Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Macroscopic materials assembled from nanoparticle superlattices

Abstract

Nanoparticle assembly has been proposed as an ideal means to program the hierarchical organization of a material by using a selection of nanoscale components to build the entire material from the bottom up. Multiscale structural control is highly desirable because chemical composition, nanoscale ordering, microstructure and macroscopic form all affect physical properties1,2. However, the chemical interactions that typically dictate nanoparticle ordering3,4,5 do not inherently provide any means to manipulate structure at larger length scales6,7,8,9. Nanoparticle-based materials development therefore requires processing strategies to tailor micro- and macrostructure without sacrificing their self-assembled nanoscale arrangements. Here we demonstrate methods to rapidly assemble gram-scale quantities of faceted nanoparticle superlattice crystallites that can be further shaped into macroscopic objects in a manner analogous to the sintering of bulk solids. The key advance of this method is that the chemical interactions that govern nanoparticle assembly remain active during the subsequent processing steps, which enables the local nanoscale ordering of the particles to be preserved as the macroscopic materials are formed. The nano- and microstructure of the bulk solids can be tuned as a function of the size, chemical makeup and crystallographic symmetry of the superlattice crystallites, and the micro- and macrostructures can be controlled via subsequent processing steps. This work therefore provides a versatile method to simultaneously control structural organization across the molecular to macroscopic length scales.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: NCTs can be processed into bulk solids with simultaneous structural control across seven orders of magnitude on the length scale.
Fig. 2: The formation of solid-state NCT superlattice polyhedra of controlled sizes.
Fig. 3: Control over microstructure in sintered NCT solids.
Fig. 4: Independent control of the NCT solid composition, nanoscale ordering and microstructure.

Data availability

All data are available in the main Article and Supplementary Information, or from the corresponding author upon reasonable request.

References

  1. 1.

    Begley, M. R., Gianola, D. S. & Ray, T. R. Bridging functional nanocomposites to robust macroscale devices. Science 364, eaav4299 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  2. 2.

    Boles, M. A., Engel, M. & Talapin, D. V. Self-assembly of colloidal nanocrystals: from intricate structures to functional materials. Chem. Rev. 116, 11220–11289 (2016).

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Grzelczak, M., Liz-Marzán, L. M. & Klajn, R. Stimuli-responsive self-assembly of nanoparticles. Chem. Soc. Rev. 48, 1342–1361 (2019).

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Gabrys, P. A., Zornberg, L. Z. & Macfarlane, R. J. Programmable atom equivalents: atomic crystallization as a framework for synthesizing nanoparticle superlattices. Small 15, 1805424 (2019).

    Article  Google Scholar 

  5. 5.

    Talapin, D. V., Lee, J.-S., Kovalenko, M. V. & Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389–458 (2010).

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Dreyer, A. et al. Organically linked iron oxide nanoparticle supercrystals with exceptional isotropic mechanical properties. Nat. Mater. 15, 522–528 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  7. 7.

    Tan, A. T. L., Beroz, J., Kolle, M. & Hart, A. J. Direct-Write Freeform Colloidal Assembly. Adv. Mater. 30, 1803620 (2018).

    Article  Google Scholar 

  8. 8.

    Hatton, B., Mishchenko, L., Davis, S., Sandhage, K. H. & Aizenberg, J. Assembly of large-area, highly ordered, crack-free inverse opal films. Proc. Natl Acad. Sci. USA 107, 10354–10359 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  9. 9.

    Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    ADS  CAS  PubMed  Article  Google Scholar 

  10. 10.

    Singh, G. et al. Self-assembly of magnetite nanocubes into helical superstructures. Science 345, 1149–1153 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  11. 11.

    Vial, S., Nykypanchuk, D., Yager, K. G., Tkachenko, A. V. & Gang, O. Linear mesostructures in DNA–nanorod self-assembly. ACS Nano 7, 5437–5445 (2013).

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Gabrys, P. A. & Macfarlane, R. J. Controlling crystal texture in programmable atom equivalent thin films. ACS Nano 13, 8452–8460 (2019).

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Dong, A., Chen, J., Vora, P. M., Kikkawa, J. M. & Murray, C. B. Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface. Nature 466, 474–477 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  14. 14.

    Ye, X. et al. Structural diversity in binary superlattices self-assembled from polymer-grafted nanocrystals. Nat. Commun. 6, 10052 (2015).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Auyeung, E. et al. DNA-mediated nanoparticle crystallization into Wulff polyhedra. Nature 505, 73–77 (2014).

    ADS  PubMed  Article  Google Scholar 

  16. 16.

    Kang, Y. et al. Heterogeneous catalysts need not be so “heterogeneous”: monodisperse Pt nanocrystals by combining shape-controlled synthesis and purification by colloidal recrystallization. J. Am. Chem. Soc. 135, 2741–2747 (2013).

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    de Nijs, B. et al. Entropy-driven formation of large icosahedral colloidal clusters by spherical confinement. Nat. Mater. 14, 56–60 (2015).

    ADS  PubMed  Article  Google Scholar 

  18. 18.

    Lewis, D. J., Zornberg, L. Z., Carter, D. J. D. & Macfarlane, R. J. Single-crystal Winterbottom constructions of nanoparticle superlattices. Nat. Mater. 19, 719–724 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  19. 19.

    Nagaoka, Y. et al. Superstructures generated from truncated tetrahedral quantum dots. Nature 561, 378–382 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  20. 20.

    Jiang, W. et al. Emergence of complexity in hierarchically organized chiral particles. Science 368, 642–648 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  21. 21.

    Hueckel, T., Hocky, G. M., Palacci, J. & Sacanna, S. Ionic solids from common colloids. Nature 580, 487–490 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  22. 22.

    Zhang, J. et al. Self-assembling nanocomposite tectons. J. Am. Chem. Soc. 138, 16228–16231 (2016).

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Santos, P. J., Cheung, T. C. & Macfarlane, R. J. assembling ordered crystals with disperse building blocks. Nano Lett. 19, 5774–5780 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Auyeung, E., Macfarlane, R. J., Choi, C. H. J., Cutler, J. I. & Mirkin, C. A. Transitioning DNA-engineered nanoparticle superlattices from solution to the solid state. Adv. Mater. 24, 5181–5186 (2012).

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Lee, S., Zheng, C. Y., Bujold, K. E. & Mirkin, C. A. A cross-linking approach to stabilizing stimuli-responsive colloidal crystals engineered with DNA. J. Am. Chem. Soc. 141, 11827–11831 (2019).

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Birshtein, T. M. & Lyatskaya, Yu. V. Theory of the collapse-stretching transition of a polymer brush in a mixed solvent. Macromolecules 27, 1256–1266 (1994).

    ADS  CAS  Article  Google Scholar 

  27. 27.

    Santos, P. J., Cao, Z., Zhang, J., Alexander-Katz, A. & Macfarlane, R. J. Dictating nanoparticle assembly via systems-level control of molecular multivalency. J. Am. Chem. Soc. 141, 14624–14632 (2019).

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Chaim, R., Levin, M., Shlayer, A. & Estournes, C. Sintering and densification of nanocrystalline ceramic oxide powders: a review. Adv. Appl. Ceramics 107, 159–169 (2008).

    CAS  Article  Google Scholar 

  29. 29.

    Olevsky, E. A. Theory of sintering: from discrete to continuum. Mater. Sci. Eng. Rep. 23, 41–100 (1998).

    Article  Google Scholar 

  30. 30.

    Schall, P., Cohen, I., Weitz, D. A. & Spaepen, F. Visualizing dislocation nucleation by indenting colloidal crystals. Nature 440, 319–323 (2006).

    ADS  CAS  PubMed  Article  Google Scholar 

  31. 31.

    Santos, P. J. & Macfarlane, R. J. Reinforcing supramolecular bonding with magnetic dipole interactions to assemble dynamic nanoparticle superlattices. J. Am. Chem. Soc. 142, 1170–1174 (2020).

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Matyjaszewski, K. Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules 45, 4015–4039 (2012).

    ADS  CAS  Article  Google Scholar 

  33. 33.

    Bastús, N. G., Comenge, J. & Puntes, V. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir 27, 11098–11105 (2011).

    PubMed  Article  Google Scholar 

  34. 34.

    Park, J. et al. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 3, 891–895 (2004).

    ADS  CAS  PubMed  Article  Google Scholar 

  35. 35.

    Huh, J.-H., Lee, J. & Lee, S. Soft plasmonic assemblies exhibiting unnaturally high refractive index. Nano Lett. 20, 4768–4774 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  36. 36.

    Majetich, S. A., Wen, T. & Booth, R. A. Functional magnetic nanoparticle assemblies: formation, collective behavior, and future directions. ACS Nano 5, 6081–6084 (2011).

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    De Yoreo, J. J. et al. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349, aaa6760 (2015).

    PubMed  Article  Google Scholar 

  38. 38.

    Mirabello, G. et al. Crystallization by particle attachment is a colloidal assembly process. Nat. Mater. 19, 391–396 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  39. 39.

    Ou, Z., Wang, Z., Luo, B., Luijten, E. & Chen, Q. Kinetic pathways of crystallization at the nanoscale. Nat. Mater. 19, 450–455 (2019).

    ADS  PubMed  Article  Google Scholar 

  40. 40.

    Depriester, D. & Kubler, R. Resolution of the Wicksell’s equation by minimum distance estimation. Image Anal. Stereol. 38, 213–226 (2019).

    MathSciNet  MATH  Article  Google Scholar 

Download references

Acknowledgements

This work was primarily supported by an NSF CAREER grant, award number CHE-1653289; supported in part by the US Army Research Office under grant W911NF-18-1-0197 and the Air Force Office of Scientific Research FA9550-17-1-0288; and made use of the MRSEC Shared Experimental Facilities at MIT, supported by the NSF under award DMR 14-19807. P.J.S., P.A.G. and L.Z.Z. acknowledge support from the NSF Graduate Research Fellowship Program under grant NSF 1122374.

Author information

Affiliations

Authors

Contributions

P.J.S. synthesized the materials, developed the processing methods, collected characterization data, designed the experiments and wrote the manuscript. P.A.G. developed characterization methods, collected microscopy data, designed the experiments and wrote the manuscript. L.Z.Z. developed the model and wrote the manuscript. M.S.L. collected characterization data and wrote the manuscript. R.J.M. designed the experiments and wrote the manuscript.

Corresponding author

Correspondence to Robert J. Macfarlane.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains additional data to support the conclusions of the manuscript including: small angle x-ray scattering data of the crystalline materials, scanning electron microscopy, and a model describing the crystal growth process. It contains Supplementary Figs. 1 to 51, Supplementary Tables 1 to 3, and Equations S1 to S19.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Santos, P.J., Gabrys, P.A., Zornberg, L.Z. et al. Macroscopic materials assembled from nanoparticle superlattices. Nature 591, 586–591 (2021). https://doi.org/10.1038/s41586-021-03355-z

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links