Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Overriding water table control on managed peatland greenhouse gas emissions


Global peatlands store more carbon than is naturally present in the atmosphere1,2. However, many peatlands are under pressure from drainage-based agriculture, plantation development and fire, with the equivalent of around 3 per cent of all anthropogenic greenhouse gases emitted from drained peatland3,4,5. Efforts to curb such emissions are intensifying through the conservation of undrained peatlands and re-wetting of drained systems6. Here we report eddy covariance data for carbon dioxide from 16 locations and static chamber measurements for methane from 41 locations in the UK and Ireland. We combine these with published data from sites across all major peatland biomes. We find that the mean annual effective water table depth (WTDe; that is, the average depth of the aerated peat layer) overrides all other ecosystem- and management-related controls on greenhouse gas fluxes. We estimate that every 10 centimetres of reduction in WTDe could reduce the net warming impact of CO2 and CH4 emissions (100-year global warming potentials) by the equivalent of at least 3 tonnes of CO2 per hectare per year, until WTDe is less than 30 centimetres. Raising water levels further would continue to have a net cooling effect until WTDe is within 10 centimetres of the surface. Our results suggest that greenhouse gas emissions from peatlands drained for agriculture could be greatly reduced without necessarily halting their productive use. Halving WTDe in all drained agricultural peatlands, for example, could reduce emissions by the equivalent of over 1 per cent of global anthropogenic emissions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Annual mean values of carbon dioxide and methane flux versus mean water table depth.

Data availability

The UK eddy covariance data set used in the study is available from the UK Environmental Information Data Centre (EIDC), with the identifier: Summary and literature-derived data are included in Extended Data Tables 13.


  1. 1.

    Yu, Z. C. Northern peatland carbon stocks and dynamics: a review. Biogeosciences 9, 4071–4085 (2012).

    CAS  ADS  Google Scholar 

  2. 2.

    Dargie, G. C. et al. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 542, 86–90 (2017).

    CAS  PubMed  ADS  Google Scholar 

  3. 3.

    Smith, P. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Ch. 11 (2014).

  4. 4.

    Leifeld, J. & Menichetti, L. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun. 9, 1071 (2018).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  5. 5.

    Le Quéré, C. et al. Global Carbon Budget 2017. Earth Syst. Sci. Data 10, 405–448 (2018).

    ADS  Google Scholar 

  6. 6.

    Towards Climate-responsible Peatlands Management. Mitigation of Climate Change in Agriculture Series 9 (FAO, 2014).

  7. 7.

    Byrne, K. A. et al. EU Peatlands: Current Carbon Stocks and Trace Gas Fluxes. Report 4/2004 to Concerted action: Synthesis of the European Greenhouse Gas Budget (Geosphere-Biosphere Centre, Univ. Lund, 2004).

  8. 8.

    Wijedasa, L. et al. Carbon emissions from South‐East Asian peatlands will increase despite emission‐reduction schemes. Glob. Change Biol. 24, 4598–4613 (2018).

    ADS  Google Scholar 

  9. 9.

    Hutchinson, J. N. Record of peat wastage in the East-Anglian fenlands at Holme Post, 1848–1978 AD. J. Ecol. 68, 229–249 (1980).

    Google Scholar 

  10. 10.

    Hooijer, A. et al. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9, 1053–1071 (2012).

    CAS  ADS  Google Scholar 

  11. 11.

    Turetsky, M. R. et al. Global vulnerability of peatlands to fire and carbon loss. Nat. Geosci. 8, 11–14 (2015).

    CAS  ADS  Google Scholar 

  12. 12.

    Evans, C. D. et al. Rates and spatial variability of peat subsidence in Acacia plantation and forest landscapes in Sumatra, Indonesia. Geoderma 338, 410–421 (2019).

    ADS  Google Scholar 

  13. 13.

    Carlson, K. M. et al. Greenhouse gas emissions intensity of global croplands. Nat. Clim. Change 7, 62–68 (2016).

    Google Scholar 

  14. 14.

    IPCC Task Force on National Greenhouse Gas Inventories. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. (IPCC, 2014).

  15. 15.

    Tiemeyer, B. et al. High emissions of greenhouse gases from grasslands on peat and other organic soils. Glob. Change Biol. 22, 4134–4149 (2016).

    ADS  Google Scholar 

  16. 16.

    Couwenberg, J. et al. Assessing greenhouse gas emissions from peatlands using vegetation as a proxy. Hydrobiologia 674, 67–89 (2011).

    CAS  Google Scholar 

  17. 17.

    Dias, A. T. C. et al. Plant species composition can be used as a proxy to predict methane emissions in peatland ecosystems after landuse changes. Ecosystems 13, 526–538 (2010).

    CAS  Google Scholar 

  18. 18.

    Pohl, M. et al. Dynamic C and N stocks—key factors controlling the C gas exchange of maize in heterogeneous peatland. Biogeosciences 12, 2737–2752 (2015).

    ADS  Google Scholar 

  19. 19.

    Joosten, H., Tapio-Biström, M.-L. & Tol, S. Peatlands—Guidance for Climate Change Mitigation, Conservation, Rehabilitation and Sustainable Use. Mitigation of Climate Change in Agriculture Series 5 (FAO, 2012).

  20. 20.

    Cooper, M. et al. Infilled ditches are hotspots of landscape methane flux following peatland restoration. Ecosystems (N. Y.) 17, 1227–1241 (2014).

    CAS  Google Scholar 

  21. 21.

    Turetsky, M. R. et al. A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Glob. Change Biol. 20, 2183–2197 (2014).

    ADS  Google Scholar 

  22. 22.

    Frolking, S., Roulet, N. & Fuglestvedt, J. How northern peatlands influence the Earth’s radiative budget: sustained methane emission versus sustained carbon sequestration. J. Geophys. Res. 111, G01008 (2006).

    ADS  Google Scholar 

  23. 23.

    Evans, C. et al. Implementation of an Emission Inventory for UK Peatlands. (Centre for Ecology and Hydrology, Bangor, 2017).

  24. 24.

    Brown, P. et al. UK Greenhouse Gas Inventory, 1990 to 2017: Annual Report for Submission under the Framework Convention on Climate Change. (Ricardo Energy & Environment, 2019).

  25. 25.

    IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories (IGES, 2006).

  26. 26.

    Food and Agriculture Organisation of the United Nations. FAOSTAT. (accessed 5 May 2019).

  27. 27.

    Evans, C. D., Renou-Wilson, F. & Strack, M. The role of waterborne carbon in the greenhouse gas balance of drained and re-wetted peatlands. Aquat. Sci. 78, 573–590 (2016).

    CAS  Google Scholar 

  28. 28.

    Granath, G., Moore, P. A., Lukenbach, M. C. & Waddington, J. M. Mitigating wildfire carbon loss in managed northern peatlands through restoration. Sci. Rep. 6, 28498 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  29. 29.

    Paustian, K. et al. Climate-smart soils. Nature 532, 49–57 (2016).

    CAS  PubMed  ADS  Google Scholar 

  30. 30.

    Ferré, M. Sustainable management of cultivated peatlands in Switzerland: insights, challenges, and opportunities. Land Use Policy 87, 104019 (2019).

    ADS  Google Scholar 

  31. 31.

    Günther, A. et al. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nat. Commun. 11, 1644 (2020).

    PubMed  PubMed Central  ADS  Google Scholar 

  32. 32.

    Evans, C. D. et al. Lowland Peatland Systems in England and Wales – Evaluating Greenhouse Gas Fluxes and Carbon Balances. Final report to Defra on Project SP1210 (Centre for Ecology and Hydrology, 2016).

  33. 33.

    Levy, P. E. & Gray, A. Greenhouse gas balance of a semi-natural peatbog in northern Scotland. Environ. Res. Lett. 10, 094019 (2015).

    ADS  Google Scholar 

  34. 34.

    Helfter, C. et al. Drivers of long-term variability in CO2 net ecosystem exchange in a temperate peatland. Biogeosciences 12, 1799–1811 (2015).

    ADS  Google Scholar 

  35. 35.

    Peacock, M. et al. The full carbon balance of a rewetted cropland fen and a conservation-managed fen. Agric. Ecosyst. Environ. 269, 1–12 (2019).

    Google Scholar 

  36. 36.

    Hambley, G. et al. Net ecosystem exchange from two formerly afforested peatlands undergoing restoration in the Flow Country of northern Scotland. Mires Peat 23, 05 (2019).

    Google Scholar 

  37. 37.

    McVeigh, P., Sottocornola, M., Foley, N., Leahy, P. & Keily, G. Meteorological and functional response partitioning to explain interannual variability of CO2 exchange at an Irish Atlantic blanket bog. Agric. For. Meteorol. 194, 8–19 (2014).

    ADS  Google Scholar 

  38. 38.

    Papale, D. et al. Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences 3, 571–583 (2006).

    CAS  ADS  Google Scholar 

  39. 39.

    Foken, T. et al. in Handbook of Micrometeorology, 181–208 (Kluwer Academic, 2004)

  40. 40.

    Kormann, R. & Meixner, F. X. An analytical footprint model for non-neutral stratification. Boundary-Layer Meteorol. 99, 207–224 (2001).

    ADS  Google Scholar 

  41. 41.

    Reichstein, M. et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob. Change Biol. 11, 1424–1439 (2005).

    ADS  Google Scholar 

  42. 42.

    Reichstein, M., Moffat, M. A., Wutzler, T. & Sickel, K. REddyProc: Data processing and plotting utilities of (half-)hourly eddy-covariance measurements. (2016);

  43. 43.

    Finkelstein, P. L. & Sims, P. F. Sampling error in eddy correlation flux measurements. J. Geophys. Res. 106, 3503–3509 (2001).

    CAS  ADS  Google Scholar 

  44. 44.

    Wang, M. et al. Can abandoned peatland pasture sequestrate more carbon dioxide from the atmosphere than an adjacent pristine bog in Newfoundland, Canada? Agric. For. Meteorol. 248, 91–108 (2018).

    ADS  Google Scholar 

  45. 45.

    Roulet, N. T. et al. Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Glob. Change Biol. 13, 397–411 (2007).

    ADS  Google Scholar 

  46. 46.

    Nugent, K. A., Strachan, I. B., Strack, M., Roulet, N. T. & Rochefort, L. Multi‐year net ecosystem carbon balance of a restored peatland reveals a return to carbon sink. Glob. Change Biol. 24, 5751–5768 (2018).

    Google Scholar 

  47. 47.

    Lund, M., Lindroth, A., Christensen, T. R. & Ström, L. Annual CO2 balance of a temperate bog. Tellus B 59, 804–811 (2007).

    ADS  Google Scholar 

  48. 48.

    Ratcliffe, J. L., Campbell, D. I., Clarkson, B. R., Wall, A. M. & Schipper, L. A. Water table fluctuations control CO2 exchange in wet and dry bogs through different mechanisms. Sci. Total Environ. 655, 1037–1046 (2019).

    CAS  PubMed  ADS  Google Scholar 

  49. 49.

    Lee, S.-C. et al. Annual greenhouse gas budget for a bog ecosystem undergoing restoration by rewetting. Biogeosciences 14, 2799–2814 (2017).

    CAS  ADS  Google Scholar 

  50. 50.

    D′ Acunha, B., Morillas, L., Black, T. A., Christen, A. & Johnson, M. S. Net ecosystem carbon balance of a peat bog undergoing restoration: integrating CO2 and CH4 fluxes from eddy covariance and aquatic evasion with DOC drainage fluxes. J. Geophys. Res. Biogeosci. 124, 884–901 (2019).

    Google Scholar 

  51. 51.

    Strachan, I. B., Pelletier, L. & Bonneville, M. C. Inter-annual variability in water table depth controls net ecosystem carbon dioxide exchange in a boreal bog. Biogeochemistry 127, 99–111 (2016).

    CAS  Google Scholar 

  52. 52.

    Humphreys, E. R., Charron, C., Brown, M. & Jones, R. Two bogs in the Canadian Hudson Bay Lowlands and a temperate bog reveal similar annual net ecosystem exchange of CO2. Arct. Antarct. Alp. Res. 46, 103–113 (2014).

    Google Scholar 

  53. 53.

    Holl, D., Pancotto, V., Heger, A., Camargo, S. J. & Kutzbach, L. Cushion bogs are stronger carbon dioxide net sinks than moss-dominated bogs as revealed by eddy covariance measurements on Tierra del Fuego, Argentina. Biogeosciences 16, 3397–3423 (2019).

    CAS  ADS  Google Scholar 

  54. 54.

    Hao, Y. B. et al. Predominance of precipitation and temperature controls on ecosystem CO2 exchange in Zoige alpine wetlands of Southwest China. Wetlands 31, 413–422 (2011).

    Google Scholar 

  55. 55.

    Helbig, M. et al. Direct and indirect climate change effects on carbon dioxide fluxes in a thawing boreal forest–wetland landscape. Glob. Change Biol. 23, 3231–3248 (2017).

    ADS  Google Scholar 

  56. 56.

    Helbig, M., Quinton, W. L. & Sonnentag, O. Warmer spring conditions increase annual methane emissions from a boreal peat landscape with sporadic permafrost. Environ. Res. Lett. 12, 115009 (2017).

    ADS  Google Scholar 

  57. 57.

    Hommeltenberg, J. et al. Ecosystem scale methane fluxes in a natural temperate bog-pine forest in southern Germany. Agric. For. Meteorol. 198–199, 273–284 (2014).

    ADS  Google Scholar 

  58. 58.

    Drollinger, S., Maier, A. & Glatzel, S. Interannual and seasonal variability in carbon dioxide and methane fluxes of a pine peat bog in the Eastern Alps, Austria. Agric. For. Meteorol. 275, 69–78 (2019).

    ADS  Google Scholar 

  59. 59.

    Olefeldt, D. et al. Net carbon accumulation of a high‐latitude permafrost palsa mire similar to permafrost‐free peatlands. Geophys. Res. Lett. 39, L03501 (2012).

    ADS  Google Scholar 

  60. 60.

    Nilsson, M. et al. Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire—a significant sink after accounting for all C‐fluxes. Glob. Change Biol. 14, 2317–2332 (2008).

    ADS  Google Scholar 

  61. 61.

    Pullens, J. W. M., Sottocornola, M., Kiely, G., Toscano, P. & Gianelle, D. Carbon fluxes of an alpine peatland in Northern Italy. Agric. Forest Meteor. 220, 69–82 (2016).

    ADS  Google Scholar 

  62. 62.

    Olson, D. M., Griffis, T. J., Noormets, A., Kolka, R. & Chen, J. Interannual, seasonal, and retrospective analysis of the methane and carbon dioxide budgets of a temperate peatland. J. Geophys. Res. Biogeosci. 118, 226–238 (2013).

    CAS  Google Scholar 

  63. 63.

    Liu, L. et al. Contemporary, modern and ancient carbon fluxes in the Zoige peatlands on the Qinghai-Tibetan Plateau. Geoderma 352, 138–149 (2019).

    CAS  ADS  Google Scholar 

  64. 64.

    Yu, X., Song, C., Sun, L., Wang, X. & Tan, W. Towards an improved utilization of eddy covariance data: growing season CO2 exchange from a permafrost peatland in the Great Hing’an Mountains, Northeast China. Ecol. Indic. 115, 106427 (2020).

    CAS  Google Scholar 

  65. 65.

    Miao, Y. et al. Growing season methane emission from a boreal peatland in the continuous permafrost zone of Northeast China: effects of active layer depth and vegetation. Biogeosciences 9, 4455–4464 (2012).

    CAS  ADS  Google Scholar 

  66. 66.

    Sonnentag, O., Van Der Kamp, G., Barr, A. G. & Chen, J. M. On the relationship between water table depth and water vapor and carbon dioxide fluxes in a minerotrophic fen. Glob. Change Biol. 16, 1762–1776 (2010).

    ADS  Google Scholar 

  67. 67.

    Aurela, M. et al. Carbon dioxide exchange on a northern boreal fen. Boreal Environ. Res. 14, 699–710 (2009).

    CAS  Google Scholar 

  68. 68.

    Aurela, M. et al. Carbon dioxide and energy flux measurements in four northern-boreal ecosystems at Pallas. Boreal Environ. Res. 20, 455–473 (2015).

    Google Scholar 

  69. 69.

    Aurela, M. et al. CO2 exchange of a sedge fen in southern Finland—the impact of a drought period. Tellus B 59, 826–837 (2007).

    ADS  Google Scholar 

  70. 70.

    Aurela, M., Laurila, T. & Tuovinen, J. P. The timing of snow melt controls the annual CO2 balance in a subarctic fen. Geophys. Res. Lett. 31, L16119 (2004).

    ADS  Google Scholar 

  71. 71.

    Schulze, E. D., Prokuschkin, A., Arneth, A., Knorre, N. & Vaganov, E. A. Net ecosystem productivity and peat accumulation in a Siberian Aapa mire. Tellus B 54, 531–536 (2002).

    ADS  Google Scholar 

  72. 72.

    Friborg, T., Soegaard, H., Christensen, T. R., Lloyd, C. R. & Panikov, N. S. Siberian wetlands: where a sink is a source. Geophys. Res. Lett. 30, 2129 (2003).

    ADS  Google Scholar 

  73. 73.

    Flanagan, L. B. & Syed, K. H. Stimulation of both photosynthesis and respiration in response to warmer and drier conditions in a boreal peatland ecosystem. Glob. Change Biol. 17, 2271–2287 (2011).

    ADS  Google Scholar 

  74. 74.

    Adkinson, A.C., Syed, K.H. & Flanagan, L.B. Contrasting responses of growing season ecosystem CO2 exchange to variation in temperature and water table depth in two peatlands in northern Alberta, Canada. J. Geophys. Res. Biogeosci. 116, G01004 (2011).

    ADS  Google Scholar 

  75. 75.

    Joiner, D. W., Lafleur, P. M., McCaughey, J. H. & Bartlett, P. A. Interannual variability in carbon dioxide exchanges at a boreal wetland in the BOREAS northern study area. J. Geophys. Res. Atmos. 104, 27663–27672 (1999).

    CAS  ADS  Google Scholar 

  76. 76.

    Bubier, J., Moore, T., Savage, K. & Crill, P. A comparison of methane flux in a boreal landscape between a dry and a wet year. Global Biogeochem. Cycles 19, GB1023 (2005).

    ADS  Google Scholar 

  77. 77.

    Aslan-Sungur, G., Lee, X., Evrendilek, F. & Karakaya, N. Large interannual variability in net ecosystem carbon dioxide exchange of a disturbed temperate peatland. Sci. Total Environ. 554–555, 192–202 (2016).

    PubMed  ADS  Google Scholar 

  78. 78.

    Schrier-Uijl, A. P. et al. Agricultural peatlands: towards a greenhouse gas sink-a synthesis of a Dutch landscape study. Biogeosciences 11, 4559–4576 (2014).

    ADS  Google Scholar 

  79. 79.

    Hadden, D. & Grelle, A. The impact of cultivation on CO2 and CH4 fluxes over organic soils in Sweden. Agric. For. Meteorol. 243, 1–8 (2017).

    ADS  Google Scholar 

  80. 80.

    Valdés-Barrera, A. et al. Effects of disturbance on the carbon dioxide balance of an anthropogenic peatland in northern Patagonia. Wetlands Ecol. Manage. 27, 635–650 (2019).

    Google Scholar 

  81. 81.

    Langeveld, C. A. et al. Emissions of CO2, CH4 and N2O from pasture on drained peat soils in the Netherlands. Eur. J. Agron. 7, 35–42 (1997).

    CAS  Google Scholar 

  82. 82.

    Hatala, J. A. et al. Greenhouse gas (CO2, CH4, H2O) fluxes from drained and flooded agricultural peatlands in the Sacramento–San Joaquin Delta. Agric. Ecosyst. Environ. 150, 1–18 (2012).

    CAS  Google Scholar 

  83. 83.

    Knox, S. H. et al. Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento–San Joaquin Delta. Glob. Change Biol. 21, 750–765 (2015).

    ADS  Google Scholar 

  84. 84.

    Campbell, D. I., Wall, A. M., Nieveen, J. P. & Schipper, L. A. Variations in CO2 exchange for dairy farms with year-round rotational grazing on drained peatlands. Agric. Ecosyst. Environ. 202, 68–78 (2015).

    Google Scholar 

  85. 85.

    Fleischer, E., Khashimov, I., Hölzel, N. & Klemm, O. Carbon exchange fluxes over peatlands in Western Siberia: possible feedback between land-use change and climate change. Sci. Total Environ. 545–546, 424–433 (2016).

    PubMed  ADS  Google Scholar 

  86. 86.

    Lohila, A., Aurela, M., Tuovinen, J. P. & Laurila, T. Annual CO2 exchange of a peat field growing spring barley or perennial forage grass. J. Geophys. Res. Atmos. 109, D18116 (2004).

    ADS  Google Scholar 

  87. 87.

    Regina, K., Pihlatie, M., Esala, M. & Alakukku, L. Methane fluxes on boreal arable soils. Agric. Ecosyst. Environ. 119, 346–352 (2007).

    CAS  Google Scholar 

  88. 88.

    Rankin, T., Strachan, I. B. & Strack, M. Carbon dioxide and methane exchange at a post-extraction, unrestored peatland. Ecol. Eng. 122, 241–251 (2018).

    Google Scholar 

  89. 89.

    Hendriks, D. M. D., Van Huissteden, J., Dolman, A. J. & Van der Molen, M. K. The full greenhouse gas balance of an abandoned peat meadow. Biogeosciences 4, 411–424 (2007).

    CAS  ADS  Google Scholar 

  90. 90.

    Shurpali, N. J. et al. Cultivation of a perennial grass for bioenergy on a boreal organic soil—carbon sink or source? Glob. Change Biol. Bioenergy 1, 35–50 (2009).

    CAS  Google Scholar 

  91. 91.

    Gong, J. et al. Climatic sensitivity of the CO2 flux in a cutaway boreal peatland cultivated with a perennial bioenergy crop (Phalaris arundinaceae, L.): beyond diplotelmic modeling. Agric. For. Meteorol. 198–199, 232–249 (2014).

    ADS  Google Scholar 

  92. 92.

    Nieveen, J. P., Jacobs, C. M. & Jacobs, A. F. Diurnal and seasonal variation of carbon dioxide exchange from a former true raised bog. Glob. Change Biol. 4, 823–833 (1998).

    ADS  Google Scholar 

  93. 93.

    Rigney, C. et al. Greenhouse gas emissions from two rewetted peatlands previously managed for forestry. Mires Peat 21, 24 (2018).

    Google Scholar 

  94. 94.

    Kiew, F. et al. CO2 balance of a secondary tropical peat swamp forest in Sarawak, Malaysia. Agric. For. Meteorol. 248, 494–501 (2018).

    ADS  Google Scholar 

  95. 95.

    Hirano, T. et al. Effects of disturbances on the carbon balance of tropical peat swamp forests. Glob. Change Biol. 18, 3410–3422 (2012).

    ADS  Google Scholar 

  96. 96.

    Griffis, T. J. et al. Hydrometeorological sensitivities of net ecosystem carbon dioxide and methane exchange of an Amazonian palm swamp peatland. Agric. For. Meteorol. 295, 108167 (2020).

    ADS  Google Scholar 

  97. 97.

    Brown, E. L. Greenhouse Gas Flux Response to Restoration Management in UK Lowland Peatlands. PhD thesis, Bangor Univ. (2017).

  98. 98.

    Denmead, O. T. Approaches to measuring fluxes of methane and nitrous oxide between landscapes and the atmosphere. Plant Soil 309, 5–24 (2008).

    CAS  Google Scholar 

  99. 99.

    Baird, A. J., Holden, J. & Chapman, P. A Literature Review of Evidence on Emissions of Methane in Peatlands. Defra Project SP0574 (Univ. Leeds, 2009).

  100. 100.

    Green, S. M. & Baird, A. J. Using ‘snapshot’ measurements of CH4 fluxes from an ombrotrophic peatland to estimate annual budgets: interpolation versus modelling. Mires Peat 19, 9 (2017).

    Google Scholar 

  101. 101.

    Green, S. M. & Baird, A. J. A mesocosm study of the role of the sedge Eriophorum angustifolium in the efflux of methane—including that due to episodic ebullition—from peatlands. Plant Soil 351, 207–218 (2012).

    CAS  Google Scholar 

  102. 102.

    Stanley, K. M., Heppell, C. M., Belyea, L. R., Baird, A. J. & Field, R. H. The importance of CH4 ebullition in floodplain fens. J. Geophys. Res. Biogeosci. 124, 1750–1763 (2019).

    CAS  Google Scholar 

  103. 103.

    Yamulki, S., Peace, A. & Morison, J. I. L. Soil CO2, CH4 and N2O fluxes from an afforested lowland raised peatbog in Scotland: implications for drainage and restoration. Biogeosciences 10, 1051–1065 (2013).

    ADS  Google Scholar 

  104. 104.

    Gauci, V., Dise, N. & Fowler, D. Controls on suppression of methane flux from a peat bog subjected to simulated acid rain sulfate deposition. Glob. Biogeochem. Cycles 16, 4-1–4-12 (2002).

    ADS  Google Scholar 

  105. 105.

    Laine, A., Wilson, D., Kiely, G. & Byrne, K. A. Methane flux dynamics in an Irish lowland blanket bog. Plant Soil 299, 181–193 (2007).

    CAS  Google Scholar 

  106. 106.

    Drewer, J. et al. Comparison of greenhouse gas fluxes and nitrogen budgets from an ombotrophic bog in Scotland and a minerotrophic sedge fen in Finland. Eur. J. Soil Sci. 61, 640–650 (2010).

    CAS  Google Scholar 

  107. 107.

    Renou-Wilson, F., Müller, C., Moser, G. & Wilson, D. To graze or not to graze? Four years greenhouse gas balances and vegetation composition from a drained and a rewetted organic soil under grassland. Agric. Ecosyst. Environ. 222, 156–170 (2016).

    Google Scholar 

  108. 108.

    Wilson, D. et al. Rewetting of cutaway peatlands: are we re‐creating hot spots of methane emissions? Restor. Ecol. 17, 796–806 (2009).

    Google Scholar 

  109. 109.

    Wilson, D. et al. Multiyear greenhouse gas balances at a rewetted temperate peatland. Glob. Change Biol. 22, 4080–4095 (2016).

    ADS  Google Scholar 

  110. 110.

    Levy, P. E. et al. Methane emissions from soils: synthesis and analysis of a large UK data set. Glob. Change Biol. 18, 1657–1669 (2012).

    ADS  Google Scholar 

  111. 111.

    Myhre, G. et al. in Climate Change 2013: The Physical Science Basis (eds. Stocker, T. F. et al.) 659–684 (IPCC, Cambridge Univ. Press, 2013).

  112. 112. (accessed 1 February 2021).

  113. 113.

    Sterner, E. O. & Johansson, D. J. A. The effect of climate–carbon cycle feedbacks on emission metrics. Environ. Res. Lett. 12, 034019 (2017).

    ADS  Google Scholar 

  114. 114.

    Gasser, T. et al. Accounting for the climate–carbon feedback in emission metrics. Earth Syst. Dyn. 8, 235–253 (2017).

    ADS  Google Scholar 

  115. 115.

    Neubauer, S. C. & Megonigal, J. P. Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems 18, 1000–1013 (2015).

    Google Scholar 

  116. 116.

    Tiemeyer, B. et al. A new methodology for organic soils in national greenhouse gas inventories: data synthesis, derivation and application. Ecol. Indic. 109, 105838 (2020).

    CAS  Google Scholar 

  117. 117.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Google Scholar 

Download references


This study was supported by the UK Department for Environment, Food and Rural Affairs (projects SP1210 and SP1218), with additional data provided from projects funded by the UK Natural Environment Research Council (SEFLOS, NE/P0140971/1 and UKSCAPE, NE/R016429/1), Scottish Government and Natural Resources Wales (NRW). UK flux sites were hosted by a range of organizations including G’s Fresh, the National Trust, NRW and the Balmoral Estate. We thank all those responsible for collecting the published data used in the study, in particular M. Strack, D. Holl, H. Keck and C. Deshmukh for providing additional data and information on individual studies, L. Menichetti for sharing peat mapping data and L. Barber at the University of Leicester for preparing the site maps.

Author information




C.D.E. conceived and led the study, undertook the global upscaling and drafted the paper. R.M. coordinated eddy covariance measurements and led the analysis of eddy covariance data. M.P. and S.E.P. supported the global flux data synthesis. P.L. undertook additional statistical analysis. A.J.B. designed and oversaw the chamber flux CH4 measurement programme. J.H., R.P.G. and A.J.B. were responsible for the hydrological measurement programme. F.W. was responsible for site surveys. M.P., R.R.E.A., P.J.C., N.C., M.C., E.C., A.C., S.D., V.G., C.H., C.M.H., D.L.J., J.K., P.L., R.M., N.P.M., T.M., S.O., M.R., L.M.R., K.M.S., R.M. and F.W. were responsible for the management, operation and processing of data for one or more of the flux measurement sites. A.B., R.M., J.L.W. and H.M.C. were responsible for central data management and processing. All authors contributed to data analysis and interpretation, and commented on the draft manuscript.

Corresponding author

Correspondence to C. D. Evans.

Ethics declarations

Competing interests

A number of the authors are on peatland advisory boards for the UK government, devolved governments and agencies, and for other public, private and charitable sector organizations. C.D.E. and S.E.P. are on the International Peatland Expert Working Group of Asia Pacific Resources International Ltd. S.E.P. is on the International Advisory Panel on Peatland Research for the Malaysian Palm Oil Board. J.H. is on the science advisory board for MS Amlin. None of the authors receive direct remuneration for any advisory roles undertaken or have any financial or non-financial interests in organizations that may be affected by the results of this study.

Additional information

Peer review information Nature thanks Dennis Baldocchi, Torben Christensen and Maria Strack for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Location and land-cover class of UK and Irish CO2 flux-tower sites analysed.

Sites are overlaid on the global peat map of Leifeld and Menichetti4. For detailed site information, see Extended Data Table 1.

Extended Data Fig. 2 Cumulative measured NEE and NEP (harvested sites only) for UK eddy covariance sites.

Positive values indicate net CO2 emission to the atmosphere, negative values indicate net CO2 uptake. Years with missing data at Anglesey 2 and Tadham Moor were assigned the average long-term NEP value for the site for presentational purposes only; these years were not used in the calculations.

Extended Data Fig. 3 Location and land-cover type of all study sites included in global CO2 flux data synthesis.

Sites are overlaid on the peat map of Leifeld and Menichetti4. For detailed site information, see Extended Data Table 2.

Extended Data Fig. 4 Observed relationship between mean CH4 flux and WTDe for British and Irish sites.

Results are compared with previous relationships derived from independent data in the United Kingdom (Levy et al.110), Continental Europe (Couwenberg et al.16), and North America and Fennoscandia (Turetsky et al.21).

Extended Data Fig. 5 Comparison of predicted and observed NEP versus WTDe for tropical peatlands.

Filled red circles show observations from six tropical peatland flux towers. Dashed line shows a linear regression fitted to these data points (NEP = 0.1887 WTDe – 3.19, R2 = 0.79, P = 0.017). Solid line shows relationship derived from high-latitude regression (equation (2)), scaled for tropical peatlands based on IPCC Tier 1 emission factors (see Methods).

Extended Data Table 1 Locations and characteristics of UK and Ireland study sites
Extended Data Table 2 Locations and characteristics of global CO2 flux synthesis sites
Extended Data Table 3 Locations and characteristics of UK and Irish sites used in CH4 flux synthesis
Extended Data Table 4 Area and emissions estimates for global peatlands under drained cropland and grassland
Extended Data Table 5 Disaggregated global emissions of CO2 and CH4 from drained cropland and grassland. a, CO2; b, CH4. Emissions are based on application of our empirical relationships to the global peat area estimates of Leifeld and Menichetti4 (Extended Data Table 4) and used to derive Table 1. Scenarios and calculations are as described in the Methods

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Evans, C.D., Peacock, M., Baird, A.J. et al. Overriding water table control on managed peatland greenhouse gas emissions. Nature 593, 548–552 (2021).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links