Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Peopling of the Americas as inferred from ancient genomics

Abstract

In less than a decade, analyses of ancient genomes have transformed our understanding of the Indigenous peopling and population history of the Americas. These studies have shown that this history, which began in the late Pleistocene epoch and continued episodically into the Holocene epoch, was far more complex than previously thought. It is now evident that the initial dispersal involved the movement from northeast Asia of distinct and previously unknown populations, including some for whom there are no currently known descendants. The first peoples, once south of the continental ice sheets, spread widely, expanded rapidly and branched into multiple populations. Their descendants—over the next fifteen millennia—experienced varying degrees of isolation, admixture, continuity and replacement, and their genomes help to illuminate the relationships among major subgroups of Native American populations. Notably, all ancient individuals in the Americas, save for later-arriving Arctic peoples, are more closely related to contemporary Indigenous American individuals than to any other population elsewhere, which challenges the claim—which is based on anatomical evidence—that there was an early, non-Native American population in the Americas. Here we review the patterns revealed by ancient genomics that help to shed light on the past peoples who created the archaeological landscape, and together lead to deeper insights into the population and cultural history of the Americas.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Ancient whole-genomes and genome-wide SNP capture analyses from the Americas.
Fig. 2: Schematic of the processes of human dispersal and divergence into and within the Americas in the Pleistocene.
Fig. 3: Schematic of the processes of human dispersal and divergence into and within the Americas in the Holocene, and to the Caribbean Islands and Greenland in the late Holocene.

References

  1. 1.

    Achilli, A. et al. The phylogeny of the four pan-American mtDNA haplogroups: implications for evolutionary and disease studies. PLoS ONE 3, e1764 (2008).

    ADS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Achilli, A. et al. Reconciling migration models to the Americas with the variation of North American native mitogenomes. Proc. Natl Acad. Sci. USA 110, 14308–14313 (2013).

    ADS  CAS  PubMed  Google Scholar 

  3. 3.

    Fagundes, N. J. R. et al. Mitochondrial population genomics supports a single pre-Clovis origin with a coastal route for the peopling of the Americas. Am. J. Hum. Genet. 82, 583–592 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Kashani, B. H. et al. Mitochondrial haplogroup C4c: a rare lineage entering America through the ice-free corridor? Am. J. Phys. Anthropol. 147, 35–39 (2012).

    Google Scholar 

  5. 5.

    Malhi, R. S. et al. Brief communication: mitochondrial haplotype C4c confirmed as a founding genome in the Americas. Am. J. Phys. Anthropol. 141, 494–497 (2009).

    Google Scholar 

  6. 6.

    Perego, U. A. et al. The initial peopling of the Americas: a growing number of founding mitochondrial genomes from Beringia. Genome Res. 20, 1174–1179 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Volodko, N. V. et al. Mitochondrial genome diversity in arctic Siberians, with particular reference to the evolutionary history of Beringia and Pleistocenic peopling of the Americas. Am. J. Hum. Genet. 82, 1084–1100 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Battaglia, V. et al. The first peopling of South America: new evidence from Y-chromosome haplogroup Q. PLoS ONE 8, e71390 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Dulik, M. C. et al. Y-chromosome analysis reveals genetic divergence and new founding native lineages in Athapaskan- and Eskimoan-speaking populations. Proc. Natl Acad. Sci. USA 109, 8471–8476 (2012).

    ADS  CAS  PubMed  Google Scholar 

  10. 10.

    Malhi, R. S. et al. Distribution of Y chromosomes among native North Americans: a study of Athapaskan population history. Am. J. Phys. Anthropol. 137, 412–424 (2008).

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Bolnick, D. A., Raff, J. A., Springs, L. C., Reynolds, A. W. & Miró-Herrans, A. T. Native American genomics and population histories. Annu. Rev. Anthropol. 45, 319–340 (2016).

    Google Scholar 

  12. 12.

    Pickrell, J. K. & Reich, D. Toward a new history and geography of human genes informed by ancient DNA. Trends Genet. 30, 377–389 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    O’Fallon, B. D. & Fehren-Schmitz, L. Native Americans experienced a strong population bottleneck coincident with European contact. Proc. Natl Acad. Sci. USA 108, 20444–20448 (2011).

    ADS  PubMed  Google Scholar 

  14. 14.

    Milner, G. R. in Beyond Germs: Native Depopulation in North America (eds Cameron, C. M. et al.) 50–73 (Univ. Arizona Press, 2015).

  15. 15.

    Reich, D. et al. Reconstructing Native American population history. Nature 488, 370–374 (2012). The first large-scale genome-wide SNP-array study of present-day Native American individuals.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Leonardi, M. et al. Evolutionary patterns and processes: lessons from ancient DNA. Syst. Biol. 66, e1–e29 (2017).

    PubMed  Google Scholar 

  17. 17.

    Stoneking, M. & Krause, J. Learning about human population history from ancient and modern genomes. Nat. Rev. Genet. 12, 603–614 (2011).

    CAS  PubMed  Google Scholar 

  18. 18.

    Cappellini, E. et al. Ancient biomolecules and evolutionary inference. Annu. Rev. Biochem. 87, 1029–1060 (2018).

    CAS  PubMed  Google Scholar 

  19. 19.

    Rasmussen, M. et al. The genome of a Late Pleistocene human from a Clovis burial site in western Montana. Nature 506, 225–229 (2014). The first ancient genome sequenced from the Americas, which revealed a deep basal split between North and South Native American populations, and continuity between Clovis and contemporary Native American populations.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Meltzer, D. J. First Peoples in a New World: Populating Ice Age America 2nd edn (Cambridge Univ. Press, 2021).

  21. 21.

    Posth, C. et al. Reconstructing the deep population history of Central and South America. Cell 175, 1185–1197.e22 (2018). Genome-wide analyses of ancient Central and South American populations revealed the timing and patterns of population continuity and discontinuity over time.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Pitulko, V. V. et al. The Yana RHS site: humans in the Arctic before the Last Glacial Maximum. Science 303, 52–56 (2004).

    ADS  CAS  PubMed  Google Scholar 

  23. 23.

    Pitulko, V., Pavlova, E. & Nikolskiy, P. Revising the archaeological record of the Upper Pleistocene Arctic Siberia: human dispersal and adaptations in MIS 3 and 2. Quat. Sci. Rev. 165, 127–148 (2017).

    ADS  Google Scholar 

  24. 24.

    Lambeck, K., Rouby, H., Purcell, A., Sun, Y. & Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl Acad. Sci. USA 111, 15296–15303 (2014).

    ADS  CAS  PubMed  Google Scholar 

  25. 25.

    Meiri, M. et al. Faunal record identifies Bering isthmus conditions as constraint to end-Pleistocene migration to the New World. Proc. R. Soc. B 281, 20132167 (2014).

    PubMed  Google Scholar 

  26. 26.

    Keigwin, L. D., Donnelly, J. P., Cook, M. S., Driscoll, N. W. & Brigham-Grette, J. Rapid sea-level rise and Holocene climate in the Chukchi Sea. Geology 34, 861–864 (2006).

    ADS  Google Scholar 

  27. 27.

    Pico, T., Mitrovica, J. X. & Mix, A. C. Sea level fingerprinting of the Bering Strait flooding history detects the source of the Younger Dryas climate event. Sci. Adv. 6, eaay2935 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Mann, D. H., Groves, P., Kunz, M. L., Reanier, R. E. & Gaglioti, B. V. Ice-age megafauna in Arctic Alaska: extinction, invasion, survival. Quat. Sci. Rev. 70, 91–108 (2013).

    ADS  Google Scholar 

  29. 29.

    Fitzhugh, B. in Oxford Handbook of the Prehistoric Arctic (eds Friesen, M. & Mason, O.) (Oxford Univ. Press, 2016).

  30. 30.

    Friesen, T. M. in Oxford Handbook of the Prehistoric Arctic (eds Friesen, M. & Mason, O.) (Oxford Univ. Press, 2016).

  31. 31.

    Goebel, T. & Potter, B. in Oxford Handbook of the Prehistoric Arctic (eds Friesen, M. & Mason, O.) (Oxford Univ. Press, 2016).

  32. 32.

    Graf, K. E. in Paleoamerican Odyssey (eds Graf, K. E. et al.) 65–80 (Texas A&M Press, 2014).

  33. 33.

    Kuzmin, Y. V. & Keates, S. G. Siberia and neighboring regions in the Last Glacial Maximum: did people occupy northern Eurasia at that time? Archaeol. Anthropol. Sci. 10, 111–124 (2018).

    Google Scholar 

  34. 34.

    Holmes, C. E. Tanana River Valley archaeology circa 14,000 to 9000 B.P. Arctic Anthropol. 38, 154–170 (2001).

    Google Scholar 

  35. 35.

    Dillehay, T. D. et al. Monte Verde: seaweed, food, medicine, and the peopling of South America. Science 320, 784–786 (2008).

    ADS  CAS  PubMed  Google Scholar 

  36. 36.

    Davis, L. G. et al. Late Upper Paleolithic occupation at Cooper’s Ferry, Idaho, USA, ~16,000 years ago. Science 365, 891–897 (2019).

    ADS  CAS  PubMed  Google Scholar 

  37. 37.

    Jenkins, D. L. et al. Clovis age Western Stemmed projectile points and human coprolites at the Paisley Caves. Science 337, 223–228 (2012).

    ADS  CAS  PubMed  Google Scholar 

  38. 38.

    Waters, M. R. et al. Pre-Clovis projectile points at the Debra L. Friedkin site, Texas-implications for the Late Pleistocene peopling of the Americas. Sci. Adv. 4, eaat4505 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Ardelean, C. F. et al. Evidence of human occupation in Mexico around the Last Glacial Maximum. Nature 584, 87–92 (2020).

    ADS  CAS  PubMed  Google Scholar 

  40. 40.

    Dillehay, T. D. et al. New archaeological evidence for an early human presence at Monte Verde, Chile. PLoS ONE 10, e0141923 (2015).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Holen, S. R. et al. A 130,000-year-old archaeological site in southern California, USA. Nature 544, 479–483 (2017).

    ADS  CAS  PubMed  Google Scholar 

  42. 42.

    Braje, T. J. et al. Were hominins in California 130,000 years ago? PaleoAmerica 3, 200–202 (2017).

    Google Scholar 

  43. 43.

    Haynes, C. V. Jr. Fluted projectile points: their age and dispersion. Science 145, 1408–1413 (1964).

    ADS  PubMed  Google Scholar 

  44. 44.

    Potter, B. A. et al. Current evidence allows multiple models for the peopling of the Americas. Sci. Adv. 4, eaat5473 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Heintzman, P. D. et al. Bison phylogeography constrains dispersal and viability of the ice free corridor in western Canada. Proc. Natl Acad. Sci. USA 113, 8057–8063 (2016).

    CAS  PubMed  Google Scholar 

  46. 46.

    Pedersen, M. W. et al. Postglacial viability and colonization in North America’s ice-free corridor. Nature 537, 45–49 (2016).

    ADS  CAS  PubMed  Google Scholar 

  47. 47.

    Darvill, C. M., Menounos, B., Goehring, B. M., Lian, O. B. & Caffee, M. W. Retreat of the Western Cordilleran Ice Sheet margin during the last deglaciation. Geophys. Res. Lett. 45, 9710–9720 (2018).

    ADS  Google Scholar 

  48. 48.

    Lesnek, A. J., Briner, J. P., Lindqvist, C., Baichtal, J. F. & Heaton, T. H. Deglaciation of the Pacific coastal corridor directly preceded the human colonization of the Americas. Sci. Adv. 4, eaar5040 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Menounos, B. et al. Cordilleran Ice Sheet mass loss preceded climate reversals near the Pleistocene Termination. Science 358, 781–784 (2017).

    ADS  CAS  PubMed  Google Scholar 

  50. 50.

    Smith, H. L. & Goebel, T. Origins and spread of fluted-point technology in the Canadian ice-free corridor and eastern Beringia. Proc. Natl Acad. Sci. USA 115, 4116–4121 (2018).

    CAS  PubMed  Google Scholar 

  51. 51.

    Sikora, M. et al. The population history of northeastern Siberia since the Pleistocene. Nature 570, 182–188 (2019).

    ADS  CAS  PubMed  Google Scholar 

  52. 52.

    Raghavan, M. et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature 505, 87–91 (2014). A Siberian Upper Paleolithic genome revealed a previously unsampled population that contributed to the ancestry of European, Siberian and Native American populations.

    ADS  PubMed  Google Scholar 

  53. 53.

    Lipson, M. & Reich, D. A working model of the deep relationships of diverse modern human genetic lineages outside of Africa. Mol. Biol. Evol. 34, 889–902 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Yu, H. et al. Paleolithic to Bronze Age Siberians reveal connections with First Americans and across Eurasia. Cell 181, 1232–1245.e20 (2020).

    CAS  PubMed  Google Scholar 

  55. 55.

    Damgaard, P. D. B. et al. 137 ancient human genomes from across the Eurasian steppes. Nature 557, 369–374 (2018).

    ADS  CAS  PubMed  Google Scholar 

  56. 56.

    Raghavan, M. et al. Genomic evidence for the Pleistocene and recent population history of Native Americans. Science 349, aab3884 (2015).

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Jakobson, R. The Paleosiberian languages. Am. Anthropol. 44, 602–620 (1942).

    Google Scholar 

  58. 58.

    Moreno-Mayar, J. V. et al. Terminal Pleistocene Alaskan genome reveals first founding population of Native Americans. Nature 553, 203–207 (2018). An Alaskan genome dating to the Late Pleistocene/early Holocene showed the presence of a previously undiscovered population, Ancient Beringians, who diverged from the basal American branch before the formation of the Ancestral Native American population.

    ADS  CAS  PubMed  Google Scholar 

  59. 59.

    Moreno-Mayar, J. V. et al. Early human dispersals within the Americas. Science 362, eaav2621 (2018). This study demonstrated genetic affinities between distant early populations in North and South America, providing evidence of widespread, rapid dispersal of early group and evidence of later dispersals.

    ADS  PubMed  Google Scholar 

  60. 60.

    Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Skoglund, P. & Mathieson, I. Ancient genomics of modern humans: the first decade. Annu. Rev. Genomics Hum. Genet. 19, 381–404 (2018).

    CAS  PubMed  Google Scholar 

  62. 62.

    Llamas, B. et al. Ancient mitochondrial DNA provides high-resolution time scale of the peopling of the Americas. Sci. Adv. 2, e1501385 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Pinotti, T. et al. Y chromosome sequences reveal a short Beringian standstill, rapid expansion, and early population structure of Native American founders. Curr. Biol. 29, 149–157.e3 (2019).

    CAS  PubMed  Google Scholar 

  64. 64.

    Tamm, E. et al. Beringian standstill and spread of Native American founders. PLoS ONE 2, e829 (2007).

    ADS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Kitchen, A., Miyamoto, M. M. & Mulligan, C. J. A three-stage colonization model for the peopling of the Americas. PLoS ONE 3, e1596 (2008).

    ADS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Lindo, J. et al. Ancient individuals from the North American Northwest Coast reveal 10,000 years of regional genetic continuity. Proc. Natl Acad. Sci. USA 114, 4093–4098 (2017).

    CAS  PubMed  Google Scholar 

  67. 67.

    Lindo, J. et al. The genetic prehistory of the Andean highlands 7000 years BP though European contact. Sci. Adv. 4, eaau4921 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Scheib, C. L. et al. Ancient human parallel lineages within North America contributed to a coastal expansion. Science 360, 1024–1027 (2018).

    ADS  CAS  PubMed  Google Scholar 

  69. 69.

    Potter, B. A., Irish, J. D., Reuther, J. D. & McKinney, H. J. New insights into Eastern Beringian mortuary behavior: a terminal Pleistocene double infant burial at Upward Sun River. Proc. Natl Acad. Sci. USA 111, 17060–17065 (2014).

    ADS  CAS  PubMed  Google Scholar 

  70. 70.

    Johannsen, N. N., Larson, G., Meltzer, D. J. & Vander Linden, M. A composite window into human history. Science 356, 1118–1120 (2017).

    CAS  PubMed  Google Scholar 

  71. 71.

    Skoglund, P. & Reich, D. A genomic view of the peopling of the Americas. Curr. Opin. Genet. Dev. 41, 27–35 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Harris, D. N. et al. Evolutionary genomic dynamics of Peruvians before, during, and after the Inca Empire. Proc. Natl Acad. Sci. USA 115, E6526–E6535 (2018).

    CAS  PubMed  Google Scholar 

  73. 73.

    Meltzer, D. J. Clocking the first Americans. Annu. Rev. Anthropol. 24, 21–45 (1995).

    Google Scholar 

  74. 74.

    Nakatsuka, N. et al. Ancient genomes in South Patagonia reveal population movements associated with technological shifts and geography. Nat. Commun. 11, 3868 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Meltzer, D. J. in The Settlement of the American Continents: a Multidisciplinary Approach to Human Biogeography vol. 1 (eds Barton, C. M. et al.) 123–137 (Univ. Arizona Press, 2004).

  76. 76.

    Bergström, A. et al. Insights into human genetic variation and population history from 929 diverse genomes. Science 367, eaay5012 (2020).

    PubMed  PubMed Central  Google Scholar 

  77. 77.

    Fagundes, N. J. R. et al. How strong was the bottleneck associated to the peopling of the Americas? New insights from multilocus sequence data. Genet. Mol. Biol. 41 (suppl 1), 206–214 (2018).

    PubMed  PubMed Central  Google Scholar 

  78. 78.

    Nakatsuka, N. et al. A paleogenomic reconstruction of the deep population history of the Andes. Cell 181, 1131–1145.e21 (2020). This genome-wide study showed the structure of and gene flow in Holocene Andean populations, and demonstrated that genetic continuity occurred even with the rise and fall of Andean Empires.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Perri, A. R. et al. Dog domestication and the dual dispersal of people and dogs into the Americas. Proc. Natl Acad. Sci. USA 118, e2010083118 (2021).

    PubMed  Google Scholar 

  80. 80.

    Bradley, B. & Stanford, D. The North Atlantic ice-edge corridor: a possible Palaeolithic route to the New World. World Archaeol. 36, 459–478 (2004).

    Google Scholar 

  81. 81.

    Raff, J. A. & Bolnick, D. A. Does mitochondrial haplogroup X indicate ancient trans-Atlantic migration to the Americas? A critical re-evaluation. PaleoAmerica 1, 297–304 (2015).

    Google Scholar 

  82. 82.

    Brace, C. L. et al. Old World sources of the first New World human inhabitants: a comparative craniofacial view. Proc. Natl Acad. Sci. USA 98, 10017–10022 (2001).

    CAS  PubMed  Google Scholar 

  83. 83.

    Neves, W. A. & Hubbe, M. Cranial morphology of early Americans from Lagoa Santa, Brazil: implications for the settlement of the New World. Proc. Natl Acad. Sci. USA 102, 18309–18314 (2005).

    ADS  CAS  PubMed  Google Scholar 

  84. 84.

    Owsley, D. W. & Jantz, R. L. in Kennewick Man: The Scientific Investigation of an Ancient American Skeleton (ed. Owsley, D. W.) 622–650 (Texas A&M Press, 2014).

  85. 85.

    Rasmussen, M. et al. The ancestry and affiliations of Kennewick Man. Nature 523, 455–458 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Flegontov, P. et al. Palaeo-Eskimo genetic ancestry and the peopling of Chukotka and North America. Nature 570, 236–240 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Raghavan, M. et al. The genetic prehistory of the New World Arctic. Science 345, 1255832 (2014).

    PubMed  Google Scholar 

  88. 88.

    Rasmussen, M. et al. Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature 463, 757–762 (2010). The first ancient human genome sequenced, revealing that American Paleo-Inuit were from a dispersal independent of Native Americans and Inuit.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Flegontov, P. et al. Genomic study of the Ket: a Paleo-Eskimo-related ethnic group with significant ancient North Eurasian ancestry. Sci. Rep. 6, 20768 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Vajda, E. Dene–Yeniseian: progress and unanswered questions. Diachronica 35, 277–295 (2018).

    Google Scholar 

  91. 91.

    Campbell, L. The Dene–Yeniseian connection. Int. J. Am. Linguist. 77, 445–451 (2011).

    Google Scholar 

  92. 92.

    Campbell, L. Do languages and genes correlate? Lang. Dyn. Chang. 5, 202–226 (2015).

    Google Scholar 

  93. 93.

    Duggan, A. T. et al. Genetic discontinuity between the Maritime Archaic and Beothuk populations in Newfoundland, Canada. Curr. Biol. 27, 3149–3156.e11 (2017).

    CAS  PubMed  Google Scholar 

  94. 94.

    Friesen, T. M. Radiocarbon evidence for fourteenth-century Dorset occupation in the eastern North American Arctic. Am. Antiq. 85, 222–240 (2020).

    Google Scholar 

  95. 95.

    Ameen, C. et al. Specialized sledge dogs accompanied Inuit dispersal across the North American Arctic. Proc. R. Soc. B 286, 20191929 (2019).

    CAS  PubMed  Google Scholar 

  96. 96.

    Sinding, M. S. et al. Arctic-adapted dogs emerged at the Pleistocene-Holocene transition. Science 368, 1495–1499 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Barrett, J. H. Contact, Continuity, and Collapse: The Norse Colonization of the North Atlantic vol. 5 (Brepols, 2003).

  98. 98.

    Margaryan, A. et al. Population genomics of the Viking world. Nature 585, 390–396 (2020).

    ADS  CAS  PubMed  Google Scholar 

  99. 99.

    Napolitano, M. F. et al. Reevaluating human colonization of the Caribbean using chronometric hygiene and Bayesian modeling. Sci. Adv. 5, eaar7806 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Nägele, K. et al. Genomic insights into the early peopling of the Caribbean. Science 369, 456–460 (2020).

    ADS  PubMed  Google Scholar 

  101. 101.

    Schroeder, H. et al. Origins and genetic legacies of the Caribbean Taino. Proc. Natl Acad. Sci. USA 115, 2341–2346 (2018).

    CAS  PubMed  Google Scholar 

  102. 102.

    Fernandes, D. M. et al. A genetic history of the pre-contact Caribbean. Nature 590, 103–110 (2021).

    ADS  CAS  PubMed  Google Scholar 

  103. 103.

    Racimo, F., Sikora, M., Vander Linden, M., Schroeder, H. & Lalueza-Fox, C. Beyond broad strokes: sociocultural insights from the study of ancient genomes. Nat. Rev. Genet. 21, 355–366 (2020).

    CAS  PubMed  Google Scholar 

  104. 104.

    Moreno-Mayar, J. V. et al. Genome-wide ancestry patterns in Rapanui suggest pre-European admixture with Native Americans. Curr. Biol. 24, 2518–2525 (2014).

    CAS  PubMed  Google Scholar 

  105. 105.

    Fehren-Schmitz, L. et al. Genetic ancestry of Rapanui before and after European Contact. Curr. Biol. 27, 3209–3215.e6 (2017).

    CAS  PubMed  Google Scholar 

  106. 106.

    Ioannidis, A. G. et al. Native American gene flow into Polynesia predating Easter Island settlement. Nature 583, 572–577 (2020).

    ADS  CAS  PubMed  Google Scholar 

  107. 107.

    Grayson, D. K. The Great Basin: a Natural Prehistory (Univ. California Press, 2011).

  108. 108.

    Prohaska, A. et al. Human disease variation in the light of population genomics. Cell 177, 115–131 (2019).

    CAS  PubMed  Google Scholar 

  109. 109.

    Meltzer, D. J. Why don’t we know when the first people came to North America? Am. Antiq. 54, 471–490 (1989).

    Google Scholar 

  110. 110.

    Gómez-Carballa, A. et al. The peopling of South America and the trans-Andean gene flow of the first settlers. Genome Res. 28, 767–779 (2018).

    PubMed  PubMed Central  Google Scholar 

  111. 111.

    Moreno-Estrada, A. et al. The genetics of Mexico recapitulates Native American substructure and affects biomedical traits. Science 344, 1280–1285 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  112. 112.

    Ringbauer, H., Steinrücken, M., Fehren-Schmitz, L. & Reich, D. Increased rate of close-kin unions in the central Andes in the half millennium before European contact. Curr. Biol. 30, R980–R981 (2020).

    CAS  PubMed  Google Scholar 

  113. 113.

    Bos, K. I. et al. Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature 514, 494–497 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Jones, E. E. Spatiotemporal analysis of Old World diseases in North America, A.D. 1519–1807. Am. Antiq. 79, 487–506 (2014).

    Google Scholar 

  115. 115.

    Dillehay, T. D. The First Americans: Search and Research (eds Dillehay, T. D. & Meltzer, D. J.) 231–264 (CRC, 1991).

  116. 116.

    Lindo, J. et al. A time transect of exomes from a Native American population before and after European contact. Nat. Commun. 7, 13175 (2016). One of the first studies to show evidence of positive selection and changing frequencies in HLA alleles before and after European contact.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  117. 117.

    Reynolds, A. W. et al. Comparing signals of natural selection between three Indigenous North American populations. Proc. Natl Acad. Sci. USA 116, 9312–9317 (2019).

    CAS  PubMed  Google Scholar 

  118. 118.

    Wagner, J. K. et al. Fostering responsible research on ancient DNA. Am. J. Hum. Genet. 107, 183–195 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119.

    Bardill, J. et al. Advancing the ethics of paleogenomics. Science 360, 384–385 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  120. 120.

    Garrison, N. A. Genetic ancestry testing with tribes: ethics, identity & health implications. Daedalus 147, 60–69 (2018).

    Google Scholar 

  121. 121.

    Colwell, C. Collaborative archaeologies and descendant communities. Annu. Rev. Anthropol. 45, 113–127 (2016).

    Google Scholar 

  122. 122.

    Claw, K. G. et al. A framework for enhancing ethical genomic research with Indigenous communities. Nat. Commun. 9, 2957 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  123. 123.

    Garrison, N. A. et al. Genomic research through an Indigenous lens: understanding the expectations. Annu. Rev. Genomics Hum. Genet. 20, 495–517 (2019).

    CAS  PubMed  Google Scholar 

  124. 124.

    Fox, K. & Hawks, J. Use ancient remains more wisely. Nature 572, 581–583 (2019).

    ADS  CAS  PubMed  Google Scholar 

  125. 125.

    Willerslev, E. et al. Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300, 791–795 (2003).

    ADS  CAS  PubMed  Google Scholar 

  126. 126.

    Pedersen, M. W. et al. Ancient and modern environmental DNA. Phil. Trans. R. Soc. Lond. B 370, 20130383 (2015).

    Google Scholar 

  127. 127.

    Slon, V. et al. Neandertal and Denisovan DNA from Pleistocene sediments. Science 356, 605–608 (2017).

    ADS  CAS  PubMed  Google Scholar 

  128. 128.

    Skoglund, P. et al. Genetic evidence for two founding populations of the Americas. Nature 525, 104–108 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  129. 129.

    McColl, H. et al. The prehistoric peopling of Southeast Asia. Science 361, 88–92 (2018).

    ADS  CAS  PubMed  Google Scholar 

  130. 130.

    Araújo Castro e Silva, M., Ferraz, T., Cátira Bortolini, M., Comas, D. & Hünemeier, T. Deep genetic affinity between coastal Pacific and Amazonian natives evidenced by Australasian ancestry. Proc. Natl Acad. Sci. USA 118, e2025739118 (2021).

    Google Scholar 

Download references

Acknowledgements

We thank M. Adler, R. Kelly, D. Mann, V. Moreno-Mayar, T. Pinotti, M. Raghavan, H. Schroeder, M. Sikora and M. Vander Linden for providing comments and advice on this paper, and V. Moreno-Mayar and K. Kjær for help with the figures; M. Avila-Arcos, T. Dillehay, C. Lalueza-Fox and B. Llamas for their detailed and constructive comments; and St John’s College, Cambridge University, where E.W. is a Fellow and D.J.M. was a Beaufort Visiting Scholar, for providing a stimulating environment in which the idea and much of the work on this manuscript took place. E.W. thanks Illumina for collaboration. E.W. is financially supported by the Wellcome Trust, the Lundbeck Foundation, the Carlsberg Foundation and the Novo Nordic Foundation. D.J.M.’s research is supported by the Quest Archaeological Research Fund and the Potts & Sibley Foundation.

Author information

Affiliations

Authors

Contributions

E.W. and D.J.M. conceived and wrote the manuscript. The authors contributed equally to this work.

Corresponding authors

Correspondence to Eske Willerslev or David J. Meltzer.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Maria Avila-Arcos, Tom Dillehay, Carles Lalueza-Fox and Bastien Llamas for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Willerslev, E., Meltzer, D.J. Peopling of the Americas as inferred from ancient genomics. Nature 594, 356–364 (2021). https://doi.org/10.1038/s41586-021-03499-y

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing