Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The rise of intelligent matter

Abstract

Artificial intelligence (AI) is accelerating the development of unconventional computing paradigms inspired by the abilities and energy efficiency of the brain. The human brain excels especially in computationally intensive cognitive tasks, such as pattern recognition and classification. A long-term goal is de-centralized neuromorphic computing, relying on a network of distributed cores to mimic the massive parallelism of the brain, thus rigorously following a nature-inspired approach for information processing. Through the gradual transformation of interconnected computing blocks into continuous computing tissue, the development of advanced forms of matter exhibiting basic features of intelligence can be envisioned, able to learn and process information in a delocalized manner. Such intelligent matter would interact with the environment by receiving and responding to external stimuli, while internally adapting its structure to enable the distribution and storage (as memory) of information. We review progress towards implementations of intelligent matter using molecular systems, soft materials or solid-state materials, with respect to applications in soft robotics, the development of adaptive artificial skins and distributed neuromorphic computing.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Conceptual transition from structural to intelligent matter with increasing functionality and complexity, and corresponding examples.
Fig. 2: Adaptive swarm behaviour of autonomous robots and clusters of colloids.
Fig. 3: Responsive soft matter and soft matter with embedded memory functionality.
Fig. 4: Adaptive soft materials with homeostatic properties and enzyme-powered motility.
Fig. 5: Neuromorphic materials and systems.

References

  1. 1.

    Sternberg, R. J. Handbook of Intelligence (Cambridge Univ. Press, 2000).

  2. 2.

    Sternberg, R. J. Theories of intelligence. In APA Handbook of Giftedness and Talent (eds Pfeiffer, S. I. et al.) 145–161 (American Psychological Association, 2018).

  3. 3.

    Legg, S. & Hutter, M. Universal intelligence: a definition of machine intelligence. Minds Mach. 17, 391–444 (2007).

    Google Scholar 

  4. 4.

    Amato, F. et al. Artificial neural networks in medical diagnosis. J. Appl. Biomed. 11, 47–58 (2013).

    CAS  Google Scholar 

  5. 5.

    Lane, N. D., Bhattacharya, S., Mathur, A., Forlivesi, C. & Kawsar, F. Squeezing deep learning into mobile and embedded devices. IEEE Pervasive Comput. 16, 82–88 (2017).

    Google Scholar 

  6. 6.

    Hecht, J. Lidar for self-driving cars. Opt. Photonics News 29, 26–33 (2018).

    ADS  Google Scholar 

  7. 7.

    Kanao, K. et al. Highly selective flexible tactile strain and temperature sensors against substrate bending for an artificial skin. RSC Adv. 5, 30170–30174 (2015).

    ADS  Google Scholar 

  8. 8.

    Kim, J. et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat. Commun. 5, 5747 (2014).

    CAS  PubMed  ADS  Google Scholar 

  9. 9.

    Fernández-Caramés, T. M. & Fraga-Lamas, P. Towards the internet-of-smart-clothing: a review on IoT wearables and garments for creating intelligent connected E-textiles. Electronics 7, 405 (2018).

    Google Scholar 

  10. 10.

    Whitesides, G. M. Soft robotics. Angew. Chem. Int. Ed. 57, 4258–4273 (2018).

    CAS  Google Scholar 

  11. 11.

    Majidi, C. Soft robotics: a perspective—current trends and prospects for the future. Soft Robot. 1, 5–11 (2014).

    Google Scholar 

  12. 12.

    Hamdioui, S. et al. Applications of computation-in-memory architectures based on memristive devices. In Proc. 2019 Design, Automation and Test in Europe Conference and Exhibition 486–491, https://doi.org/10.23919/DATE.2019.8715020 (2019).

  13. 13.

    Ielmini, D. & Wong, H. S. P. In-memory computing with resistive switching devices. Nat. Electron. 1, 333–343 (2018).

    Google Scholar 

  14. 14.

    Sebastian, A., Le Gallo, M., Khaddam-Aljameh, R. & Eleftheriou, E. Memory devices and applications for in-memory computing. Nat. Nanotechnol. 15, 529–544 (2020).

    CAS  PubMed  ADS  Google Scholar 

  15. 15.

    Wegst, U. G. K., Bai, H., Saiz, E., Tomsia, A. P. & Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 14, 23–36 (2015).

    CAS  PubMed  ADS  Google Scholar 

  16. 16.

    Isaacoff, B. P. & Brown, K. A. Progress in top-down control of bottom-up assembly. Nano Lett. 17, 6508–6510 (2017).

    CAS  PubMed  ADS  Google Scholar 

  17. 17.

    McEvoy, M. A. & Correll, N. Materials that couple sensing, actuation, computation, and communication. Science 347, 1261689 (2015).

    CAS  PubMed  Google Scholar 

  18. 18.

    Walther, A. Viewpoint: from responsive to adaptive and interactive materials and materials systems: a roadmap. Adv. Mater. 32, 1905111 (2020).

    CAS  Google Scholar 

  19. 19.

    Merindol, R. & Walther, A. Materials learning from life: concepts for active, adaptive and autonomous molecular systems. Chem. Soc. Rev. 46, 5588–5619 (2017).

    CAS  PubMed  Google Scholar 

  20. 20.

    Urban, M. W. Handbook of Stimuli-Responsive Materials (Wiley, 2011).

  21. 21.

    He, X. et al. Synthetic homeostatic materials with chemo-mechano-chemical self-regulation. Nature 487, 214–218 (2012). An intriguing example of an autonomous, homeostatic material system based on chemo-mechanical feedback loops.

    CAS  PubMed  ADS  Google Scholar 

  22. 22.

    Anderson, C., Theraulaz, G. & Deneubourg, J. L. Self-assemblages in insect societies. Insectes Soc. 49, 99–110 (2002).

    Google Scholar 

  23. 23.

    Lopez, U., Gautrais, J., Couzin, I. D. & Theraulaz, G. From behavioural analyses to models of collective motion in fish schools. Interface Focus 2, 693–707 (2012).

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Bajec, I. L. & Heppner, F. H. Organized flight in birds. Anim. Behav. 78, 777–789 (2009).

    Google Scholar 

  25. 25.

    Hinchey, M. G., Sterritt, R. & Rouff, C. Swarms and swarm intelligence. Computer 40, 111–113 (2007).

    Google Scholar 

  26. 26.

    Rubenstein, M., Cornejo, A. & Nagpal, R. Programmable self-assembly in a thousand-robot swarm. Science 345, 795–799 (2014).

    CAS  PubMed  ADS  Google Scholar 

  27. 27.

    Yu, J., Wang, B., Du, X., Wang, Q. & Zhang, L. Ultra-extensible ribbon-like magnetic microswarm. Nat. Commun. 9, 3260 (2018). This article demonstrates how paramagnetic nanoparticles self-organize in a microswarm that can pass obstacles and how its locomotion can be controlled by applying oscillating magnetic fields.

    PubMed  PubMed Central  ADS  Google Scholar 

  28. 28.

    Palacci, J., Sacanna, S., Steinberg, A. P., Pine, D. J. & Chaikin, P. M. Living crystals of light-activated colloidal surfers. Science 339, 936–940 (2013).

    CAS  PubMed  ADS  Google Scholar 

  29. 29.

    Yan, J., Bloom, M., Bae, S. C., Luijten, E. & Granick, S. Linking synchronization to self-assembly using magnetic Janus colloids. Nature 491, 578–581 (2012).

    CAS  PubMed  ADS  Google Scholar 

  30. 30.

    Liang, X. et al. Hierarchical microswarms with leader–follower-like structures: electrohydrodynamic self-organization and multimode collective photoresponses. Adv. Funct. Mater. 30, 1908602 (2020).

    CAS  Google Scholar 

  31. 31.

    Mou, F. et al. Phototactic flocking of photochemical micromotors. iScience 19, 415–424 (2019). This study shows flocking behaviour of synthesized spherical microparticles, which can execute transporting tasks along predefined pathways or bypass obstacles.

    PubMed  PubMed Central  ADS  Google Scholar 

  32. 32.

    Dai, B. et al. Programmable artificial phototactic microswimmer. Nat. Nanotechnol. 11, 1087–1092 (2016).

    CAS  PubMed  ADS  Google Scholar 

  33. 33.

    Tagliazucchi, M., Weiss, E. A. & Szleifer, I. Dissipative self-assembly of particles interacting through time-oscillatory potentials. Proc. Natl Acad. Sci. USA 111, 9751–9756 (2014).

    CAS  PubMed  ADS  Google Scholar 

  34. 34.

    Carnall, J. M. A. et al. Mechanosensitive self-replication driven by self-organization. Science 327, 1502–1506 (2010).

    CAS  PubMed  ADS  Google Scholar 

  35. 35.

    Sadownik, J. W., Mattia, E., Nowak, P. & Otto, S. Diversification of self-replicating molecules. Nat. Chem. 8, 264–269 (2016).

    CAS  PubMed  Google Scholar 

  36. 36.

    Monreal Santiago, G., Liu, K., Browne, W. R. & Otto, S. Emergence of light-driven protometabolism upon recruitment of a photocatalytic cofactor by a self-replicator. Nat. Chem. 12, 603–607 (2020).

    CAS  PubMed  Google Scholar 

  37. 37.

    Rus, D. & Tolley, M. T. Design, fabrication and control of soft robots. Nature 521, 467–475 (2015).

    CAS  PubMed  ADS  Google Scholar 

  38. 38.

    Zhu, B. et al. Skin-inspired haptic memory arrays with an electrically reconfigurable architecture. Adv. Mater. 28, 1559–1566 (2016).

    CAS  PubMed  Google Scholar 

  39. 39.

    Son, D. et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 9, 397–404 (2014).

    CAS  PubMed  ADS  Google Scholar 

  40. 40.

    Miriyev, A., Stack, K. & Lipson, H. Soft material for soft actuators. Nat. Commun. 8, 596 (2017).

    PubMed  PubMed Central  ADS  Google Scholar 

  41. 41.

    Zhao, Z., Wang, C., Yan, H. & Liu, Y. Soft robotics programmed with double crosslinking DNA hydrogels. Adv. Funct. Mater. 29, 1905911 (2019). This article shows impressively how to translate nanometre-scale DNA self-assembly into macroscopic movements of soft materials, an encouraging achievement for soft robotics.

    CAS  Google Scholar 

  42. 42.

    Yang, H. et al. 3D printed photoresponsive devices based on shape memory composites. Adv. Mater. 29, 1701627 (2017).

    Google Scholar 

  43. 43.

    Lai, Y. C. et al. Actively perceiving and responsive soft robots enabled by self-powered, highly extensible, and highly sensitive triboelectric proximity- and pressure-sensing skins. Adv. Mater. 30, 1801114 (2018). This work presents soft robots driven by self-generated electricity via the triboelectric effect, which can sense and embrace close objects.

    Google Scholar 

  44. 44.

    Schroeder, T. B. H. et al. An electric-eel-inspired soft power source from stacked hydrogels. Nature 552, 214–218 (2017).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  45. 45.

    Liu, Y. et al. Stretchable motion memory devices based on mechanical hybrid materials. Adv. Mater. 29, 1701780 (2017).

    Google Scholar 

  46. 46.

    Oh, J. Y. et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature 539, 411–415 (2016).

    CAS  PubMed  ADS  Google Scholar 

  47. 47.

    Urban, M. W. et al. Key-and-lock commodity self-healing copolymers. Science 225, 220–225 (2018). A remarkable example for an advanced soft material with self-healing capabilities.

    ADS  Google Scholar 

  48. 48.

    Chen, Y., Kushner, A. M., Williams, G. A. & Guan, Z. Multiphase design of autonomic self-healing thermoplastic elastomers. Nat. Chem. 4, 467–472 (2012).

    CAS  PubMed  Google Scholar 

  49. 49.

    Li, C. H. et al. A highly stretchable autonomous self-healing elastomer. Nat. Chem. 8, 618–624 (2016).

    CAS  PubMed  Google Scholar 

  50. 50.

    Beyer, H. M. et al. Synthetic biology makes polymer materials count. Adv. Mater. 30, 1800472 (2018).

    Google Scholar 

  51. 51.

    Nakajima, K., Hauser, H., Li, T. & Pfeifer, R. Information processing via physical soft body. Sci. Rep. 5, 10487 (2015).

    PubMed  PubMed Central  ADS  Google Scholar 

  52. 52.

    Zhang, H., Zeng, H., Priimagi, A. & Ikkala, O. Programmable responsive hydrogels inspired by classical conditioning algorithm. Nat. Commun. 10, 3267 (2019).

    PubMed  PubMed Central  ADS  Google Scholar 

  53. 53.

    Zeng, H., Zhang, H., Ikkala, O. & Priimagi, A. Associative learning by classical conditioning in liquid crystal network actuators. Matter 2, 194–206 (2020). Associative learning is realized in a liquid crystal network material via a conditioning process, where an initially neutral light stimulus is asscociated with heating.

    PubMed  PubMed Central  Google Scholar 

  54. 54.

    Kumar, B. V. V. S. P., Patil, A. J. & Mann, S. Enzyme-powered motility in buoyant organoclay/DNA protocells. Nat. Chem. 10, 1154–1163 (2018).

    CAS  PubMed  Google Scholar 

  55. 55.

    Garrad, M., Soter, G., Conn, A. T., Hauser, H. & Rossiter, J. A soft matter computer for soft robots. Sci. Robot. 4, eaaw6060 (2019). The authors propose a computational system integrated into a soft material, which, inspired by biological systems, tranfers information via a fluid perfusing through the system.

    PubMed  Google Scholar 

  56. 56.

    Miller, J. F. & Downing, K. Evolution in materio: looking beyond the silicon box. In Proc. NASA/DoD Conference on Evolvable Hardware 167–176, https://doi.org/10.1109/EH.2002.1029882 (2002).

  57. 57.

    Feynman, R. P. The Character of Physical Law (MIT Press, 1967).

  58. 58.

    Yoshihito, A. Information processing using intelligent materials - information-processing architectures for material processors. J. Intell. Mater. Syst. Struct. 5, 418–423 (1994).

    Google Scholar 

  59. 59.

    Merolla, P. A. et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 668–673 (2014).

    CAS  ADS  Google Scholar 

  60. 60.

    Metz, C. Google built its very own chips to power its AI bots. Wired https://www.wired.com/2016/05/google-tpu-custom-chips/ (accessed 10 July 2020).

  61. 61.

    Zhang, W., Mazzarello, R., Wuttig, M. & Ma, E. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nat. Rev. Mater. 4, 150–168 (2019).

    CAS  ADS  Google Scholar 

  62. 62.

    Sebastian, A. et al. Tutorial: brain-inspired computing using phase-change memory devices. J. Appl. Phys. 124, 111101 (2018).

    ADS  Google Scholar 

  63. 63.

    Boybat, I. et al. Neuromorphic computing with multi-memristive synapses. Nat. Commun. 9, 2514 (2018).

    PubMed  PubMed Central  ADS  Google Scholar 

  64. 64.

    Feldmann, J., Youngblood, N., Wright, C. D., Bhaskaran, H. & Pernice, W. H. P. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569, 208–214 (2019).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  65. 65.

    Ríos, C. et al. Integrated all-photonic non-volatile multi-level memory. Nat. Photon. 9, 725–732 (2015).

    ADS  Google Scholar 

  66. 66.

    Cheng, Z., Ríos, C., Pernice, W. H. P., David Wright, C. & Bhaskaran, H. On-chip photonic synapse. Sci. Adv. 3, e1700160 (2017). This article shows an artificial synapse consisting of a photonic waveguide and a phase-change material, which paves the way for on-chip neuromorphic computing.

    PubMed  PubMed Central  ADS  Google Scholar 

  67. 67.

    Gupta, A., Sakthivel, T. & Seal, S. Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 73, 44–126 (2015).

    CAS  Google Scholar 

  68. 68.

    Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    CAS  PubMed  Google Scholar 

  69. 69.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS  Google Scholar 

  70. 70.

    Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    PubMed  ADS  Google Scholar 

  71. 71.

    Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).

    CAS  PubMed  ADS  Google Scholar 

  72. 72.

    Wan, J. et al. Tuning two-dimensional nanomaterials by intercalation: materials, properties and applications. Chem. Soc. Rev. 45, 6742–6765 (2016).

    CAS  PubMed  Google Scholar 

  73. 73.

    Zeng, M. et al. Bandgap tuning of two-dimensional materials by sphere diameter engineering. Nat. Mater. 19, 528–533 (2020).

    CAS  PubMed  ADS  Google Scholar 

  74. 74.

    Choi, C. et al. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat. Commun. 8, 1664 (2017).

    PubMed  PubMed Central  ADS  Google Scholar 

  75. 75.

    Shi, Y. et al. Electronic synapses made of layered two-dimensional materials. Nat. Electron. 1, 458–465 (2018).

    Google Scholar 

  76. 76.

    He, C. et al. Artificial synapse based on van der Waals heterostructures with tunable synaptic functions for neuromorphic computing. ACS Appl. Mater. Interfaces 12, 11945–11954 (2020).

    CAS  PubMed  Google Scholar 

  77. 77.

    Park, H., Mastro, M. A., Tadjer, M. J. & Kim, J. Programmable multilevel memtransistors based on van der Waals heterostructures. Adv. Electron. Mater. 5, 1900333 (2019).

    CAS  Google Scholar 

  78. 78.

    Liu, C. et al. A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications. Nat. Nanotechnol. 13, 404–410 (2018).

    CAS  PubMed  ADS  Google Scholar 

  79. 79.

    Mennel, L. et al. Ultrafast machine vision with 2D material neural network image sensors. Nature 579, 62–66 (2020). The presented image sensor based on a 2D material constitutes at the same time an artificial neural network.

    CAS  PubMed  ADS  Google Scholar 

  80. 80.

    Bose, S. K. et al. Evolution of a designless nanoparticle network into reconfigurable Boolean logic. Nat. Nanotechnol. 10, 1048–1052 (2015). Computational functionality is experimentally realized in a disordered nanomaterial network consisting of arbitrarily interconnected, functionalized nanoparticles.

    CAS  PubMed  ADS  Google Scholar 

  81. 81.

    Chen, T. et al. Classification with a disordered dopant-atom network in silicon. Nature 577, 341–345 (2020).

    CAS  PubMed  ADS  Google Scholar 

  82. 82.

    Ruiz Euler, H.-C. et al. A deep-learning approach to realising functionality in nanoelectronic devices. Nat. Nanotechnol. 15, 992–998 (2020).

    PubMed  ADS  Google Scholar 

  83. 83.

    Ruiz Euler, H.-C. et al. Dopant network processing units: towards efficient neural-network emulators with high-capacity nanoelectronic nodes. Preprint at http://arxiv.org/abs/2007.12371 (2020).

  84. 84.

    Lin, X. et al. All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018).

    MathSciNet  CAS  PubMed  MATH  ADS  Google Scholar 

  85. 85.

    Estakhri, N. M., Edwards, B. & Engheta, N. Inverse-designed metastructures that solve equations. Science 363, 1333–1338 (2019).

    MathSciNet  MATH  ADS  Google Scholar 

  86. 86.

    Hirano, Y., Segawa, Y., Kuroda-Sowa, T., Kawai, T. & Matsumoto, T. Conductance with stochastic resonance in Mn12 redox network without tuning. Appl. Phys. Lett. 104, 233104 (2014).

    ADS  Google Scholar 

  87. 87.

    Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).

    MathSciNet  CAS  PubMed  MATH  ADS  Google Scholar 

  88. 88.

    Lukoševičius, M. & Jaeger, H. Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3, 127–149 (2009).

    MATH  Google Scholar 

  89. 89.

    Jaeger, H. The “Echo State” Approach to Analysing and Training Recurrent Neural Networks. GMD Report 148 http://www.faculty.jacobs-university.de/hjaeger/pubs/EchoStatesTechRep.pdf (German National Research Institute for Computer Science, 2001).

  90. 90.

    Maass, W., Natschläger, T. & Markram, H. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14, 2531–2560 (2002).

    PubMed  MATH  Google Scholar 

  91. 91.

    Steil, J. J. Backpropagation-decorrelation: online recurrent learning with O(N) complexity. In IEEE Int. Conf. on Neural Networks 2, 843–848 (IEEE, 2004).

  92. 92.

    Schürmann, F., Meier, K. & Schemmel, J. Edge of chaos computation in mixed-mode VLSI—a hard liquid. In Advances in Neural Information Processing Systems 17, 1201–1208 (2004).

  93. 93.

    Schrauwen, B., D’Haene, M., Verstraeten, D. & Van Campenhout, J. Compact hardware liquid state machines on FPGA for real-time speech recognition. Neural Netw. 21, 511–523 (2008).

    PubMed  Google Scholar 

  94. 94.

    Fernando, C. & Sojakka, S. Pattern recognition in a bucket. In Proc. ECAL 588–597 (2003).

  95. 95.

    Jones, B., Stekel, D., Rowe, J. & Fernando, C. Is there a liquid state machine in the bacterium Escherichia coli? In Proc. 2007 IEEE Symp. Artif. Life (CI-ALife 2007) 187–191, https://doi.org/10.1109/ALIFE.2007.367795 (2007).

  96. 96.

    Dai, X. in Advances in Neural Networks Vol. 3174 (eds Yin, F. L. et al.) 519–524 (Springer, 2004).

  97. 97.

    Goudarzi, A., Lakin, M. R. & Stefanovic, D. DNA reservoir computing: a novel molecular computing approach. In DNA Computing and Molecular Programming (eds Soloveichik D. & Yurke, B.) Vol. 8141, 76–89 (Springer, 2013).

  98. 98.

    Nikolić, D., Haeusler, S., Singer, W. & Maass, W. Temporal dynamics of information content carried by neurons in the primary visual cortex. In Advances in Neural Information Processing Systems 1041–1048, https://doi.org/10.7551/mitpress/7503.003.0135 (2007).

  99. 99.

    Duport, F., Smerieri, A., Akrout, A., Haelterman, M. & Massar, S. Fully analogue photonic reservoir computer. Sci. Rep. 6, 22381 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  100. 100.

    Larger, L. et al. Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing. Opt. Express 20, 3241 (2012).

    CAS  PubMed  ADS  Google Scholar 

  101. 101.

    Vandoorne, K. et al. Experimental demonstration of reservoir computing on a silicon photonics chip. Nat. Commun. 5, 3541 (2014).

    PubMed  ADS  Google Scholar 

  102. 102.

    Larger, L. et al. High-speed photonic reservoir computing using a time-delay-based architecture: million words per second classification. Phys. Rev. X 7, 011015 (2017).

    Google Scholar 

  103. 103.

    Appeltant, L. et al. Information processing using a single dynamical node as complex system. Nat. Commun. 2, 468 (2011).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  104. 104.

    Kulkarni, M. S. Memristor-based reservoir computing. In 2012 IEEE/ACM Int. Symp. on Nanoscale 226–232, https://doi.org/10.1145/2765491.2765531 (IEEE/ACM, 2012).

  105. 105.

    Bürger, J. & Teuscher, C. Variation-tolerant computing with memristive reservoirs. In 2013 IEEE/ACM Int. Symp. on Nanoscale Architectures (NANOARCH) 1–6, https://doi.org/10.1109/NanoArch.2013.6623028 (IEEE/ACM, 2013).

  106. 106.

    Merkel, C., Saleh, Q., Donahue, C. & Kudithipudi, D. Memristive reservoir computing architecture for epileptic seizure detection. Proc. Comput. Sci. 41, 249–254 (2014).

    Google Scholar 

  107. 107.

    Hassan, A. M., Li, H. H. & Chen, Y. Hardware implementation of echo state networks using memristor double crossbar arrays. In 2017 Int. Joint Conf. on Neural Networks (IJCNN) 2171–2177, https://doi.org/10.1109/IJCNN.2017.7966118 (IEEE, 2017).

  108. 108.

    Soures, N., Hays, L. & Kudithipudi, D. Robustness of a memristor based liquid state machine. In 2017 Int. Joint Conf. on Neural Networks (IJCNN) 2414–2420, https://doi.org/10.1109/IJCNN.2017.7966149 (IEEE, 2017).

  109. 109.

    Du, C. et al. Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 8, 2204 (2017).

    PubMed  PubMed Central  ADS  Google Scholar 

  110. 110.

    Moon, J. et al. Temporal data classification and forecasting using a memristor-based reservoir computing system. Nat. Electron. 2, 480–487 (2019).

    Google Scholar 

  111. 111.

    Sillin, H. O. et al. A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing. Nanotechnology 24, 384004 (2013).

    Google Scholar 

  112. 112.

    Demis, E. C. et al. Atomic switch networks—nanoarchitectonic design of a complex system for natural computing. Nanotechnology 26, 204003 (2015).

    CAS  PubMed  ADS  Google Scholar 

  113. 113.

    Demis, E. C. et al. Nanoarchitectonic atomic switch networks for unconventional computing. Jpn. J. Appl. Phys. 55, 1102B2 (2016).

    Google Scholar 

  114. 114.

    Dale, M., Stepney, S., Miller, J. F. & Trefzer, M. Reservoir computing in materio: an evaluation of configuration through evolution. In 2016 IEEE Symp. Ser. Comput. Intell. SSCI 2016 https://doi.org/10.1109/SSCI.2016.7850170 (IEEE, 2016).

  115. 115.

    Dale, M., Miller, J. F. & Stepney, S. Reservoir computing as a model for in-materio computing. In Advances in Unconventional Computing (ed. Adamatzky, A.) 533–571 (Springer, 2017).

  116. 116.

    Tanaka, H. et al. A molecular neuromorphic network device consisting of single-walled carbon nanotubes complexed with polyoxometalate. Nat. Commun. 9, 2693 (2018).

    PubMed  PubMed Central  ADS  Google Scholar 

  117. 117.

    Appeltant, L., Van Der Sande, G., Danckaert, J. & Fischer, I. Constructing optimized binary masks for reservoir computing with delay systems. Sci. Rep. 4, 3629 (2015).

    Google Scholar 

  118. 118.

    Dale, M., Miller, J. F., Stepney, S. & Trefzer, M. A. Evolving Carbon nanotube reservoir computers. In Unconventional Computation and Natural Computation (eds Amos, M. & Condon, A.) 49–61 (Springer, 2016). This study demonstrates how physical media can be exploited as a reservoir for machine-learning capabilities.

  119. 119.

    Tanaka, G. et al. Recent advances in physical reservoir computing: a review. Neural Netw. 115, 100–123 (2019).

    PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Volkswagen Foundation through the Momentum program (grant A126874). This work was further funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through project 433682494 – SFB 1459. The project has further received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement number 101017237.

Author information

Affiliations

Authors

Contributions

All authors discussed the topic and wrote the manuscript together.

Corresponding author

Correspondence to W. H. P. Pernice.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kaspar, C., Ravoo, B.J., van der Wiel, W.G. et al. The rise of intelligent matter. Nature 594, 345–355 (2021). https://doi.org/10.1038/s41586-021-03453-y

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links