Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Concerns about phytoplankton bloom trends in global lakes

Matters Arising to this article was published on 17 February 2021

The Original Article was published on 14 October 2019

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Examples showing the problems associated with L5TM-based bloom intensity (BNIR) estimated with equation 2 in Ho et al.1.

Data availability

The Landsat data can be obtained from the US Geological Survey at The in situ spectral and Chlα data used in this paper are available in the Supplementary Information.


  1. 1.

    Ho, J. C., Michalak, A. M. & Pahlevan, N. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature 574, 667–670 (2019).

    ADS  CAS  Article  PubMed  Google Scholar 

  2. 2.

    Boyce, D. G., Lewis, M. R. & Worm, B. Global phytoplankton decline over the past century. Nature 466, 591–596 (2010).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Guan, Q. et al. Eutrophication changes in fifty large lakes on the Yangtze Plain of China derived from MERIS and OLCI observations. Remote Sens. Environ. 246, 111890 (2020).

    ADS  Article  Google Scholar 

  4. 4.

    Spyrakos, E. et al. Optical types of inland and coastal waters. Limnol. Oceanogr. 63, 846–870 (2018).

    ADS  Article  Google Scholar 

  5. 5.

    Bloesch, J. Mechanisms, measurement and importance of sediment resuspension in lakes. Mar. Freshw. Res. 46, 295–304 (1995).

    Article  Google Scholar 

  6. 6.

    Valipour, R., Boegman, L., Bouffard, D. & Rao, Y. R. Sediment resuspension mechanisms and their contributions to high-turbidity events in a large lake. Limnol. Oceanogr. 62, 1045–1065 (2017).

    ADS  Article  Google Scholar 

  7. 7.

    Wang, M., Nim, C. J., Son, S. & Shi, W. Characterization of turbidity in Florida’s Lake Okeechobee and Caloosahatchee and St. Lucie estuaries using MODIS-Aqua measurements. Water Res. 46, 5410–5422 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Cao, Z., Duan, H., Feng, L., Ma, R. & Xue, K. Climate-and human-induced changes in suspended particulate matter over Lake Hongze on short and long timescales. Remote Sens. Environ. 192, 98–113 (2017).

    ADS  Article  Google Scholar 

  9. 9.

    Sompongchaiyakul, P., Laongsiriwong, N. & Sangkarnjanawanich, P. An occurrence of eutrophication in Songkhla Lake: a review. In Proceedings of the International Workshop on Integrated Lake Management, Hai-Yai, Songkhla, 19–21 (2004).

  10. 10.

    Gordon, H. R. Atmospheric correction of ocean color imagery in the Earth Observing System era. J. Geophys. Res. 102, 17081–17106 (1997).

    ADS  Article  Google Scholar 

  11. 11.

    Zhu, Z., Wang, S. & Woodcock, C. E. Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 159, 269–277 (2015).

    ADS  Article  Google Scholar 

  12. 12.

    Hu, C. et al. Moderate Resolution Imaging Spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China. J. Geophys. Res. Oceans 115, C04002 (2010).

    ADS  Article  Google Scholar 

  13. 13.

    King, M. D., Platnick, S., Menzel, W. P., Ackerman, S. A. & Hubanks, P. A. Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua satellites. IEEE Trans. Geosci. Remote Sens. 51, 3826–3852 (2013).

    ADS  Article  Google Scholar 

  14. 14.

    Qi, L., Hu, C., Visser, P. M. & Ma, R. Diurnal changes of cyanobacteria blooms in Taihu Lake as derived from GOCI observations. Limnol. Oceanogr. 63, 1711–1726 (2018).

    ADS  Article  Google Scholar 

  15. 15.

    Bosse, K. R. et al. Spatial-temporal variability of in situ cyanobacteria vertical structure in Western Lake Erie: implications for remote sensing observations. J. Great Lakes Res. 45, 480–489 (2019).

    Article  Google Scholar 

  16. 16.

    Büttner, G., Korándi, M., Gyömörei, A., Köte, Z. & Szabó, G. Satellite remote sensing of inland waters: Lake Balaton and reservoir Kisköre. Acta Astronaut. 15, 305–311 (1987).

    ADS  Article  Google Scholar 

  17. 17.

    Bukata, R., Jerome, J. & Bruton, J. Particulate concentrations in Lake St. Clair as recorded by a shipborne multispectral optical monitoring system. Remote Sens. Environ. 25, 201–229 (1988).

    ADS  Article  Google Scholar 

  18. 18.

    Nas, B., Ekercin, S., Karabörk, H., Berktay, A. & Mulla, D. An application of Landsat-5TM image data for water quality mapping in Lake Beysehir, Turkey. Wat. Air Soil Pollut. 212, 183–197 (2010).

    ADS  CAS  Article  Google Scholar 

  19. 19.

    Binding, C., Jerome, J., Bukata, R. & Booty, W. Suspended particulate matter in Lake Erie derived from MODIS aquatic colour imagery. Int. J. Remote Sens. 31, 5239–5255 (2010).

    ADS  Article  Google Scholar 

  20. 20.

    Matthews, M. W., Bernard, S. & Winter, K. Remote sensing of cyanobacteria-dominant algal blooms and water quality parameters in Zeekoevlei, a small hypertrophic lake, using MERIS. Remote Sens. Environ. 114, 2070–2087 (2010).

    ADS  Article  Google Scholar 

  21. 21.

    Kaba, E., Philpot, W. & Steenhuis, T. Evaluating suitability of MODIS-Terra images for reproducing historic sediment concentrations in water bodies: Lake Tana, Ethiopia. Int. J. Appl. Earth Obs. Geoinf. 26, 286–297 (2014).

    ADS  Article  Google Scholar 

  22. 22.

    Hamed, M. A. Estimation of water quality parameters in Lake Nasser using remote sensing techniques. In Twentieth International Water Technology Conference, IWTC20 (2017).

  23. 23.

    Zeng, C. & Binding, C. The effect of mineral sediments on satellite chlorophyll-a retrievals from line-height algorithms using red and near-infrared bands. Remote Sens. 11, 2306 (2019).

    ADS  Article  Google Scholar 

  24. 24.

    Mikkelsen, O. A. Variation in the projected surface area of suspended particles: Implications for remote sensing assessment of TSM. Remote Sens. Environ. 79, 23–29 (2002).

    ADS  Article  Google Scholar 

  25. 25.

    Dekker, A., Vos, R. & Peters, S. Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes. Sci. Total Environ. 268, 197–214 (2001).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Doxaran, D., Froidefond, J.-M., Lavender, S. & Castaing, P. Spectral signature of highly turbid waters: application with SPOT data to quantify suspended particulate matter concentrations. Remote Sens. Environ. 81, 149–161 (2002).

    ADS  Article  Google Scholar 

  27. 27.

    Koponen, S., Pulliainen, J., Kallio, K. & Hallikainen, M. Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data. Remote Sens. Environ. 79, 51–59 (2002).

    ADS  Article  Google Scholar 

  28. 28.

    Liu, J. P. et al. Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea. Cont. Shelf Res. 26, 2141–2156 (2006).

    ADS  Article  Google Scholar 

  29. 29.

    Sterckx, S., Knaeps, E., Bollen, M., Trouw, K. & Houthuys, R. Retrieval of suspended sediment from advanced hyperspectral sensor data in the Scheldt estuary at different stages in the tidal cycle. Mar. Geod. 30, 97–108 (2007).

    Article  Google Scholar 

  30. 30.

    Oyama, Y., Matsushita, B., Fukushima, T., Matsushige, K. & Imai, A. Application of spectral decomposition algorithm for mapping water quality in a turbid lake (Lake Kasumigaura, Japan) from Landsat TM data. ISPRS J. Photogramm. Remote Sens. 64, 73–85 (2009).

    ADS  Article  Google Scholar 

  31. 31.

    Tarrant, P., Amacher, J. & Neuer, S. Assessing the potential of Medium‐Resolution Imaging Spectrometer (MERIS) and Moderate‐Resolution Imaging Spectroradiometer (MODIS) data for monitoring total suspended matter in small and intermediate sized lakes and reservoirs. Wat. Resour. Res. 46, W09532 (2010).

    ADS  Article  Google Scholar 

  32. 32.

    Nechad, B., Ruddick, K. & Park, Y. Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sens. Environ. 114, 854–866 (2010).

    ADS  Article  Google Scholar 

  33. 33.

    Chen, S., Huang, W., Chen, W. & Chen, X. An enhanced MODIS remote sensing model for detecting rainfall effects on sediment plume in the coastal waters of Apalachicola Bay. Mar. Environ. Res. 72, 265–272 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Knaeps, E., Dogliotti, A. I., Raymaekers, D., Ruddick, K. & Sterckx, S. In situ evidence of non-zero reflectance in the OLCI 1020 nm band for a turbid estuary. Remote Sens. Environ. 120, 133–144 (2012).

    ADS  Article  Google Scholar 

  35. 35.

    Long, C. M. & Pavelsky, T. M. Remote sensing of suspended sediment concentration and hydrologic connectivity in a complex wetland environment. Remote Sens. Environ. 129, 197–209 (2013).

    ADS  Article  Google Scholar 

  36. 36.

    Giardino, C., Bresciani, M., Stroppiana, D., Oggioni, A. & Morabito, G. Optical remote sensing of lakes: an overview on Lake Maggiore. J. Limnol. 73, 201–214 (2014).

    Google Scholar 

  37. 37.

    Feng, L., Hu, C., Chen, X. & Song, Q. Influence of the Three Gorges Dam on total suspended matters in the Yangtze Estuary and its adjacent coastal waters: Observations from MODIS. Remote Sens. Environ. 140, 779–788 (2014).

    ADS  Article  Google Scholar 

  38. 38.

    Dorji, P. & Fearns, P. A quantitative comparison of total suspended sediment algorithms: a case study of the last decade for MODIS and Landsat-based sensors. Remote Sens. 8, 810 (2016).

    ADS  Article  Google Scholar 

  39. 39.

    Dogliotti, A. I., Ruddick, K., Nechad, B., Doxaran, D. & Knaeps, E. A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters. Remote Sens. Environ. 156, 157–168 (2015).

    ADS  Article  Google Scholar 

  40. 40.

    Han, B. et al. Development of a semi-analytical algorithm for the retrieval of suspended particulate matter from remote sensing over clear to very turbid waters. Remote Sens. 8, 211 (2016).

    ADS  Article  Google Scholar 

  41. 41.

    Yu, X. et al. An empirical algorithm to seamlessly retrieve the concentration of suspended particulate matter from water color across ocean to turbid river mouths. Remote Sens. Environ. 235, 111491 (2019).

    ADS  Article  Google Scholar 

  42. 42.

    Zhang, X. On the estimation of biomass of submerged vegetation using Landsat thematic mapper (TM) imagery: a case study of the Honghu Lake, PR China. Int. J. Remote Sens. 19, 11–20 (1998).

    ADS  Article  Google Scholar 

  43. 43.

    Vahtmäe, E., Kutser, T., Martin, G. & Kotta, J. Feasibility of hyperspectral remote sensing for mapping benthic macroalgal cover in turbid coastal waters—a Baltic Sea case study. Remote Sens. Environ. 101, 342–351 (2006).

    ADS  Article  Google Scholar 

  44. 44.

    Dogan, O. K., Akyurek, Z. & Beklioglu, M. Identification and mapping of submerged plants in a shallow lake using quickbird satellite data. J. Environ. Manage. 90, 2138–2143 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Yuan, L. & Zhang, L.-Q. Mapping large-scale distribution of submerged aquatic vegetation coverage using remote sensing. Ecol. Inform. 3, 245–251 (2008).

    Article  Google Scholar 

  46. 46.

    Yadav, S. et al. A satellite-based assessment of the distribution and biomass of submerged aquatic vegetation in the optically shallow basin of Lake Biwa. Remote Sens. 9, 966 (2017).

    ADS  Article  Google Scholar 

  47. 47.

    Pu, R., Bell, S., Baggett, L., Meyer, C. & Zhao, Y. Discrimination of seagrass species and cover classes with in situ hyperspectral data. J. Coast. Res. 28, 1330–1344 (2012).

    Article  Google Scholar 

  48. 48.

    Visser, F., Wallis, C. & Sinnott, A. M. Optical remote sensing of submerged aquatic vegetation: opportunities for shallow clearwater streams. Limnologica 43, 388–398 (2013).

    Article  Google Scholar 

  49. 49.

    Watanabe, F. S. Y., Imai, N. N., Alcântara, E. H., da Silva Rotta, L. H. & Utsumi, A. G. Signal classification of submerged aquatic vegetation based on the hemispherical–conical reflectance factor spectrum shape in the yellow and red regions. Remote Sens. 5, 1856–1874 (2013).

    ADS  Article  Google Scholar 

  50. 50.

    Giardino, C. et al. Airborne hyperspectral data to assess suspended particulate matter and aquatic vegetation in a shallow and turbid lake. Remote Sens. Environ. 157, 48–57 (2015).

    ADS  Article  Google Scholar 

  51. 51.

    Oyama, Y., Matsushita, B. & Fukushima, T. Distinguishing surface cyanobacterial blooms and aquatic macrophytes using Landsat/TM and ETM+ shortwave infrared bands. Remote Sens. Environ. 157, 35–47 (2015).

    ADS  Article  Google Scholar 

  52. 52.

    Santos, M. J., Anderson, L. W. & Ustin, S. L. Effects of invasive species on plant communities: an example using submersed aquatic plants at the regional scale. Biol. Invasions 13, 443–457 (2011).

    Article  Google Scholar 

  53. 53.

    Luo, J. et al. Applying remote sensing techniques to monitoring seasonal and interannual changes of aquatic vegetation in Taihu Lake, China. Ecol. Indic. 60, 503–513 (2016).

    Article  Google Scholar 

  54. 54.

    Hou, X., Feng, L., Chen, X. & Zhang, Y. Dynamics of the wetland vegetation in large lakes of the Yangtze Plain in response to both fertilizer consumption and climatic changes. ISPRS J. Photogramm. Remote Sens. 141, 148–160 (2018).

    ADS  Article  Google Scholar 

  55. 55.

    Brooks, C. N., Grimm, A. G., Marcarelli, A. M. & Dobson, R. J. Multiscale collection and analysis of submerged aquatic vegetation spectral profiles for Eurasian watermilfoil detection. J. Appl. Remote Sens. 13, 037501 (2019).

    ADS  Article  Google Scholar 

  56. 56.

    Fritz, C., Kuhwald, K., Schneider, T., Geist, J. & Oppelt, N. Sentinel-2 for mapping the spatio-temporal development of submerged aquatic vegetation at Lake Starnberg (Germany). J. Limnol. 78, 71–91 (2019).

    Article  Google Scholar 

  57. 57.

    Ghirardi, N. et al. Spatiotemporal dynamics of submerged aquatic vegetation in a deep lake from Sentinel-2 data. Water 11, 563 (2019).

    Article  Google Scholar 

  58. 58.

    Niroumand-Jadidi, M., Pahlevan, N. & Vitti, A. Mapping substrate types and compositions in shallow streams. Remote Sens. 11, 262 (2019).

    ADS  Article  Google Scholar 

  59. 59.

    Wilson, K. L., Skinner, M. A. & Lotze, H. K. Eelgrass (Zostera marina) and benthic habitat mapping in Atlantic Canada using high-resolution SPOT 6/7 satellite imagery. Estuar. Coast. Shelf Sci. 226, 106292 (2019).

    Article  Google Scholar 

  60. 60.

    Niemeier, P. E. & Hubert, W. A. The 85-year history of the aquatic macrophyte species composition in a eutrophic prairie lake (United States). Aquat. Bot. 25, 83–89 (1986).

    Article  Google Scholar 

  61. 61.

    Toshner, S. & Region-Brule, N. Fishery Survey–Middle Eau Claire Lake Bayfield County, 2004–2005. Report WBIC 2742100 (2006).

  62. 62.

    Depew, D. C., Houben, A. J., Ozersky, T., Hecky, R. E. & Guildford, S. J. Submerged aquatic vegetation in Cook’s Bay, Lake Simcoe: assessment of changes in response to increased water transparency. J. Great Lakes Res. 37, 72–82 (2011).

    Article  Google Scholar 

  63. 63.

    Vicencio, E. J. M. & Buot, I. E., Jr. Aquatic weed flora on the Southwest Lakeside of Laguna De Bay. J Wetl Biodivers 7, 75–90 (2017).

    Google Scholar 

  64. 64.

    Bond, W. & Roberts, M. The colonization of Cabora Bassa, Moçambique, a new man-made lake, by floating aquatic macrophytes. Hydrobiologia 60, 243–259 (1978).

    Article  Google Scholar 

  65. 65.

    Istvánovics, V., Honti, M., Kovács, Á. & Osztoics, A. Distribution of submerged macrophytes along environmental gradients in large, shallow Lake Balaton (Hungary). Aquat. Bot. 88, 317–330 (2008).

    Article  Google Scholar 

  66. 66.

    French, J. R. P. III Effect of submersed aquatic macrophytes on resource partitioning in yearling rock bass (Ambloplites rupestris) and pumpkinseeds (Lepomis gibbosus) in Lake St. Clair. J. Great Lakes Res. 14, 291–300 (1988).

    Article  Google Scholar 

  67. 67.

    Balesic, H. Comparative ecology of four species of darters (Etheostominae) in Lake Dauphin and its tributary, the Valley River. MSc thesis, Univ. of Manitoba (1971).

  68. 68.

    Li, R., Zhang, Q.-Z., Jiang, Y.-B., Zhang, L. & Shao, X.-M. Species diversity of plant communities of Xingkai Lake wetlands under different levels of disturbance. Wetland Science 9, 179–184 (2011).

    Google Scholar 

  69. 69.

    Liu, W., Deng, W., Wang, G., Li, A. & Zhou, J. Aquatic macrophyte status and variation characteristics in the past 50 years in Hongzehu Lake. J. Hydroecol 2, 1–8 (2009).

    Google Scholar 

  70. 70.

    Shengzhao, Z. Aquatic vegetation in Hongze Lake. J. Lake Sci. 1, 63–70 (1992).

    Article  Google Scholar 

  71. 71.

    Ward, J. & Talbot, J. Distribution of aquatic macrophytes in Lake Alexandrina, New Zealand. N. Z. J. Mar. Freshw. Res. 18, 211–220 (1984).

    Article  Google Scholar 

  72. 72.

    Wang, S. & Dou, H. Chinese Lake Catalogues (Science Press, 1998).

  73. 73.

    Havens, K. E., Fox, D., Gornak, S. & Hanlon, C. Aquatic vegetation and largemouth bass population responses to water-level variations in Lake Okeechobee, Florida (USA). Hydrobiologia 539, 225–237 (2005).

    Article  Google Scholar 

  74. 74.

    García, M. et al. Heavy metals in aquatic plants and their relationship to concentrations in surface water, groundwater and sediments-A case study of Poopó basin, Bolivia. Rev. Boliv. Quím. 22, 11–18 (2005).

    Google Scholar 

  75. 75.

    Fang, C. et al. Remote sensing of harmful algal blooms variability for Lake Hulun using adjusted FAI (AFAI) algorithm. J. Environ. Inform. 34, 108–122 (2018).

    Google Scholar 

  76. 76.

    Chen, Y. Studies on the potamogetonaceae in Qinghai Lake. Acta Hydrobiol. Sin. 11, 228–235 (1987).

    Google Scholar 

  77. 77.

    Pen, M. Vegetation types and distributions around Gyaring Lake and Ngoring Lake. Acta Biol. Plateau Sin. 7, 71–79 (1987).

    Google Scholar 

  78. 78.

    Li, W. Study on aquatic vegetation in Wulungu Lake, Xinjiang. Oceanol. Limnol. Sin. 24, 100–108 (1993).

    Google Scholar 

  79. 79.

    Machena, C. Zonation of submerged macrophyte vegetation in Lake Kariba, Zimbabwe and its ecological interpretation. Vegetatio 73, 111–119 (1988).

    Article  Google Scholar 

  80. 80.

    Aladin, N., Filippov, A., Plotnikov, I., Orlova, M. & Williams, W. Changes in the structure and function of biological communities in the Aral Sea, with particular reference to the northern part (Small Aral Sea), 1985–1994: a review. Int. J. Salt Lake Res. 7, 301–343 (1998).

    Google Scholar 

  81. 81.

    Gabriel, A. O. & Bodensteiner, L. R. Impacts of riprap on wetland shorelines, upper Winnebago pool lakes, Wisconsin. Wetlands 32, 105–117 (2012).

    Article  Google Scholar 

  82. 82.

    Badzinski, S. S., Ankney, C. D. & Petrie, S. A. in Limnology and Aquatic Birds 195–211 (Springer, 2006).

  83. 83.

    Chepinoga, V. V., Bergmeier, E., Rosbakh, S. A. & Fleckenstein, K. M. Classification of aquatic vegetation (Potametea) in Baikal Siberia, Russia, and its diversity in a northern Eurasian context. Phytocoenologia 43, 127–167 (2013).

    Article  Google Scholar 

  84. 84.

    Jaikumar, M., Chellaiyan, D., Kanagu, L., Kumar, P. S. & Stella, C. Distribution and succession of aquatic macrophytes in Chilka Lake-India. J. Ecol. Nat. Environ. 3, 499–508 (2011).

    Google Scholar 

  85. 85.

    Krivonogov, S. K. et al. Regional to local environmental changes in southern Western Siberia: evidence from biotic records of mid to late Holocene sediments of Lake Beloye. Palaeogeogr. Palaeoclimatol. Palaeoecol. 331–332, 177–193 (2012).

    Article  Google Scholar 

  86. 86.

    Romanova, S. & Kazangapova, N. Theory and Practice of Selfpurification Capacities of Natural Water in Kazakhstan. Technical Report (National Academy of Sciences of the Republic of Kazakhstan, 2018).

  87. 87.

    Villamagna, A. M., Murphy, B. R. & Karpanty, S. M. Community-level waterbird responses to water hyacinth (Eichhornia crassipes). Invasive Plant Sci. Manag. 5, 353–362 (2012).

    Article  Google Scholar 

  88. 88.

    Imentai, A., Thevs, N., Schmidt, S., Nurtazin, S. & Salmurzauli, R. Vegetation, fauna, and biodiversity of the Ile delta and southern Lake Balkhash—a review. J. Great Lakes Res. 41, 688–696 (2015).

    Article  Google Scholar 

  89. 89.

    Barrientos, C. A. Fish Abundance and Community Composition in Native and Non-Native Littoral Aquatic Plants at Lake Izabal, Guatemala. MSc thesis, Univ. of Florida (2005).

  90. 90.

    Tehranchi, M., Shafiei, A. D. & Shaghaghi, S. Studying solutions of development of tourism in Urmia Lake based on SWOT model. Adv. Environ. Biol. 2013, 4505–4512 (2013).

    Google Scholar 

  91. 91.

    Davies, W. D. Lake Nicaragua fishery resources in Investigations of the ichthyofauna of Nicaraguan Lakes (ed. Thorson, T. B.) 16 (Univ. of Nebraska Lincoln, 1976).

  92. 92.

    Cheruiyot, E. et al. Evaluating MERIS-based aquatic vegetation mapping in Lake Victoria. Remote Sens. 6, 7762–7782 (2014).

    ADS  Article  Google Scholar 

  93. 93.

    Heblinski, J. et al. High-resolution satellite remote sensing of littoral vegetation of Lake Sevan (Armenia) as a basis for monitoring and assessment. Hydrobiologia 661, 97–111 (2011).

    Article  Google Scholar 

  94. 94.

    Beklioglu, M., Altinayar, G. & Tan, C. O. Water level control over submerged macrophyte development in five shallow lakes of Mediterranean Turkey. Arch. Hydrobiol. 166, 535–556 (2006).

    Article  Google Scholar 

  95. 95.

    Green, J. in The Nile (ed. Dumont H. J.) 263–286 (Springer, 2009).

  96. 96.

    Kalman, L. S. & Peltzer, G. R. Simulation of Landsat Thematic Mapper imagery using AVIRIS hyperspectral imagery. In 4th Annual JPL Airborne Geoscience Workshop (1993).

Download references


This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDA20060402), the National Natural Science Foundation of China (numbers 41971304, 41890852 and 41890851) and by High-level Special Funding of the Southern University of Science and Technology (numbers G02296302, G02296402). We thank Guangzhou Water Color Ocean Technology Co., Ltd and Easy Ocean Technology Ltd for their help in collecting in situ data.

Author information




L.F. initiated the project and wrote an initial draft of the manuscript, and Y.D., X.H. and Y.X. performed the data processing and analysis. All authors participated in interpreting the results and revising the manuscript.

Corresponding author

Correspondence to Lian Feng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Relationship between the surface reflectance in the NIR band (ρNIR) and Chla.

The correlations for different Chla ranges (colour-coded) and individual lakes are non-significant (P > 0.05). The data are from in situ measurements collected from 15 lakes in China across waters with varying eutrophic status. ρNIR values are the equivalent L5TM NIR reflectances aggregated using in situ hyperspectral measurements and the L5TM spectral response function (see the aggregation method in Kalmen et al.96).

Extended Data Fig. 2 Examples showing the effects of high sediment loads on the bloom intensity (BNIR) calculations in eight of the lakes studied in Ho et al.1.

The left panels of the paired images show the true-colour composites for L5TM images, and the right panels show the corresponding BNIR maps after applying the hue and Fmask masks. The sediment plumes (indicated by red arrows) with high BNIR values (~0.1) could still be classified as intense blooms with the hue mask defined in Ho et al.1. The examination of historical L5TM images show that sediment plumes could occur in at least 58 (82%) of the 71 lakes studied in Ho et al.1.

Extended Data Fig. 3 Reflectance spectra of submerged vegetation.

a, The spectral reflectances of two types (Ceratophyllum demersum and Myriophyllum verticillatum) of submerged vegetation collected from Taihu Lake in China (a shallow lake ~200 km away from Hongze Lake) on 24 October 2019, using the PSR+3500 field-portable spectrometer manufactured by Spectral Evolution. Also plotted are the spectral reflectances of different blooms and the normalized spectral responses in the L5TM NIR band, which were obtained from extended data figure 7 in Ho et al.1. The spectral features of submerged vegetation, particularly the reflectance in the NIR band, are very similar to those of intense phytoplankton blooms. b, c, Photographs taken while conducting the in situ measurements.

Extended Data Fig. 4 Spectral features of different types of waters in L5TM images.

a, b, The spectral data were obtained from the arrow-indicated pixels in Fig. 1 (a from Songkhla Lake and b from Hongze Lake). ρTOA is the top-of-atmosphere reflectance, ρr is the reflectance from molecular scattering (or Rayleigh scattering, estimated using the method in Gordon10) and ρrc is the difference between ρTOA and ρr.

Extended Data Fig. 5 Examples of pixels with intense blooms erroneously masked by Fmask in eight of the lakes studied in Ho et al.1.

The left panels of the paired images show the true-colour composites for the L5TM images, and the right panels show the resultant separation of pixels determined using Fmask. Clearly, intense blooms (greenish in the red squares) have been classified as other classes instead of as water. The examination of the lakes studied in ref. 1 showed that most of the severe blooms with surface scum were missed owing to the improper use of Fmask.

Extended Data Fig. 6 Daily areas of algal bloom in Taihu Lake between 2000 and 2008, determined using MODIS observations by Hu et al.12.

Red points represent MODIS observations with the same overpassing dates as L5TM (that is, daily MODIS observations have concurrent L5TM images) and indicate the difficulty in characterizing long-term bloom dynamics. For example, whereas black dots show a clear increase in bloom area after 2005, such a trend is difficult to capture with the red dots.

Extended Data Table 1 Previous studies with in situ datasets that showed substantial effects of water turbidity (or total suspended sediments, TSS) on the reflectance of the water column in the NIR band
Extended Data Table 2 Previous studies with in situ datasets that showed that NIR reflectance could be substantially enhanced owing to the presence of submerged vegetation
Extended Data Table 3 List of lakes studied in Ho et al.1 with abundant submerged vegetation identified

Supplementary information

Reporting Summary

Supplementary Data

This file contains the in situ NIR refletance and Chla (in mg/m3) measurements collected in 15 lakes in China, and the sample dates and locations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feng, L., Dai, Y., Hou, X. et al. Concerns about phytoplankton bloom trends in global lakes. Nature 590, E35–E47 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing