Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tomographic reconstruction of oxygen orbitals in lithium-rich battery materials

Abstract

The electrification of heavy-duty transport and aviation will require new strategies to increase the energy density of electrode materials1,2. The use of anionic redox represents one possible approach to meeting this ambitious target. However, questions remain regarding the validity of the O2−/O oxygen redox paradigm, and alternative explanations for the origin of the anionic capacity have been proposed3, because the electronic orbitals associated with redox reactions cannot be measured by standard experiments. Here, using high-energy X-ray Compton measurements together with first-principles modelling, we show how the electronic orbital that lies at the heart of the reversible and stable anionic redox activity can be imaged and visualized, and its character and symmetry determined. We find that differential changes in the Compton profile with lithium-ion concentration are sensitive to the phase of the electronic wave function, and carry signatures of electrostatic and covalent bonding effects4. Our study not only provides a picture of the workings of a lithium-rich battery at the atomic scale, but also suggests pathways to improving existing battery materials and designing new ones.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Compton profile difference (CPD or ∆J) of LTMO for lithium concentrations of x = 0.8 minus x = 0.4.
Fig. 2: PDOS of Li0.4Ti0.4Mn0.4O2 for the majority-spin electrons near the Fermi level.
Fig. 3: Reconstructed 2D-EMD maps.

Data availability

The experimental data and theoretical simulations that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. 1.

    Sripad, S. & Viswanathan, V. Performance metrics required of next-generation batteries to make a practical electric semi-truck. ACS Energy Lett. 2, 1669–1673 (2017).

    CAS  Google Scholar 

  2. 2.

    Viswanathan, V. & Knapp, B. M. Potential for electric aircraft. Nat. Sustainability 2, 88–89 (2019).

    Google Scholar 

  3. 3.

    Radin, M. D., Vinckeviciute, J., Seshadri, R. & Van der Ven, A. Manganese oxidation as the origin of the anomalous capacity of Mn-containing Li-excess cathode materials. Nat. Energy 4, 639–646 (2019).

    ADS  CAS  Google Scholar 

  4. 4.

    Suzuki, K. et al. Extracting the redox orbitals in Li battery materials with high-resolution x-ray Compton scattering spectroscopy. Phys. Rev. Lett. 114, 087401 (2015).

    ADS  CAS  PubMed  Google Scholar 

  5. 5.

    Krauskopf, T., Richter, F. H., Zeier, W. G. & Janek, J. Physicochemical concepts of the lithium metal anode in solid-state batteries. Chem. Rev. 120, 7745–7794 (2020).

    CAS  PubMed  Google Scholar 

  6. 6.

    Salah, M. et al. Pure silicon thin-film anodes for lithium-ion batteries: a review. J. Power Sources 414, 48–67 (2019).

    ADS  CAS  Google Scholar 

  7. 7.

    Jia, H. et al. Hierarchical porous silicon structures with extraordinary mechanical strength as high-performance lithium-ion battery anodes. Nat. Commun. 11, 1474 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Yabuuchi, N. et al. High-capacity electrode materials for rechargeable lithium batteries: Li3NbO4-based system with cation-disordered rocksalt structure. Proc. Natl Acad. Sci. USA 112, 7650–7655 (2015).

    ADS  CAS  PubMed  Google Scholar 

  9. 9.

    Seo, D.-H. et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem. 8, 692–697 (2016).

    CAS  PubMed  Google Scholar 

  10. 10.

    Yabuuchi, N. et al. Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries. Nat. Commun. 7, 13814 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Li, B. & Xia, D. Anionic redox in rechargeable lithium batteries. Adv. Mater. 29, 1701054 (2017).

    Google Scholar 

  12. 12.

    Okubo, M. & Yamada, A. Molecular orbital principles of oxygen-redox battery electrodes. ACS Appl. Mater. Interfaces 9, 36463–36472 (2017).

    CAS  PubMed  Google Scholar 

  13. 13.

    Assat, G. & Tarascon, J.-M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 3, 373–386 (2018).

    ADS  CAS  Google Scholar 

  14. 14.

    Clément, R., Lun, Z. & Ceder, G. Cation-disordered rocksalt transition metal oxides and oxyfluorides for high energy lithium-ion cathodes. Energy Environ. Sci. 13, 345–373 (2020).

    Google Scholar 

  15. 15.

    Naylor, A. J. et al. Depth-dependent oxygen redox activity in lithium-rich layered oxide cathodes. J. Mater. Chem. A Mater. Energy Sustain. 7, 25355–25368 (2019).

    CAS  Google Scholar 

  16. 16.

    Li, M. et al. Cationic and anionic redox in lithium-ion based batteries. Chem. Soc. Rev. 49, 1688–1705 (2020).

    CAS  PubMed  Google Scholar 

  17. 17.

    Xu, J. et al. Elucidating anionic oxygen activity in lithium-rich layered oxides. Nat. Commun. 9, 947 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Mukai, K., Nonaka, T., Uyama, T. & Nishimura, Y. F. In situ X-ray Raman spectroscopy and magnetic susceptibility study on Li [Li0.15Mn1.85] O4 oxygen anion redox reaction. Chem. Commun. 56, 1701–1704 (2020).

    CAS  Google Scholar 

  19. 19.

    Hong, J. et al. Metal–oxygen decoordination stabilizes anion redox in Li-rich oxides. Nat. Mater. 18, 256–265 (2019).

    ADS  CAS  PubMed  Google Scholar 

  20. 20.

    Tygesen, A. S., Chang, J. H., Vegge, T. & García-Lastra, J. M. Computational framework for a systematic investigation of anionic redox process in Li-rich compounds. npj Comp. Mater. 6, 65 (2020).

    CAS  Google Scholar 

  21. 21.

    Bhowmik, A. et al. A perspective on inverse design of battery interphases using multi-scale modelling, experiments and generative deep learning. Energy Storage Materials 21, 446–456 (2019).

    Google Scholar 

  22. 22.

    Barbiellini, B. et al. Identifying a descriptor for d-orbital delocalization in cathodes of Li batteries based on x-ray Compton scattering. Appl. Phys. Lett. 109, 073102 (2016).

    ADS  Google Scholar 

  23. 23.

    Suzuki, K. et al. Non-destructive measurement of in-operando lithium concentration in batteries via X-ray Compton scattering. J. Appl. Phys. 119, 025103 (2016).

    ADS  Google Scholar 

  24. 24.

    Suzuki, K. et al. In operando quantitation of Li concentration for a commercial Li-ion rechargeable battery using high-energy X-ray Compton scattering. J. Synchrotron Radiat. 24, 1006–1011 (2017).

    CAS  PubMed  Google Scholar 

  25. 25.

    Suzuki, K. et al. Dependency of the charge–discharge rate on lithium reaction distributions for a commercial lithium coin cell visualized by Compton scattering imaging. Condensed Matter 3, 27 (2018).

    CAS  Google Scholar 

  26. 26.

    Suzuki, K. et al. High-energy X-ray Compton scattering imaging of 18650-type lithium-ion battery cell. Condensed Matter 4, 66 (2019).

    CAS  Google Scholar 

  27. 27.

    Kaplan, I., Barbiellini, B. & Bansil, A. Compton scattering beyond the impulse approximation. Phys. Rev. B 68, 235104 (2003).

    ADS  Google Scholar 

  28. 28.

    Hafiz, H. et al. Visualizing redox orbitals and their potentials in advanced lithium-ion battery materials using high-resolution X-ray Compton scattering. Sci. Adv. 3, e1700971 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Hafiz, H. et al. Identification of ferrimagnetic orbitals preventing spinel degradation by charge ordering in LixMn2O4. Phys. Rev. B 100, 205104 (2019).

    ADS  CAS  Google Scholar 

  30. 30.

    Sakurai, Y. et al. Imaging doped holes in a cuprate superconductor with high-resolution Compton scattering. Science 332, 698–702 (2011).

    ADS  CAS  PubMed  Google Scholar 

  31. 31.

    Schwarz, W. E. Measuring orbitals: provocation or reality? Angew. Chem. Int. Edn 45, 1508–1517 (2006).

    CAS  Google Scholar 

  32. 32.

    Cooper, M. et al. X-ray Compton Scattering (Oxford Univ. Press, 2004).

  33. 33.

    Isaacs, E. et al. Covalency of the hydrogen bond in ice: a direct x-ray measurement. Phys. Rev. Lett. 82, 600 (1999).

    ADS  CAS  Google Scholar 

  34. 34.

    Eijt, S. W. H. et al. Electronic coupling of colloidal CdSe nanocrystals monitored by thin-film positron-electron momentum density methods. Appl. Phys. Lett. 94, 091908 (2009).

    ADS  Google Scholar 

  35. 35.

    Hoffmann, L., Shukla, A., Peter, M., Barbiellini, B. & Manuel, A. Linear and non-linear approaches to solve the inverse problem: applications to positron annihilation experiments. Nucl. Instrum. Methods Phys. Res. A 335, 276–287 (1993).

    ADS  CAS  Google Scholar 

  36. 36.

    Hiraoka, N. et al. A new x-ray spectrometer for high-resolution Compton profile measurements at Spring-8. J. Synchrotron Radiat. 8, 26–32 (2001).

    ADS  CAS  PubMed  Google Scholar 

  37. 37.

    Itou, M. et al. Present status of the Cauchois-type Compton scattering spectrometer at Spring8. Nucl. Instrum. Methods Phys. Res. A 467–468, 1109–1112 (2001).

    ADS  Google Scholar 

  38. 38.

    Sakurai, Y. & Itou, M. A Cauchois-type X-ray spectrometer for momentum density studies on heavy-element materials. J. Phys. Chem. Solids 65, 2061–2064 (2004).

    ADS  CAS  Google Scholar 

  39. 39.

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    ADS  CAS  Google Scholar 

  40. 40.

    Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Google Scholar 

  41. 41.

    Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    ADS  CAS  Google Scholar 

  42. 42.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS  CAS  PubMed  Google Scholar 

  43. 43.

    Sun, J., Ruzsinszky, A. & Perdew, J. P. Strongly constrained and appropriately normed semilocal density functional. Phys. Rev. Lett. 115, 036402 (2015).

    ADS  PubMed  Google Scholar 

  44. 44.

    van de Walle, A. et al. Efficient stochastic generation of special quasirandom structures. Calphad 42, 13–18 (2013).

    Google Scholar 

  45. 45.

    van de Walle, A., Asta, M. & Ceder, G. The alloy theoretic automated toolkit: a user guide. Calphad 26, 539–553 (2002).

    Google Scholar 

  46. 46.

    Makkonen, I., Hakala, M. & Puska, M. Calculation of valence electron momentum densities using the projector augmented-wave method. J. Phys. Chem. Solids 66, 1128–1135 (2005).

    ADS  CAS  Google Scholar 

  47. 47.

    Duncanson, W. E. & Coulson, C. A. Theoretical shape of the Compton profile for atoms from H to Ne. Proc. Phys. Soc. 57, 190 (1945).

    ADS  CAS  Google Scholar 

  48. 48.

    Biggs, F., Mendelsohn, L. B. & Mann, J. B. Hartree-Fock Compton profiles for the elements. Atomic Data Nucl. Data Tables 16, 201–309 (1975).

    ADS  CAS  Google Scholar 

  49. 49.

    Kaijser, P. & Smith, V. H. Jr Evaluation of momentum distributions and Compton profiles for atomic and molecular systems. Adv. Quantum Chem. 10, 37–76 (1977).

    ADS  CAS  Google Scholar 

  50. 50.

    Weyrich, W., Pattison, P. & Williams, B. G. Fourier analysis of the Compton profile: atoms and molecules. Chem. Phys. 41, 271–284 (1979).

    CAS  Google Scholar 

  51. 51.

    Yu, M. & Trinkle, D. R. Accurate and efficient algorithm for Bader charge integration. J. Chem. Phys. 134, 064111 (2011).

    ADS  PubMed  Google Scholar 

  52. 52.

    Maintz, S., Deringer, V. L., Tchougreeff, A. L., Dronskowski, R. & Dronskowski, R. LOBSTER: a tool to extract chemical bonding from plane-wave based DFT. J. Comput. Chem. 37, 1030–1035 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Radin for providing feedback on the manuscript; A. Terasaka (Gunma University) for technical support with the Compton scattering experiment; and M. Nakayama (Nagoya Institute of Technology) for sharing insights into COOP analysis. K.S. was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI grants JP15K17873 and JP19K05519. Compton scattering experiments were performed with the approval of the Japan Synchrotron Radiation Research Institute (JASRI; proposals 2017A1122 and 2019B1668). The work at Northeastern University was supported by US Department of Energy (DOE), Office of Science, Basic Energy Sciences grant DE-FG02-07ER46352; and benefited from Northeastern University’s Advanced Scientific Computation Center (ASCC), and the allocation of time at the National Energy Research Scientific Computing Center (NERSC)’s supercomputing center through DOE grant DE-AC02-05CH11231. The work at Carnegie Mellon University was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the US DOE through the Advanced Battery Materials Research (BMR) program under contract no. DE-EE0007810.

Author information

Affiliations

Authors

Contributions

H.H. performed all of the theoretical simulations and analysed the data. K.S., H.S., N.T and Y.S. performed the X-ray Compton scattering experiment and data analyses. N.Y., K.Y., Y.O. and Y.U. synthesized and characterized the materials. H.H. and B.B. wrote the manuscript. V.V. and A.B. contributed to the theory and oversaw the research and writing of the manuscript. All authors were involved in revising the manuscript.

Corresponding authors

Correspondence to Hasnain Hafiz, Arun Bansil or Venkatasubramanian Viswanathan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks B. L. Ahuja, Stephen Dugdale and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Experimental valence Compton profiles of LixTi0.4Mn0.4O2 with different lithium concentrations.

Lithium concentrations ranged from x = 0 to x = 1.2.

Extended Data Fig. 2 Comparison of experimental CPDs in LTMO with theoretical models and fits.

CPDs are denoted as ∆J. The blue line shows the result of linear combination of atomic oxygen 2p orbitals; the cyan line represents the atomic lithium 2s orbitals; and the yellow line shows a model Coulomb repulsion profile for manganese 3d orbitals (see text). The experimental CPD is the difference in the Compton profiles for lithium concentrations of x = 0.8 minus x = 0.4. The model Coulomb repulsion profile was obtained analytically to take into account the effects of localization of the atomic manganese 3d orbitals using normalized Slater-type orbitals. The inset shows manganese 3d Compton profiles for two different effective values of Zeff. The fitting curve (red) and ∆J are both normalized to one. The experimental error bars were obtained from a statistical analysis of the curves in Extended Data Fig. 1 and have a total length of 2σ.

Extended Data Fig. 3 Spin-dependent PDOS associated with manganese eg, manganese t2g and oxygen p orbitals in LixTi0.4Mn0.4O2 for lithium concentrations of x = 0.4 and x = 0.8.

a, x = 0.4. b, x = 0.8. The vertical dashed lines mark the Fermi energy (EF). Up and down arrows indicate the contributions of spin-up and spin-down, respectively, to the PDOS.

Extended Data Fig. 4 COOP analysis between oxygen 2p and manganese 3d states for a lithium concentration of x = 0.4.

The vertical dashed line marks the Fermi energy (EF). COOP analysis indicates an antibonding character (green shaded area) for localized oxygen 2p states right above the Fermi level, as shown in the PDOS in Fig. 2 and Extended Data Fig. 3a. Here, localized oxygen 2p holes point in the direction of a lithium-atom vacancy along the direction of the Li–O–Li axis.

Extended Data Fig. 5 Fourier transform, B(r), of the CPD.

The reciprocal form factor B(r) was computed for the CPD (black solid line), the fitted curve (red line) and the Coulomb profile (yellow line) shown in Extended Data Fig. 2. The B(r) for experimental Coulomb profile (black dashed line) was obtained by subtracting the B(r) of atomic oxygen 2p (blue line) from the experimental B(r) (black solid line). Agreement between the fitted B(r) (red line) and the experimental B(r) (black solid line) was used to assess the goodness of fit of Extended Data Fig. 2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hafiz, H., Suzuki, K., Barbiellini, B. et al. Tomographic reconstruction of oxygen orbitals in lithium-rich battery materials. Nature 594, 213–216 (2021). https://doi.org/10.1038/s41586-021-03509-z

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links