Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Promises and prospects of two-dimensional transistors

Abstract

Two-dimensional (2D) semiconductors have attracted tremendous interest as atomically thin channels that could facilitate continued transistor scaling. However, despite many proof-of-concept demonstrations, the full potential of 2D transistors has yet to be determined. To this end, the fundamental merits and technological limits of 2D transistors need a critical assessment and objective projection. Here we review the promise and current status of 2D transistors, and emphasize that widely used device parameters (such as carrier mobility and contact resistance) could be frequently misestimated or misinterpreted, and may not be the most reliable performance metrics for benchmarking 2D transistors. We suggest that the saturation or on-state current density, especially in the short-channel limit, could provide a more reliable measure for assessing the potential of diverse 2D semiconductors, and should be applied for cross-checking different studies, especially when milestone performance metrics are claimed. We also summarize the key technical challenges in optimizing the channels, contacts, dielectrics and substrates and outline potential pathways to push the performance limit of 2D transistors. We conclude with an overview of the critical technical targets, the key technological obstacles to the ‘lab-to-fab’ transition and the potential opportunities arising from the use of these atomically thin semiconductors.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Body thickness scaling in FETs.
Fig. 2: Comparison of material properties of 3D and 2D semiconductors.
Fig. 3: Pitfalls in the determination of mobility and contact resistance.
Fig. 4: Lab-to-fab transition and prospects for industry application.

Data availability

The data that support the plots within this paper are available from the corresponding author upon reasonable request.

References

  1. 1.

    Waldrop, M. M. The chips are down for Moore’s law. Nature 530, 144–147 (2016).

    ADS  CAS  PubMed  Google Scholar 

  2. 2.

    Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (John Wiley & Sons, 2006).

  3. 3.

    Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).

    ADS  CAS  Google Scholar 

  4. 4.

    Liu, Y., Duan, X., Huang, Y. & Duan, X. Two-dimensional transistors beyond graphene and TMDCs. Chem. Soc. Rev. 47, 6388–6409 (2018).

    CAS  PubMed  Google Scholar 

  5. 5.

    Ferain, I., Colinge, C. A. & Colinge, J.-P. Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors. Nature 479, 310–316 (2011).

    ADS  CAS  PubMed  Google Scholar 

  6. 6.

    Hu, C. FinFET and UTB–how to make very short channel MOSFETs. ECS Trans. 50, 17–20 (2013).

    ADS  Google Scholar 

  7. 7.

    International Roadmap for Devices and Systems (IRDS) 2020 Edition (IEEE, 2020); https://irds.ieee.org/editions/2020

  8. 8.

    International Roadmap Committee. The International Technology Roadmap for Semiconductors 2.0 (ITRS, 2015); http://www.itrs2.net/itrs-reports.html

  9. 9.

    Auth, C. et al. A 10nm high performance and low-power CMOS technology featuring 3rd generation FinFET transistors, self-aligned quad patterning, contact over active gate and cobalt local interconnects. In 2017 IEEE Int. Electron Devices Meeting 673–676 (IEEE, 2017).

  10. 10.

    Poljak, M., Jovanovic, V., Grgec, D. & Suligoj, T. Assessment of electron mobility in ultrathin-body InGaAs-on-insulator MOSFETs using physics-based modeling. IEEE Trans. Electron Dev. 59, 1636–1643 (2012).

    ADS  CAS  Google Scholar 

  11. 11.

    Uchida, K., Koga, J. & Takagi, S. Experimental study on carrier transport mechanism in ultrathin-body SOI n- and p-MOSFETs with SOI thickness less than 5 nm. In 2002 IEEE International Electron Devices Meeting 805–808 (IEEE, 2002).

  12. 12.

    Sakaki, H. et al. Interface roughness scattering in GaAs/AlAs quantum wells. Appl. Phys. Lett. 51, 1934–1936 (1987).

    ADS  CAS  Google Scholar 

  13. 13.

    Wilson, J. A. & Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18, 193–335 (1969).

    ADS  CAS  Google Scholar 

  14. 14.

    Radisavljevic, B. et al. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011). This work first demonstrated single-layer MoS2 transistors and motivated further exploration of 2D transistors.

    ADS  CAS  PubMed  Google Scholar 

  15. 15.

    Tao, L. et al. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 10, 227–231 (2015).

    ADS  CAS  PubMed  Google Scholar 

  16. 16.

    Liu, H., Neal, A. T. & Ye, P. D. Channel length scaling of MoS2 MOSFETs. ACS Nano 6, 8563–8569 (2012).

    CAS  PubMed  Google Scholar 

  17. 17.

    Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014).

    ADS  CAS  PubMed  Google Scholar 

  18. 18.

    Cho, S. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 349, 625–628 (2015).

    ADS  CAS  PubMed  Google Scholar 

  19. 19.

    Desai, S. B. et al. MoS2 transistors with 1-nanometer gate lengths. Science 354, 99–102 (2016). This work demonstrated the switching of a MoS2 transistor with an ultrashort gate length of 1 nm.

    ADS  CAS  PubMed  Google Scholar 

  20. 20.

    Bandurin, D. A. et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 12, 223–227 (2017).

    ADS  CAS  PubMed  Google Scholar 

  21. 21.

    Frank, D. J., Taur, Y. & Wong, H. P. Generalized scale length for two-dimensional effects in MOSFETs. IEEE Electron Device Lett. 19, 385–387 (1998).

    ADS  CAS  Google Scholar 

  22. 22.

    Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019). This paper reviewed the integration of graphene and 2D materials with a Si-based nano-system, and provided a perspective on their applications.

    ADS  CAS  PubMed  Google Scholar 

  23. 23.

    Cao, W., Kang, J., Liu, W. & Banerjee, K. A compact current–voltage model for 2D semiconductor based field-effect transistors considering interface traps, mobility degradation, and inefficient doping effect. IEEE Trans. Electron Dev. 61, 4282–4290 (2014).

    ADS  Google Scholar 

  24. 24.

    Collaert, N. Device architectures for the 5nm technology node and beyond. In Semicon Taiwan https://bjpcjp.github.io/pdfs/chips/SEMICON_Taiwan_2016_collaert.pdf (Semicon Taiwan, 2016).

  25. 25.

    Rhodes, D., Chae, S. H., Ribeiro-Palau, R. & Hone, J. Disorder in van der Waals heterostructures of 2D materials. Nat. Mater. 18, 541–549 (2019).

    ADS  CAS  PubMed  Google Scholar 

  26. 26.

    Duan, X. et al. Synthesis of WS2xSe2–2x alloy nanosheets with composition-tunable electronic properties. Nano Lett. 16, 264–269 (2016).

    ADS  CAS  PubMed  Google Scholar 

  27. 27.

    Li, H. et al. Lateral growth of composition graded atomic layer MoS2(1–x)Se2x nanosheets. J. Am. Chem. Soc. 137, 5284–5287 (2015).

    CAS  PubMed  Google Scholar 

  28. 28.

    Tran, V., Soklaski, R., Liang, Y. & Yang, L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B 89, 235319 (2014).

    ADS  Google Scholar 

  29. 29.

    Mak, K. F. et al. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    ADS  PubMed  Google Scholar 

  30. 30.

    Cheng, L. & Liu, Y. What limits the intrinsic mobility of electrons and holes in two dimensional metal dichalcogenides? J. Am. Chem. Soc. 140, 17895–17900 (2018).

    CAS  PubMed  Google Scholar 

  31. 31.

    Lee, Y., Fiore, S. & Luisier, M. Ab initio mobility of single-layer MoS2 and WS2: comparison to experiments and impact on the device characteristics. In 2019 IEEE International Electron Devices Meeting 586–589 (IEEE, 2019).

  32. 32.

    Kang, P. et al. Calculated carrier mobility of h-BN/γ-InSe/h-BN van der Waals heterostructures. 2D Mater. 4, 045014 (2017).

    Google Scholar 

  33. 33.

    Zhang, X. W. et al. Bi2OS2: a direct-gap two-dimensional semiconductor with high carrier mobility and surface electron states. Mater. Horiz. 5, 1058–1064 (2018).

    CAS  Google Scholar 

  34. 34.

    Yamoah, M. A., Yang, W., Pop, E. & Goldhaber-Gordon, D. High-velocity saturation in graphene encapsulated by hexagonal boron nitride. ACS Nano 11, 9914–9919 (2017).

    CAS  PubMed  Google Scholar 

  35. 35.

    Cheng, R. et al. High-frequency self-aligned graphene transistors with transferred gate stacks. Proc. Natl Acad. Sci. USA 109, 11588–11592 (2012). This study reported a scalable transfer-gate approach for damage-free gate integration on graphene to achieve a highest cut-off frequency of 427 GHz.

    ADS  CAS  PubMed  Google Scholar 

  36. 36.

    Liao, L. et al. Sub-100 nm channel length graphene transistors. Nano Lett. 10, 3952–3956 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Chen, X. et al. Large-velocity saturation in thin-film black phosphorus transistors. ACS Nano 12, 5003–5010 (2018).

    CAS  PubMed  Google Scholar 

  38. 38.

    Li, X. F. et al. High-speed black phosphorus field-effect transistors approaching ballistic limit. Sci. Adv. 5, eaau3194 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Nathawat, J. et al. Transient hot-carrier dynamics and intrinsic velocity saturation in monolayer MoS2. Phys. Rev. Mater. 4, 014002 (2020).

    CAS  Google Scholar 

  40. 40.

    Ferry, D. K. Electron transport in some transition metal di-chalcogenides: MoS2 and WS2. Semicond. Sci. Technol. 32, 085003 (2017).

    ADS  Google Scholar 

  41. 41.

    Smithe, K. K. H., English, C. D., Suryavanshi, S. V. & Pop, E. High-field transport and velocity saturation in synthetic monolayer MoS2. Nano Lett. 18, 4516–4522 (2018).

    ADS  CAS  PubMed  Google Scholar 

  42. 42.

    Jin, Z., Li, X., Mullen, J. T. & Kim, K. W. Intrinsic transport properties of electrons and holes in monolayer transition-metal dichalcogenides. Phys. Rev. B 90, 045422 (2014).

    ADS  Google Scholar 

  43. 43.

    Nasr, J. R. et al. Mobility deception in nanoscale transistors: an untold contact story. Adv. Mater. 31, 1806020 (2019).

    Google Scholar 

  44. 44.

    Bittle, E. G. et al. Mobility overestimation due to gated contacts in organic field-effect transistors. Nat. Commun. 7, 10908 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Liu, C. et al. Device physics of contact issues for the overestimation and underestimation of carrier mobility in field-effect transistors. Phys. Rev. Appl. 8, 034020 (2017).

    ADS  Google Scholar 

  46. 46.

    Choi, H. H. et al. Critical assessment of charge mobility extraction in FETs. Nat. Mater. 17, 2 (2018).

    ADS  CAS  Google Scholar 

  47. 47.

    Late, D. J. et al. Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 6, 5635–5641 (2012).

    CAS  PubMed  Google Scholar 

  48. 48.

    Shu, J. P. et al. The intrinsic origin of hysteresis in MoS2 field effect transistors. Nanoscale 8, 3049–3056 (2016).

    ADS  CAS  PubMed  Google Scholar 

  49. 49.

    Kaushik, N. et al. Reversible hysteresis inversion in MoS2 field effect transistors. npj 2D Mater. Appl. 1, 34 (2017).

    Google Scholar 

  50. 50.

    Smithe, K. K. H. et al. Low variability in synthetic monolayer MoS2 devices. ACS Nano 11, 8456–8463 (2017).

    CAS  PubMed  Google Scholar 

  51. 51.

    Smithe, K. K. H., English, C. D., Suryavanshi, S. V. & Pop, E. Intrinsic electrical transport and performance projections of synthetic monolayer MoS2 devices. 2D Mater. 4, 011009 (2017).

    Google Scholar 

  52. 52.

    Smets, Q. et al. Ultra-scaled MOCVD MoS2 MOSFETs with 42nm contact pitch and 250μA/μm drain current. In 2019 IEEE International Electron Devices Meeting 550–553 (IEEE, 2019). This work first reported an ultrascaled MoS2 transistor with a smallest contact length of 13 nm and a contact pitch of 42 nm.

  53. 53.

    Patel, K. A. et al. Ultra-scaled MoS2 transistors and circuits fabricated without nanolithography. 2D Mater. 7, 015018 (2020).

    CAS  Google Scholar 

  54. 54.

    Grundmann, M. The Physics of Semiconductors (Springer, 2006).

  55. 55.

    Allain, A., Kang, J., Banerjee, K. & Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015).

    ADS  CAS  PubMed  Google Scholar 

  56. 56.

    Utama, M. I. B. et al. A dielectric-defined lateral heterojunction in a monolayer semiconductor. Nat. Electron. 2, 60–65 (2019).

    CAS  Google Scholar 

  57. 57.

    Li, X. et al. Performance potential and limit of MoS2 transistors. Adv. Mater. 27, 1547–1552 (2015).

    CAS  PubMed  Google Scholar 

  58. 58.

    Yang, L. et al. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 14, 6275–6280 (2014).

    ADS  CAS  PubMed  Google Scholar 

  59. 59.

    Kiriya, D. et al. Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc. 136, 7853–7856 (2014).

    CAS  PubMed  Google Scholar 

  60. 60.

    Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

    ADS  CAS  PubMed  Google Scholar 

  61. 61.

    Liu, Y., Huang, Y. & Duan, X. F. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).

    ADS  CAS  PubMed  Google Scholar 

  62. 62.

    Kong, L. et al. Doping-free complementary WSe2 circuit via van der Waals metal integration. Nat. Commun. 11, 1866 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Liu, Y., Stradins, P. & Wei, S.-H. Van der Waals metal-semiconductor junction: weak Fermi level pinning enables effective tuning of Schottky barrier. Sci. Adv. 2, e1600069 (2016).

    ADS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Liu, Y. et al. Toward barrier free contact to molybdenum disulfide using graphene electrodes. Nano Lett. 15, 3030–3034 (2015).

    ADS  CAS  PubMed  Google Scholar 

  65. 65.

    Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10, 534–540 (2015).

    ADS  CAS  PubMed  Google Scholar 

  66. 66.

    Chuang, H.-J. et al. Low-resistance 2D/2D ohmic contacts: a universal approach to high-performance WSe2, MoS2, and MoSe2 transistors. Nano Lett. 16, 1896–1902 (2016).

    ADS  CAS  PubMed  Google Scholar 

  67. 67.

    Zhang, Z. et al. Epitaxial growth of two-dimensional metal–semiconductor transition-metal dichalcogenide vertical stacks (VSe2/MX2) and their band alignments. ACS Nano 13, 885–893 (2019).

    CAS  PubMed  Google Scholar 

  68. 68.

    Li, J. et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 579, 368–374 (2020). This work reported scalable synthesis of 2D vdW contact arrays on existing 2D semiconductors and demonstrated the highest on-current density achieved in TMD transistors.

    ADS  CAS  PubMed  Google Scholar 

  69. 69.

    Wu, R. et al. Van der Waals epitaxial growth of atomically thin 2D metals on dangling-bond-free WSe2 and WS2. Adv. Funct. Mater. 29, 1806611 (2019).

    Google Scholar 

  70. 70.

    Liu, Y. et al. Approaching Schottky–Mott limit in van der Waals metal–semiconductor contacts. Nature 557, 696–700 (2018). This study generalized vdW integration of 3D metal thin-film electrodes with 2D semiconductors to create nearly ideal metal–semiconductor junctions.

    ADS  CAS  PubMed  Google Scholar 

  71. 71.

    Telford, E. J. et al. Via method for lithography free contact and preservation of 2D materials. Nano Lett. 18, 1416–1420 (2018).

    ADS  CAS  PubMed  Google Scholar 

  72. 72.

    Jung, Y. et al. Transferred via contacts as a platform for ideal two-dimensional transistors. Nat. Electron. 2, 187–194 (2019).

    Google Scholar 

  73. 73.

    Wang, Y. et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568, 70–74 (2019).

    ADS  CAS  PubMed  Google Scholar 

  74. 74.

    Cui, X. et al. Low-temperature Ohmic contact to monolayer MoS2 by van der Waals bonded Co/h-BN electrodes. Nano Lett. 17, 4781–4786 (2017).

    ADS  CAS  PubMed  Google Scholar 

  75. 75.

    Liu, Y. et al. Pushing the performance limit of sub-100 nm molybdenum disulfide transistors. Nano Lett. 16, 6337–6342 (2016).

    ADS  CAS  PubMed  Google Scholar 

  76. 76.

    Liu, Y. et al. Vertical charge transport and negative transconductance in multilayer molybdenum disulfides. Nano Lett. 17, 5495–5501 (2017).

    ADS  CAS  PubMed  Google Scholar 

  77. 77.

    Leong, W. S. et al. Low resistance metal contacts to MoS2 devices with nickel-etched-graphene electrodes. ACS Nano 9, 869–877 (2015).

    CAS  PubMed  Google Scholar 

  78. 78.

    Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013). This study reported a one-dimensional edge contact geometry to 2D graphene, allowing minimized contact resistance with shorter contact length.

    ADS  CAS  PubMed  Google Scholar 

  79. 79.

    Yang, Z. et al. A Fermi-level-pinning-free 1D electrical contact at the intrinsic 2D MoS2–metal junction. Adv. Mater. 31, 1808231 (2019).

    Google Scholar 

  80. 80.

    Zhang, Q. et al. Simultaneous synthesis and integration of two-dimensional electronic components. Nat. Electron. 2, 164–170 (2019).

    Google Scholar 

  81. 81.

    Kim, H. G. & Lee, H.-B.-R. Atomic layer deposition on 2D materials. Chem. Mater. 29, 3809–3826 (2017).

    CAS  Google Scholar 

  82. 82.

    Farmer, D. B. et al. Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors. Nano Lett. 9, 4474–4478 (2009).

    ADS  CAS  PubMed  Google Scholar 

  83. 83.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS  PubMed  Google Scholar 

  84. 84.

    Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

    ADS  CAS  Google Scholar 

  85. 85.

    Liao, L. et al. High-speed graphene transistors with a self-aligned nanowire gate. Nature 467, 305–308 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Liao, L. et al. High-κ oxide nanoribbons as gate dielectrics for high mobility top-gated graphene transistors. Proc. Natl Acad. Sci. USA 107, 6711–6715 (2010). This study first demonstrated damage-free 2D semiconductor–dielectric vdW integration with a pristine interface and retained electronic performance.

    ADS  CAS  PubMed  Google Scholar 

  87. 87.

    Cheng, R. et al. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun. 5, 5143 (2014). This work reported the highest cut-off frequency and maximum oscillation frequency in 2D TMD transistors.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Li, W. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2, 563–571 (2019).

    ADS  CAS  Google Scholar 

  89. 89.

    Yalon, E. et al. Energy dissipation in monolayer MoS2 electronics. Nano Lett. 17, 3429–3433 (2017).

    ADS  CAS  PubMed  Google Scholar 

  90. 90.

    Jo, I. et al. Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. Nano Lett. 13, 550–554 (2013).

    ADS  CAS  PubMed  Google Scholar 

  91. 91.

    Lee, J. H. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344, 286–289 (2014).

    ADS  CAS  PubMed  Google Scholar 

  92. 92.

    Lee, J. S. et al. Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science 362, 817–821 (2018).

    ADS  CAS  PubMed  Google Scholar 

  93. 93.

    Wang, L. et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 570, 91–95 (2019).

    ADS  CAS  PubMed  Google Scholar 

  94. 94.

    Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010).

    ADS  CAS  PubMed  Google Scholar 

  95. 95.

    Chen, T.-A. et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111). Nature 579, 219–223 (2020).

    ADS  CAS  PubMed  Google Scholar 

  96. 96.

    Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015). This study reported the wafer-scale synthesis of TMD monolayers by chemical vapour deposition.

    ADS  CAS  PubMed  Google Scholar 

  97. 97.

    Yu, H. et al. Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano 11, 12001–12007 (2017).

    CAS  PubMed  Google Scholar 

  98. 98.

    Lin, Y.-C., Dumcenco, D. O., Huang, Y.-S. & Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 9, 391–396 (2014).

    ADS  CAS  PubMed  Google Scholar 

  99. 99.

    Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017). This paper demonstrated wafer-scale 2D vdW heterostructures through layer-by-layer vdW integration.

    ADS  PubMed  Google Scholar 

  100. 100.

    Kum, H. S. et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 578, 75–81 (2020).

    ADS  CAS  PubMed  Google Scholar 

  101. 101.

    Li, J. et al. Fractal-theory-based control of the shape and quality of CVD-grown 2D materials. Adv. Mater. 31, 1902431 (2019).

    Google Scholar 

  102. 102.

    Bernard, E. et al. Multi-channel field-effect transistor (MCFET)—part I: electrical performance and current gain analysis. IEEE Trans. Electron Dev. 56, 1243–1251 (2009).

    CAS  Google Scholar 

  103. 103.

    Chen, M.-L. et al. A FinFET with one atomic layer channel. Nat. Commun. 11, 1205 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Jiang, J., Parto, K., Cao, W. & Banerjee, K. Monolithic-3D integration with 2D materials: toward ultimate vertically-scaled 3D-ICs. In IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (IEEE, 2018).

  105. 105.

    Neumaier, D., Pindl, S. & Lemme, M. C. Integrating graphene into semiconductor fabrication lines. Nat. Mater. 18, 525–529 (2019).

    ADS  CAS  PubMed  Google Scholar 

  106. 106.

    Sachid, A. B. et al. Monolithic 3D CMOS using layered semiconductors. Adv. Mater. 28, 2547–2554 (2016).

    CAS  PubMed  Google Scholar 

  107. 107.

    Huyghebaert, C. et al. 2D materials: roadmap to CMOS integration. In 2018 IEEE International Electron Devices Meeting 512–515 (IEEE, 2018).

  108. 108.

    Schram, T. et al. WS2 transistors on 300 mm wafers with BEOL compatibility. In IEEE 47th European Solid-State Device Research Conference 212–215 (IEEE, 2017). This study first demonstrated the integration of WS2-based transistors in a 300-mm pilot line using production tools.

  109. 109.

    Ionescu, A. M. & Riel, H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329–337 (2011).

    ADS  CAS  PubMed  Google Scholar 

  110. 110.

    Roy, T. et al. Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. ACS Nano 9, 2071–2079 (2015).

    CAS  PubMed  Google Scholar 

  111. 111.

    Sarkar, D. et al. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 526, 91–95 (2015). This study first built tunnelling transistors using MoS2 as the active channel and germanium as the source electrode, demonstrating ultrasteep subthreshold swing below the thermionic limit.

    ADS  CAS  PubMed  Google Scholar 

  112. 112.

    Yan, R. et al. Esaki diodes in van der Waals heterojunctions with broken-gap energy band alignment. Nano Lett. 15, 5791–5798 (2015).

    ADS  CAS  PubMed  Google Scholar 

  113. 113.

    Jena, D. Tunneling transistors based on graphene and 2-D crystals. Proc. IEEE 101, 1585–1602 (2013).

    CAS  Google Scholar 

  114. 114.

    Kim, S. et al. Thickness-controlled black phosphorus tunnel field-effect transistor for low-power switches. Nat. Nanotechnol. 15, 203–206 (2020).

    ADS  CAS  PubMed  Google Scholar 

  115. 115.

    Wang, Y. et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 1, 228–236 (2018).

    Google Scholar 

  116. 116.

    Zhong, M. et al. Thickness-dependent carrier transport characteristics of a new 2D elemental semiconductor: black arsenic. Adv. Funct. Mater. 28, 1802581 (2018).

    Google Scholar 

  117. 117.

    Yuan, S. et al. Air-stable room-temperature mid-infrared photodetectors based on hBN/black arsenic phosphorus/hBN heterostructures. Nano Lett. 18, 3172–3179 (2018).

    ADS  CAS  PubMed  Google Scholar 

  118. 118.

    McClellan, C. J. et al. Effective n-type doping of monolayer MoS2 by AlOx. In 75th Annual Device Research Conference (IEEE, 2017).

  119. 119.

    Liu, W. et al. Role of metal contacts in designing high-performance monolayer n-Type WSe2 field effect transistors. Nano Lett. 13, 1983–1990 (2013).

    ADS  CAS  PubMed  Google Scholar 

  120. 120.

    Iqbal, M. W. et al. High-mobility and air-stable single-layer WS2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films. Sci. Rep. 5, 10699 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  121. 121.

    Guo, J. et al. Few-layer GeAs and SiAs field effect transistors and infrared photodetector. Adv. Mater. 30, 1705934 (2018).

    Google Scholar 

  122. 122.

    Huang, Y.-T. et al. High-performance InSe transistors with ohmic contact enabled by nonrectifying barrier-type indium electrodes. ACS Appl. Mater. Interfaces 10, 33450–33456 (2018).

    CAS  PubMed  Google Scholar 

  123. 123.

    Yang, S. et al. Highly-anisotropic optical and electrical properties in layered SnSe. Nano Res. 11, 554 (2018).

    CAS  Google Scholar 

  124. 124.

    Shim, J. et al. High-performance 2D rhenium disulfide (ReS2) transistors and photodetectors by oxygen plasma treatment. Adv. Mater. 28, 6985–6992 (2016).

    CAS  PubMed  Google Scholar 

  125. 125.

    Yang, S. et al. Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors. Nanoscale 6, 7226–7231 (2014).

    ADS  CAS  PubMed  Google Scholar 

  126. 126.

    Mleczko, M. J. et al. HfSe2 and ZrSe2: two-dimensional semiconductors with native high-κ oxides. Sci. Adv. 3, e1700481 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  127. 127.

    Zhao, Y. et al. High-electron-mobility and air-stable 2D layered PtSe2 FETs. Adv. Mater. 29, 1604230 (2017).

    Google Scholar 

  128. 128.

    Singh, J. et al. 14-nm FinFET technology for analog and RF applications. IEEE Trans. Electron Dev. 65, 31–37 (2018).

    ADS  CAS  Google Scholar 

  129. 129.

    English, C. D. et al. Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition. Nano Lett. 16, 3824–3830 (2016).

    ADS  CAS  PubMed  Google Scholar 

  130. 130.

    Schmidt, M. et al. Mobility extraction in SOI MOSFETs with sub 1nm body thickness. Solid-State Electron. 53, 1246–1251 (2009).

    ADS  CAS  Google Scholar 

  131. 131.

    Jung, C. S. et al. Red-to-ultraviolet emission tuning of two-dimensional gallium sulfide/selenide. ACS Nano 9, 9585–9593 (2015).

    CAS  PubMed  Google Scholar 

  132. 132.

    Zhao, Q. et al. Elastic, electronic, and dielectric properties of bulk and monolayer ZrS2, ZrSe2, HfS2, HfSe2 from van der Waals density-functional theory. Phys. Status Solidi B 254, 1700033 (2017).

    ADS  Google Scholar 

  133. 133.

    Yun, W. S. et al. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M=Mo, W; X=S, Se, Te). Phys. Rev. B 85, 033305 (2012).

    ADS  Google Scholar 

  134. 134.

    Jariwala, B. et al. Synthesis and characterization of ReS2 and ReSe2 layered chalcogenide single crystals. Chem. Mater. 28, 3352–3359 (2016).

    CAS  Google Scholar 

  135. 135.

    Gonzalez, J. M. & Oleynik, I. I. Layer-dependent properties of SnS2 and SnSe2 two-dimensional materials. Phys. Rev. B 94, 125443 (2016).

    ADS  Google Scholar 

  136. 136.

    Zhao, Y. et al. Extraordinarily strong interlayer interaction in 2D Layered PtS2. Adv. Mater. 28, 2399–2407 (2016).

    CAS  PubMed  Google Scholar 

  137. 137.

    Xie, L. M. Two-dimensional transition metal dichalcogenide alloys: preparation, characterization and applications. Nanoscale 7, 18392–18401 (2015).

    ADS  CAS  PubMed  Google Scholar 

  138. 138.

    Kasap, S. & Capper, P. Springer Handbook of Electronic and Photonic Materials 2nd edn (Springer, 2017).

  139. 139.

    Chen, X. et al. High-quality sandwiched black phosphorus heterostructure and its quantum oscillations. Nat. Commun. 6, 7315 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  140. 140.

    Boyd, D. A. et al. Single-step deposition of high-mobility graphene at reduced temperatures. Nat. Commun. 6, 6620 (2015).

    ADS  CAS  PubMed  Google Scholar 

  141. 141.

    Barraud, S. et al. Performance and design considerations for gate-all-around stacked-NanoWires FETs. In 2017 IEEE International Electron Devices Meeting 677–680 (IEEE, 2017).

Download references

Author information

Affiliations

Authors

Contributions

Y.L. and Xiangfeng Duan co-wrote the manuscript with input and comments from all authors.

Corresponding author

Correspondence to Xiangfeng Duan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Deji Akinwande, Quentin Smets and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Duan, X., Shin, HJ. et al. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021). https://doi.org/10.1038/s41586-021-03339-z

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links