005).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  29. 29.

    Ishak, C. A. et al. An RB–EZH2 complex mediates silencing of repetitive DNA sequences. Mol. Cell 64, 1074–1087 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Liu, N. et al. Selective silencing of euchromatic L1s revealed by genome-wide screens for L1 regulators. Nature 553, 228–232 (2018).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. 31.

    Van Meter, M. et al. SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age. Nat. Commun. 5, 5011 (2014).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  32. 32.

    Helleboid, P. Y. et al. The interactome of KRAB zinc finger proteins reveals the evolutionary history of their functional diversification. EMBO J. 38, e101220 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. 33.

    De Cecco, M. et al. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566, 73–78 (2019). This study shows that upregulation of L1 triggers an IFN-I response in senescent cells and aged mice that can be therapeutically ameliorated with NRTIs.

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  34. 34.

    Simon, M. et al. LINE1 derepression in aged wild-type and SIRT6-deficient mice drives inflammation. Cell Metab. 29, 871–885 (2019). This study shows that upregulation of L1 triggers an IFN-I response in Sirt6-knockout and normal aged mice, and that pathologies and lifespan of Sirt6 progeroid mice can be improved with NRTIs.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Wood, J. G. et al. Chromatin-modifying genetic interventions suppress age-associated transposable element activation and extend life span in Drosophila. Proc. Natl Acad. Sci. USA 113, 11277–11282 (2016). Using chromatin-modifying genetic interventions and NRTI treatments in Drosophila, this study causally links retrotransposon activation with aging.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Deniz, Ö., Frost, J. M. & Branco, M. R. Regulation of transposable elements by DNA modifications. Nat. Rev. Genet. 20, 417–431 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Karimi, M. M. et al. DNA methylation and SETDB1/H3K9me3 regulate predominantly distinct sets of genes, retroelements, and chimeric transcripts in mESCs. Cell Stem Cell 8, 676–687 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Walter, M., Teissandier, A., Pérez-Palacios, R. & Bourc’his, D. An epigenetic switch ensures transposon repression upon dynamic loss of DNA methylation in embryonic stem cells. eLife 5, e11418 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  39. 39.

    Walsh, C. P., Chaillet, J. R. & Bestor, T. H. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat. Genet. 20, 116–117 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Woodcock, D. M., Lawler, C. B., Linsenmeyer, M. E., Doherty, J. P. & Warren, W. D. Asymmetric methylation in the hypermethylated CpG promoter region of the human L1 retrotransposon. J. Biol. Chem. 272, 7810–7816 (1997).

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Varshney, D. et al. SINE transcription by RNA polymerase III is suppressed by histone methylation but not by DNA methylation. Nat. Commun. 6, 6569 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  42. 42.

    Zhang, G. et al. N6-methyladenine DNA modification in Drosophila. Cell 161, 893–906 (2015).

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Imbeault, M., Helleboid, P. Y. & Trono, D. KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks. Nature 543, 550–554 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  44. 44.

    Wolf, G. et al. KRAB-zinc finger protein gene expansion in response to active retrotransposons in the murine lineage. eLife 9, e56337 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Rowe, H. M. et al. KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463, 237–240 (2010).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Sanchez-Luque, F. J. et al. LINE-1 evasion of epigenetic repression in humans. Mol. Cell 75, 590–604.e12 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Castel, S. E. & Martienssen, R. A. RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat. Rev. Genet. 14, 100–112 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Goodier, J. L. Restricting retrotransposons: a review. Mob. DNA 7, 16 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Feng, Y., Goubran, M. H., Follack, T. B. & Chelico, L. Deamination-independent restriction of LINE-1 retrotransposition by APOBEC3H. Sci. Rep. 7, 10881 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  50. 50.

    Chung, H. et al. Human ADAR1 prevents endogenous RNA from triggering translational shutdown. Cell 172, 811–824 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Rice, G. I. et al. Mutations in ADAR1 cause Aicardi-Goutières syndrome associated with a type I interferon signature. Nat. Genet. 44, 1243–1248 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Zhao, K. et al. Modulation of LINE-1 and Alu/SVA retrotransposition by Aicardi-Goutières syndrome-related SAMHD1. Cell Rep. 4, 1108–1115 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Stetson, D. B., Ko, J. S., Heidmann, T. & Medzhitov, R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134, 587–598 (2008). This work shows that loss of TREX1 in AGS results in accumulation of retrotransposon single-stranded DNA that drives an IFN-I response, and implicates somatic retrotransposon activation as a causal factor in human disease.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  55. 55.

    Booth, L. N. & Brunet, A. The aging epigenome. Mol. Cell 62, 728–744 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Pal, S. & Tyler, J. K. Epigenetics and aging. Sci. Adv. 2, e1600584 (2016).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  57. 57.

    Sen, P., Shah, P. P., Nativio, R. & Berger, S. L. Epigenetic mechanisms of longevity and aging. Cell 166, 822–839 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Wood, J. G. et al. Chromatin remodeling in the aging genome of Drosophila. Aging Cell 9, 971–978 (2010).

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Jones, B. C. et al. A somatic piRNA pathway in the Drosophila fat body ensures metabolic homeostasis and normal lifespan. Nat. Commun. 7, 13856 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. 60.

    Chen, H., Zheng, X., Xiao, D. & Zheng, Y. Age-associated de-repression of retrotransposons in the Drosophila fat body, its potential cause and consequence. Aging Cell 15, 542–552 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Gorgoulis, V. et al. Cellular senescence: defining a path forward. Cell 179, 813–827 (2019).

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Childs, B. G. et al. Senescent cells: an emerging target for diseases of ageing. Nat. Rev. Drug Discov. 16, 718–735 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Coppé, J. P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853–2868 (2008). This paper reports the discovery of the senescence-associated secretory phenotype (SASP) in senescent cells and implicates its pro-inflammatory effects as the major deleterious consequence of senescent cell accumulation in aging.

    PubMed  Article  CAS  Google Scholar 

  64. 64.

    Pignolo, R. J., Passos, J. F., Khosla, S., Tchkonia, T. & Kirkland, J. L. Reducing senescent cell burden in aging and disease. Trends Mol. Med. 26, 630–638 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Chandra, T. & Kirschner, K. Chromosome organisation during ageing and senescence. Curr. Opin. Cell Biol. 40, 161–167 (2016).

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    De Cecco, M. et al. Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell 12, 247–256 (2013).

    PubMed  Article  CAS  Google Scholar 

  67. 67.

    LaRocca, T. J., Cavalier, A. N. & Wahl, D. Repetitive elements as a transcriptomic marker of aging: evidence in multiple datasets and models. Aging Cell 19, e13167 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  68. 68.

    De Cecco, M. et al. Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues. Aging 5, 867–883 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Oberdoerffer, P. et al. SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135, 907–918 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. 70.

    Issa, J. P. Aging and epigenetic drift: a vicious cycle. J. Clin. Invest. 124, 24–29 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  71. 71.

    Klutstein, M., Nejman, D., Greenfield, R. & Cedar, H. DNA methylation in cancer and aging. Cancer Res. 76, 3446–3450 (2016).

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Cruickshanks, H. A. et al. Senescent cells harbour features of the cancer epigenome. Nat. Cell Biol. 15, 1495–1506 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    Cole, J. J. et al. Diverse interventions that extend mouse lifespan suppress shared age-associated epigenetic changes at critical gene regulatory regions. Genome Biol. 18, 58 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  75. 75.

    Wahl, D., Cavalier, A.N., Smith, M., Seals, D.R. & LaRocca, T.J. Healthy aging interventions reduce repetitive element transcripts. J. Gerontol. A Biol. Sci. Med. Sci. 76, 805–810 (2021).

    PubMed  Article  Google Scholar 

  76. 76.

    Wang, T. et al. Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction and rapamycin treatment. Genome Biol. 18, 57 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  77. 77.

    Abe, M. et al. Impact of age-associated increase in 2′-O-methylation of miRNAs on aging and neurodegeneration in Drosophila. Genes Dev. 28, 44–57 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Hancks, D. C. & Kazazian, H. H., Jr Roles for retrotransposon insertions in human disease. Mob. DNA 7, 9 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  79. 79.

    Wimmer, K., Callens, T., Wernstedt, A. & Messiaen, L. The NF1 gene contains hotspots for L1 endonuclease-dependent de novo insertion. PLoS Genet. 7, e1002371 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Evrony, G. D. et al. Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain. Cell 151, 483–496 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Upton, K. R. et al. Ubiquitous L1 mosaicism in hippocampal neurons. Cell 161, 228–239 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Erwin, J. A. et al. L1-associated genomic regions are deleted in somatic cells of the healthy human brain. Nat. Neurosci. 19, 1583–1591 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Evrony, G. D., Lee, E., Park, P. J. & Walsh, C. A. Resolving rates of mutation in the brain using single-neuron genomics. eLife 5, e12966 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  84. 84.

    Zhao, B. et al. Somatic LINE-1 retrotransposition in cortical neurons and non-brain tissues of Rett patients and healthy individuals. PLoS Genet. 15, e1008043 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Coufal, N. G. et al. L1 retrotransposition in human neural progenitor cells. Nature 460, 1127–1131 (2009). This study reports an increase in L1 DNA in adult human neurons and hippocampus and implicates the brain as a particularly permissive organ for L1 activation with age.

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Lee, E. et al. Landscape of somatic retrotransposition in human cancers. Science 337, 967–971 (2012). This sequencing study from The Cancer Genome Atlas (TCGA) Research Network reveals the profound activation and retrotransposition of L1s in diverse human cancers.

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Helman, E. et al. Somatic retrotransposition in human cancer revealed by whole-genome and exome sequencing. Genome Res. 24, 1053–1063 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88.

    Tubio, J. M. C. et al. Mobile DNA in cancer. Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes. Science 345, 1251343 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  89. 89.

    Rodriguez-Martin, B. et al. Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nat. Genet. 52, 306–319 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90.

    Mir, A. A., Philippe, C. & Cristofari, G. euL1db: the European database of L1HS retrotransposon insertions in humans. Nucleic Acids Res. 43, D43–D47 (2015).

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Hartmann, G. Nucleic acid immunity. Adv. Immunol. 133, 121–169 (2017).

    CAS  PubMed  Article  Google Scholar 

  92. 92.

    Thomas, C. A. et al. Modeling of TREX1-dependent autoimmune disease using human stem cells highlights L1 accumulation as a source of neuroinflammation. Cell Stem Cell 21, 319–331 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. 93.

    Hopfner, K. P. & Hornung, V. Molecular mechanisms and cellular functions of cGAS–STING signalling. Nat. Rev. Mol. Cell Biol. 21, 501–521 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  94. 94.

    Shi, X., Seluanov, A. & Gorbunova, V. Cell divisions are required for L1 retrotransposition. Mol. Cell. Biol. 27, 1264–1270 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  95. 95.

    Fukuda, S. et al. Cytoplasmic synthesis of endogenous Alu complementary DNA via reverse transcription and implications in age-related macular degeneration. Proc. Natl Acad. Sci. USA 118, e2022751118 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. 96.

    Roulois, D. et al. DNA-demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 162, 961–973 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Chiappinelli, K. B. et al. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162, 974–986 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. 98.

    Ahmad, S. et al. Breaching self-tolerance to Alu duplex RNA underlies MDA5-mediated inflammation. Cell 172, 797–810 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. 99.

    Tunbak, H. et al. The HUSH complex is a gatekeeper of type I interferon through epigenetic regulation of LINE-1s. Nat. Commun. 11, 5387 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. 100.

    Zhao, K. et al. LINE1 contributes to autoimmunity through both RIG-I- and MDA5-mediated RNA sensing pathways. J. Autoimmun. 90, 105–115 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  101. 101.

    Brisse, M. & Ly, H. Comparative structure and function analysis of the RIG-I-like receptors: RIG-I and MDA5. Front. Immunol. 10, 1586 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    Gasior, S. L., Wakeman, T. P., Xu, B. & Deininger, P. L. The human LINE-1 retrotransposon creates DNA double-strand breaks. J. Mol. Biol. 357, 1383–1393 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Martin, M., Hiroyasu, A., Guzman, R. M., Roberts, S. A. & Goodman, A. G. Analysis of Drosophila STING reveals an evolutionarily conserved antimicrobial function. Cell Rep. 23, 3537–3550.e6 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. 104.

    Li, W. et al. Activation of transposable elements during aging and neuronal decline in Drosophila. Nat. Neurosci. 16, 529–531 (2013). This works connects the age-associated activation of retrotransposons in Drosophila with cognitive decline and proposes the ‘retrotransposon storm’ theory of neurodegeneration.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. 105.

    Hagan, C. R., Sheffield, R. F. & Rudin, C. M. Human Alu element retrotransposition induced by genotoxic stress. Nat. Genet. 35, 219–220 (2003).

    CAS  PubMed  Article  Google Scholar 

  106. 106.

    Yu, Q. et al. Type I interferon controls propagation of long interspersed element-1. J. Biol. Chem. 290, 10191–10199 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. 107.

    Seluanov, A., Gladyshev, V. N., Vijg, J. & Gorbunova, V. Mechanisms of cancer resistance in long-lived mammals. Nat. Rev. Cancer 18, 433–441 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. 108.

    Kim, E. B. et al. Genome sequencing reveals insights into physiology and longevity of the naked mole rat. Nature 479, 223–227 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. 109.

    Ray, D. A. et al. Multiple waves of recent DNA transposon activity in the bat, Myotis lucifugus. Genome Res. 18, 717–728 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. 110.

    Gorbunova, V., Seluanov, A. & Kennedy, B. K. The world goes bats: living longer and tolerating viruses. Cell Metab. 32, 31–43 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  111. 111.

    Franceschi, C., Garagnani, P., Parini, P., Giuliani, C. & Santoro, A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 14, 576–590 (2018).

    CAS  PubMed  Article  Google Scholar 

  112. 112.

    Ambati, J. et al. Repurposing anti-inflammasome NRTIs for improving insulin sensitivity and reducing type 2 diabetes development. Nat. Commun. 11, 4737 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  113. 113.

    Neidhart, M. et al. Retrotransposable L1 elements expressed in rheumatoid arthritis synovial tissue: association with genomic DNA hypomethylation and influence on gene expression. Arthritis Rheum. 43, 2634–2647 (2000).

    CAS  PubMed  Article  Google Scholar 

  114. 114.

    Mavragani, C. P. et al. Defective regulation of L1 endogenous retroelements in primary Sjogren’s syndrome and systemic lupus erythematosus: role of methylating enzymes. J. Autoimmun. 88, 75–82 (2018).

    CAS  PubMed  Article  Google Scholar 

  115. 115.

    Lee-Kirsch, M. A. et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat. Genet. 39, 1065–1067 (2007).

    CAS  PubMed  Article  Google Scholar 

  116. 116.

    Rice, G. et al. Heterozygous mutations in TREX1 cause familial chilblain lupus and dominant Aicardi-Goutieres syndrome. Am. J. Hum. Genet. 80, 811–815 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  117. 117.

    Isenberg, D. A., Manson, J. J., Ehrenstein, M. R. & Rahman, A. Fifty years of anti-ds DNA antibodies: are we approaching journey’s end? Rheumatology 46, 1052–1056 (2007).

    CAS  PubMed  Article  Google Scholar 

  118. 118.

    Carter, V. et al. High prevalence and disease correlation of autoantibodies against p40 encoded by long interspersed nuclear elements in systemic lupus erythematosus. Arthritis Rheumatol. 72, 89–99 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. 119.

    Crow, Y. J. & Manel, N. Aicardi-Goutières syndrome and the type I interferonopathies. Nat. Rev. Immunol. 15, 429–440 (2015).

    CAS  PubMed  Article  Google Scholar 

  120. 120.

    Beck-Engeser, G. B., Eilat, D. & Wabl, M. An autoimmune disease prevented by anti-retroviral drugs. Retrovirology 8, 91 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. 121.

    Hu, S. et al. SAMHD1 inhibits LINE-1 retrotransposition by promoting stress granule formation. PLoS Genet. 11, e1005367 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  122. 122.

    Uehara, R. et al. Two RNase H2 mutants with differential rNMP processing activity reveal a threshold of ribonucleotide tolerance for embryonic development. Cell Rep. 25, 1135–1145 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. 123.

    Bartsch, K. et al. RNase H2 loss in murine astrocytes results in cellular defects reminiscent of nucleic acid-mediated autoinflammation. Front. Immunol. 9, 587 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  124. 124.

    Rice, G. I. et al. Reverse-transcriptase inhibitors in the Aicardi-Goutières syndrome. N. Engl. J. Med. 379, 2275–2277 (2018). This phase I open-label clinical trial provides evidence that treatment with NRTIs reduces IFN-I activation in patients with AGS.

    PubMed  Article  PubMed Central  Google Scholar 

  125. 125.

    Kitkumthorn, N. & Mutirangura, A. Long interspersed nuclear element-1 hypomethylation in cancer: biology and clinical applications. Clin. Epigenetics 2, 315–330 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  126. 126.

    Benci, J. L. et al. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell 167, 1540–1554 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  127. 127.

    Terry, D. M. & Devine, S. E. Aberrantly high levels of somatic LINE-1 expression and retrotransposition in human neurological disorders. Front. Genet. 10, 1244 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  128. 128.

    Tarallo, V. et al. DICER1 loss and Alu RNA induce age-related macular degeneration via the NLRP3 inflammasome and MyD88. Cell 149, 847–859 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  129. 129.

    Fowler, B. J. et al. Nucleoside reverse transcriptase inhibitors possess intrinsic anti-inflammatory activity. Science 346, 1000–1003 (2014).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  130. 130.

    Liu, E. Y. et al. Loss of nuclear TDP-43 is associated with decondensation of LINE retrotransposons. Cell Rep. 27, 1409–1421 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  131. 131.

    Prudencio, M. et al. Repetitive element transcripts are elevated in the brain of C9orf72 ALS/FTLD patients. Hum. Mol. Genet. 26, 3421–3431 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  132. 132.

    Tam, O. H. et al. Postmortem cortex samples identify distinct molecular subtypes of ALS: retrotransposon activation, oxidative stress, and activated glia. Cell Rep. 29, 1164–1177 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  133. 133.

    Hu, Y. et al. Increased peripheral blood inflammatory cytokine levels in amyotrophic lateral sclerosis: a meta-analysis study. Sci. Rep. 7, 9094 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  134. 134.

    Wang, R., Yang, B. & Zhang, D. Activation of interferon signaling pathways in spinal cord astrocytes from an ALS mouse model. Glia 59, 946–958 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  135. 135.

    Chang, Y. H. & Dubnau, J. The Gypsy endogenous retrovirus drives non-cell-autonomous propagation in a Drosophila TDP-43 model of neurodegeneration. Curr. Biol. 29, 3135–3152.e4 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  136. 136.

    Krug, L. et al. Retrotransposon activation contributes to neurodegeneration in a Drosophila TDP-43 model of ALS. PLoS Genet. 13, e1006635 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  137. 137.

    Frost, B., Hemberg, M., Lewis, J. & Feany, M. B. Tau promotes neurodegeneration through global chromatin relaxation. Nat. Neurosci. 17, 357–366 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  138. 138.

    Guo, C. et al. Tau activates transposable elements in Alzheimer’s disease. Cell Rep. 23, 2874–2880 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  139. 139.

    Sun, W., Samimi, H., Gamez, M., Zare, H. & Frost, B. Pathogenic tau-induced piRNA depletion promotes neuronal death through transposable element dysregulation in neurodegenerative tauopathies. Nat. Neurosci. 21, 1038–1048 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  140. 140.

    Lee, M. H. et al. Somatic APP gene recombination in Alzheimer’s disease and normal neurons. Nature 563, 639–645 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  141. 141.

    Coufal, N. G. et al. Ataxia telangiectasia mutated (ATM) modulates long interspersed element-1 (L1) retrotransposition in human neural stem cells. Proc. Natl Acad. Sci. USA 108, 20382–20387 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  142. 142.

    Petersen, A. J., Rimkus, S. A. & Wassarman, D. A. ATM kinase inhibition in glial cells activates the innate immune response and causes neurodegeneration in Drosophila. Proc. Natl Acad. Sci. USA 109, E656–E664 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  143. 143.

    Song, X., Ma, F. & Herrup, K. Accumulation of cytoplasmic DNA due to ATM deficiency activates the microglial viral response system with neurotoxic consequences. J. Neurosci. 39, 6378–6394 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  144. 144.

    Haag, S. M. et al. Targeting STING with covalent small-molecule inhibitors. Nature 559, 269–273 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  145. 145.

    Lama, L. et al. Development of human cGAS-specific small-molecule inhibitors for repression of dsDNA-triggered interferon expression. Nat. Commun. 10, 2261 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  146. 146.

    Dai, J. et al. Acetylation blocks cGAS activity and inhibits self-DNA-induced autoimmunity. Cell 176, 1447–1460 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  147. 147.

    Piscianz, E. et al. Reappraisal of antimalarials in interferonopathies: new perspectives for old drugs. Curr. Med. Chem. 25, 2797–2810 (2018).

    CAS  PubMed  Article  Google Scholar 

  148. 148.

    Kanfi, Y. et al. The sirtuin SIRT6 regulates lifespan in male mice. Nature 483, 218–221 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  149. 149.

    Dou, Z. et al. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature 550, 402–406 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  150. 150.

    Mackenzie, K. J. et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548, 461–465 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  151. 151.

    West, A. P. et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520, 553–557 (2015).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  152. 152.

    Correia-Melo, C. et al. Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J. 35, 724–742 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  153. 153.

    Vizioli, M. G. et al. Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic chromatin and inflammation in senescence. Genes Dev. 34, 428–445 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

The following funding sources are acknowledged: V.G. and A.S., NIH R37 AG046320, R01 AG027237, P01 AG047200 and P01 AG051449; P.M. and J.D.B., NIH P01 AG051449 and R21 CA235521; F.H.G., NIH R01 AG056306, R01 AG057706, the American Heart Association, Paul G. Allen Frontiers Group Grant no. 19PABHI34610000, the Grace Foundation, the JPB Foundation and A. C. Merle-Smith; J.A.K., NIH P20 GM119943 and P01 AG051449; J.R.T., NIH K99 AG057812; S.L.H., NIH R01 AG024353, P01 AG051449 and R01 AG067306; and J.M.S., NIH R01 AG016694 and P01 AG051449.

Author information

Affiliations

Authors

Contributions

J.M.S. conceived the review. J.M.S., V.G., A.S., P.M., W.M., D.F., J.D.B., S.B.L., F.H.G., J.A.K., A.P.P., T.A.W., J.R.T. and S.L.H. collectively wrote and edited the manuscript.

Corresponding author

Correspondence to John M. Sedivy.

Ethics declarations

Competing interests

V.G. and A.S. are cofounders of Persimmon Bio; V.G. is a member of the scientific advisory board (SAB) of DoNotAge, Centaura and Elysium; J.D.B. is a founder of Neochromosome, founder and director of CDI Labs, and founder and SAB member of ReOpen Diagnostics, and is also an SAB member of Sangamo, Modern Meadow, Sample6 and the Wyss Institute; F.H.G. is an SAB member of Transposon Therapeutics; and J.M.S. is a cofounder and SAB chair of Transposon Therapeutics and consults for Atropos Therapeutics, Gilead Sciences and Oncolinea.

Additional information

Peer review information Nature thanks Peter Adams, Jan Vijg and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gorbunova, V., Seluanov, A., Mita, P. et al. The role of retrotransposable elements in ageing and age-associated diseases. Nature 596, 43–53 (2021). https://doi.org/10.1038/s41586-021-03542-y

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing