Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Origins of modern human ancestry

Abstract

New finds in the palaeoanthropological and genomic records have changed our view of the origins of modern human ancestry. Here we review our current understanding of how the ancestry of modern humans around the globe can be traced into the deep past, and which ancestors it passes through during our journey back in time. We identify three key phases that are surrounded by major questions, and which will be at the frontiers of future research. The most recent phase comprises the worldwide expansion of modern humans between 40 and 60 thousand years ago (ka) and their last known contacts with archaic groups such as Neanderthals and Denisovans. The second phase is associated with a broadly construed African origin of modern human diversity between 60 and 300 ka. The oldest phase comprises the complex separation of modern human ancestors from archaic human groups from 0.3 to 1 million years ago. We argue that no specific point in time can currently be identified at which modern human ancestry was confined to a limited birthplace, and that patterns of the first appearance of anatomical or behavioural traits that are used to define Homo sapiens are consistent with a range of evolutionary histories.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Worldwide expansion and archaic admixture (phase 3).
Fig. 2: Modern human origins and diversification in Africa in the past 300 thousand years (phase 2).
Fig. 3: Separation of modern human and archaic ancestries in the past one million years (phase 1).

References

  1. 1.

    Cann, R. L., Stoneking, M. & Wilson, A. C. Mitochondrial DNA and human evolution. Nature 325, 31–36 (1987).

    CAS  PubMed  ADS  Google Scholar 

  2. 2.

    Tishkoff, S. A. et al. The genetic structure and history of Africans and African Americans. Science 324, 1035–1044 (2009).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  3. 3.

    Ramachandran, S. et al. Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. Proc. Natl Acad. Sci. USA 102, 15942–15947 (2005).

    CAS  PubMed  ADS  Google Scholar 

  4. 4.

    Skoglund, P. & Mathieson, I. Ancient genomics of modern humans: the first decade. Annu. Rev. Genomics Hum. Genet. 19, 381–404 (2018).

    CAS  PubMed  Google Scholar 

  5. 5.

    Stringer, C. B. & Andrews, P. Genetic and fossil evidence for the origin of modern humans. Science 239, 1263–1268 (1988).

    CAS  PubMed  ADS  Google Scholar 

  6. 6.

    White, T. D. et al. Pleistocene Homo sapiens from Middle Awash, Ethiopia. Nature 423, 742–747 (2003).

    CAS  PubMed  ADS  Google Scholar 

  7. 7.

    Hublin, J.-J. et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature 546, 289–292 (2017).

    CAS  PubMed  ADS  Google Scholar 

  8. 8.

    Stringer, C. The origin and evolution of Homo sapiens. Phil. Trans. R. Soc. Lond. B 371, 20150237 (2016). A synthesis of evidence from the fossil record on the evolution and origins of Homo sapiens.

    Google Scholar 

  9. 9.

    Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010). The first large-scale genomic data from Neanderthals revealed admixture during the out-of-Africa expansion.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  10. 10.

    Reich, D. et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468, 1053–1060 (2010). A genome from Denisova Cave revealed a previously unknown archaic human group, and admixture in Oceanian ancestry.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. 11.

    Schlebusch, C. M. et al. Genomic variation in seven Khoe-San groups reveals adaptation and complex African history. Science 338, 374–379 (2012). Analyses of diverse Khoe-San groups confirm that these groups show extensive diversity but shared common ancestry that diversified early in human history.

    CAS  PubMed  ADS  Google Scholar 

  12. 12.

    Henn, B. M. et al. Hunter-gatherer genomic diversity suggests a southern African origin for modern humans. Proc. Natl Acad. Sci. USA 108, 5154–5162 (2011).

    CAS  PubMed  ADS  Google Scholar 

  13. 13.

    Skoglund, P. et al. Reconstructing prehistoric African population structure. Cell 171, 59–71 (2017). Ancient DNA reveals evidence that early diverging modern human ancestry is found in West Africa.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Mallick, S. et al. The Simons Genome Diversity Project: 300 genomes from 142 diverse populations. Nature 538, 201–206 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. 15.

    Li, J. Z. et al. Worldwide human relationships inferred from genome-wide patterns of variation. Science 319, 1100–1104 (2008).

    CAS  PubMed  ADS  Google Scholar 

  16. 16.

    Breeze, P. S. et al. Palaeohydrological corridors for hominin dispersals in the Middle East ~250–70,000 years ago. Quat. Sci. Rev. 144, 155–185 (2016).

    ADS  Google Scholar 

  17. 17.

    Grün, R. et al. U-series and ESR analyses of bones and teeth relating to the human burials from Skhul. J. Hum. Evol. 49, 316–334 (2005).

    PubMed  Google Scholar 

  18. 18.

    Valladas, H., Merrier, N., Joron, J.-L. & Reyss, J.-L. in Neandertals and Modern Humans in Western Asia (eds Akazawa, T. et al.) 69–75 (Springer, 1998).

  19. 19.

    Groucutt, H. S. et al. Homo sapiens in Arabia by 85,000 years ago. Nat. Ecol. Evol. 2, 800–809 (2018).

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Hershkovitz, I. et al. The earliest modern humans outside Africa. Science 359, 456–459 (2018).

    CAS  PubMed  ADS  Google Scholar 

  21. 21.

    Harvati, K. et al. Apidima Cave fossils provide earliest evidence of Homo sapiens in Eurasia. Nature 571, 500–504 (2019).

    CAS  PubMed  Google Scholar 

  22. 22.

    Liu, W. et al. The earliest unequivocally modern humans in southern China. Nature 526, 696–699 (2015).

    CAS  PubMed  ADS  Google Scholar 

  23. 23.

    Cai, Y. et al. The age of human remains and associated fauna from Zhiren Cave in Guangxi, southern China. Quat. Int. 434, 84–91 (2017).

    Google Scholar 

  24. 24.

    Westaway, K. E. et al. An early modern human presence in Sumatra 73,000–63,000 years ago. Nature 548, 322–325 (2017).

    CAS  PubMed  ADS  Google Scholar 

  25. 25.

    Shackelford, L. et al. Additional evidence for early modern human morphological diversity in Southeast Asia at Tam Pa Ling, Laos. Quat. Int. 466, 93–106 (2018).

    Google Scholar 

  26. 26.

    Clarkson, C. et al. Human occupation of northern Australia by 65,000 years ago. Nature 547, 306–310 (2017). An old archaeological sequence in Australia that challenges the current genomic time frame for the worldwide expansion of modern humans.

    CAS  PubMed  ADS  Google Scholar 

  27. 27.

    Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. 28.

    Seguin-Orlando, A. et al. Genomic structure in Europeans dating back at least 36,200 years. Science 346, 1113–1118 (2014).

    CAS  PubMed  ADS  Google Scholar 

  29. 29.

    Fu, Q. et al. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature 514, 445–449 (2014).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  30. 30.

    Sikora, M. et al. Ancient genomes show social and reproductive behavior of early Upper Paleolithic foragers. Science 358, 659–662 (2017).

    CAS  PubMed  ADS  Google Scholar 

  31. 31.

    Sikora, M. et al. The population history of northeastern Siberia since the Pleistocene. Nature 570, 182–188 (2019).

    CAS  PubMed  ADS  Google Scholar 

  32. 32.

    Yang, M. A. et al. 40,000-year-old individual from Asia provides insight into early population structure in Eurasia. Curr. Biol. 27, 3202–3208 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Moorjani, P. et al. A genetic method for dating ancient genomes provides a direct estimate of human generation interval in the last 45,000 years. Proc. Natl Acad. Sci. USA 113, 5652–5657 (2016).

    CAS  PubMed  ADS  Google Scholar 

  34. 34.

    Sankararaman, S., Patterson, N., Li, H., Pääbo, S. & Reich, D. The date of interbreeding between Neandertals and modern humans. PLoS Genet. 8, e1002947 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Sankararaman, S., Mallick, S., Patterson, N. & Reich, D. The combined landscape of Denisovan and Neanderthal ancestry in present-day humans. Curr. Biol. 26, 1241–1247 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Fu, Q. et al. A revised timescale for human evolution based on ancient mitochondrial genomes. Curr. Biol. 23, 553–559 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Posth, C. et al. Pleistocene mitochondrial genomes suggest a single major dispersal of non-Africans and a late glacial population turnover in Europe. Curr. Biol. 26, 827–833 (2016).

    CAS  PubMed  Google Scholar 

  38. 38.

    Poznik, G. D. et al. Punctuated bursts in human male demography inferred from 1,244 worldwide Y-chromosome sequences. Nat. Genet. 48, 593–599 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Karmin, M. et al. A recent bottleneck of Y chromosome diversity coincides with a global change in culture. Genome Res. 25, 459–466 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Pagani, L. et al. Genomic analyses inform on migration events during the peopling of Eurasia. Nature 538, 238–242 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  41. 41.

    Reyes-Centeno, H. et al. Genomic and cranial phenotype data support multiple modern human dispersals from Africa and a southern route into Asia. Proc. Natl Acad. Sci. USA 111, 7248–7253 (2014).

    CAS  PubMed  ADS  Google Scholar 

  42. 42.

    Tassi, F. et al. Early modern human dispersal from Africa: genomic evidence for multiple waves of migration. Investig. Genet. 6, 13 (2015).

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Rasmussen, M. et al. An Aboriginal Australian genome reveals separate human dispersals into Asia. Science 334, 94–98 (2011).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  44. 44.

    Kingdon, J. Self-Made Man and His Undoing (Simon & Schuster, 1993).

  45. 45.

    Mirazón Lahr, M. & Foley, R. A. Towards a theory of modern human origins: geography, demography, and diversity in recent human evolution. Am. J. Phys. Anthropol. 107, 137–176 (1998).

    Google Scholar 

  46. 46.

    Malaspinas, A.-S. et al. A genomic history of Aboriginal Australia. Nature 538, 207–214 (2016).

    CAS  PubMed  ADS  Google Scholar 

  47. 47.

    Wall, J. D. Inferring human demographic histories of non-African populations from patterns of allele sharing. Am. J. Hum. Genet. 100, 766–772 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Lipson, M. & Reich, D. A working model of the deep relationships of diverse modern human genetic lineages outside of Africa. Mol. Biol. Evol. 34, 889–902 (2017). Modelling of population relationships outside of Africa supports a single, shared origin for all non-African ancestries.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Bergström, A. et al. Insights into human genetic variation and population history from 929 diverse genomes. Science 367, eaay5012 (2020).

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Lazaridis, I. et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  51. 51.

    Lazaridis, I. et al. Genomic insights into the origin of farming in the ancient Near East. Nature 536, 419–424 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  52. 52.

    Lazaridis, I. et al. Paleolithic DNA from the Caucasus reveals core of West Eurasian ancestry. Preprint at https://doi.org/10.1101/423079 (2018).

  53. 53.

    Kamm, J., Terhorst, J., Durbin, R. & Song, Y. S. Efficiently inferring the demographic history of many populations with allele count data. J. Am. Stat. Assoc. 115, 1472–1487 (2020).

    MathSciNet  CAS  PubMed  MATH  Google Scholar 

  54. 54.

    van de Loosdrecht, M. et al. Pleistocene North African genomes link Near Eastern and sub-Saharan African human populations. Science 360, 548–552 (2018).

    PubMed  ADS  Google Scholar 

  55. 55.

    Skoglund, P. et al. Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe. Science 336, 466–469 (2012).

    CAS  PubMed  ADS  Google Scholar 

  56. 56.

    Broushaki, F. et al. Early Neolithic genomes from the eastern Fertile Crescent. Science 353, 499–503 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  57. 57.

    Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  58. 58.

    Skoglund, P. et al. Genomic diversity and admixture differs for Stone-Age Scandinavian foragers and farmers. Science 344, 747–750 (2014).

    CAS  PubMed  ADS  Google Scholar 

  59. 59.

    Yang, M. A., Malaspinas, A.-S., Durand, E. Y. & Slatkin, M. Ancient structure in Africa unlikely to explain Neanderthal and non-African genetic similarity. Mol. Biol. Evol. 29, 2987–2995 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Fu, Q. et al. DNA analysis of an early modern human from Tianyuan Cave, China. Proc. Natl Acad. Sci. USA 110, 2223–2227 (2013).

    CAS  PubMed  ADS  Google Scholar 

  61. 61.

    Prüfer, K. et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505, 43–49 (2014). The first high-quality Neanderthal genome reveals super-archaic ancestry in Denisovans.

    PubMed  ADS  Google Scholar 

  62. 62.

    Prüfer, K. et al. A high-coverage Neandertal genome from Vindija Cave in Croatia. Science 358, 655–658 (2017).

    PubMed  PubMed Central  ADS  Google Scholar 

  63. 63.

    Chen, L., Wolf, A. B., Fu, W., Li, L. & Akey, J. M. Identifying and interpreting apparent Neanderthal ancestry in African individuals. Cell 180, 677–687 (2020).

    CAS  PubMed  Google Scholar 

  64. 64.

    Wang, S., Lachance, J., Tishkoff, S. A., Hey, J. & Xing, J. Apparent variation in Neanderthal admixture among African populations is consistent with gene flow from non-African populations. Genome Biol. Evol. 5, 2075–2081 (2013).

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Sánchez-Quinto, F. et al. North African populations carry the signature of admixture with Neandertals. PLoS One 7, e47765 (2012).

    PubMed  PubMed Central  ADS  Google Scholar 

  66. 66.

    Pickrell, J. K. et al. Ancient west Eurasian ancestry in southern and eastern Africa. Proc. Natl Acad. Sci. USA 111, 2632–2637 (2014).

    CAS  PubMed  ADS  Google Scholar 

  67. 67.

    Llorente, M. G. et al. Ancient Ethiopian genome reveals extensive Eurasian admixture in Eastern Africa. Science 350, 820–822 (2015); erratum 351, aaf3945 (2016).

    CAS  ADS  Google Scholar 

  68. 68.

    Schlebusch, C. M. et al. Southern African ancient genomes estimate modern human divergence to 350,000 to 260,000 years ago. Science 358, 652–655 (2017).

    CAS  PubMed  ADS  Google Scholar 

  69. 69.

    Higham, T. et al. The earliest evidence for anatomically modern humans in northwestern Europe. Nature 479, 521–524 (2011).

    CAS  PubMed  ADS  Google Scholar 

  70. 70.

    Hajdinjak, M. et al. Reconstructing the genetic history of late Neanderthals. Nature 555, 652–656 (2018).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  71. 71.

    Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222–226 (2012).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  72. 72.

    Skoglund, P. & Jakobsson, M. Archaic human ancestry in East Asia. Proc. Natl Acad. Sci. USA 108, 18301–18306 (2011).

  73. 73.

    Wall, J. D. et al. Higher levels of Neanderthal ancestry in East Asians than in Europeans. Genetics 194, 199–209 (2013).

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Vernot, B. et al. Excavating Neandertal and Denisovan DNA from the genomes of Melanesian individuals. Science 352, 235–239 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  75. 75.

    Kim, B. Y. & Lohmueller, K. E. Selection and reduced population size cannot explain higher amounts of Neandertal ancestry in East Asian than in European human populations. Am. J. Hum. Genet. 96, 454–461 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Villanea, F. A. & Schraiber, J. G. Multiple episodes of interbreeding between Neanderthal and modern humans. Nat. Ecol. Evol. 3, 39–44 (2019).

    PubMed  Google Scholar 

  77. 77.

    Vernot, B. & Akey, J. M. Complex history of admixture between modern humans and Neandertals. Am. J. Hum. Genet. 96, 448–453 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Skov, L. et al. The nature of Neanderthal introgression revealed by 27,566 Icelandic genomes. Nature 582, 78–83 (2020).

    CAS  PubMed  ADS  Google Scholar 

  79. 79.

    Petr, M., Pääbo, S., Kelso, J. & Vernot, B. Limits of long-term selection against Neandertal introgression. Proc. Natl Acad. Sci. USA 116, 1639–1644 (2019).

    CAS  PubMed  Google Scholar 

  80. 80.

    Sankararaman, S. et al. The genomic landscape of Neanderthal ancestry in present-day humans. Nature 507, 354–357 (2014).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  81. 81.

    Harris, K. & Nielsen, R. The genetic cost of Neanderthal introgression. Genetics 203, 881–891 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Schumer, M. et al. Natural selection interacts with recombination to shape the evolution of hybrid genomes. Science 360, 656–660 (2018).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  83. 83.

    Juric, I., Aeschbacher, S. & Coop, G. The strength of selection against Neanderthal introgression. PLoS Genet. 12, e1006340 (2016).

    PubMed  PubMed Central  Google Scholar 

  84. 84.

    Reich, D. et al. Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania. Am. J. Hum. Genet. 89, 516–528 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    GenomeAsia100K Consortium. The GenomeAsia 100K Project enables genetic discoveries across Asia. Nature 576, 106–111 (2019).

    ADS  Google Scholar 

  86. 86.

    Qin, P. & Stoneking, M. Denisovan ancestry in east Eurasian and Native American populations. Mol. Biol. Evol. 32, 2665–2674 (2015).

    CAS  PubMed  Google Scholar 

  87. 87.

    Browning, S. R., Browning, B. L., Zhou, Y., Tucci, S. & Akey, J. M. Analysis of human sequence data reveals two pulses of archaic Denisovan admixture. Cell 173, 53–61 (2018). Analyses of Denisovan segments in present-day individuals reveal that two distinct Denisovan source populations admixed with the ancestors of East Asian people.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Reich, D. Who We Are and How We Got Here: Ancient DNA and the New Science of the Human Past (Oxford Univ. Press, 2018).

  89. 89.

    Tucci, S. et al. Evolutionary history and adaptation of a human pygmy population of Flores Island, Indonesia. Science 361, 511–516 (2018).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  90. 90.

    Jacobs, G. S. et al. Multiple deeply divergent Denisovan ancestries in Papuans. Cell 177, 1010–1021 (2019).

    CAS  PubMed  Google Scholar 

  91. 91.

    Trinkaus, E. et al. An early modern human from the Peştera cu Oase, Romania. Proc. Natl Acad. Sci. USA 100, 11231–11236 (2003).

    CAS  PubMed  ADS  Google Scholar 

  92. 92.

    Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219 (2015).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  93. 93.

    Slon, V. et al. The genome of the offspring of a Neanderthal mother and a Denisovan father. Nature 561, 113–116 (2018).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  94. 94.

    Currat, M. & Excoffier, L. Strong reproductive isolation between humans and Neanderthals inferred from observed patterns of introgression. Proc. Natl Acad. Sci. USA 108, 15129–15134 (2011).

    CAS  PubMed  ADS  Google Scholar 

  95. 95.

    Vernot, B. & Akey, J. M. Resurrecting surviving Neandertal lineages from modern human genomes. Science 343, 1017–1021 (2014).

    CAS  PubMed  ADS  Google Scholar 

  96. 96.

    Mondal, M. et al. Genomic analysis of Andamanese provides insights into ancient human migration into Asia and adaptation. Nat. Genet. 48, 1066–1070 (2016).

    CAS  PubMed  Google Scholar 

  97. 97.

    Mondal, M., Bertranpetit, J. & Lao, O. Approximate Bayesian computation with deep learning supports a third archaic introgression in Asia and Oceania. Nat. Commun. 10, 246 (2019).

    PubMed  PubMed Central  ADS  Google Scholar 

  98. 98.

    Speidel, L., Forest, M., Shi, S. & Myers, S. R. A method for genome-wide genealogy estimation for thousands of samples. Nat. Genet. 51, 1321–1329 (2019).

    CAS  PubMed  Google Scholar 

  99. 99.

    Skoglund, P., Mallick, S., Patterson, N. & Reich, D. No evidence for unknown archaic ancestry in South Asia. Nat. Genet. 50, 632–633 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Groucutt, H. S. et al. Rethinking the dispersal of Homo sapiens out of Africa. Evol. Anthropol. 24, 149–164 (2015).

    PubMed  PubMed Central  Google Scholar 

  101. 101.

    Scerri, E. M. L. et al. Did our species evolve in subdivided populations across Africa, and why does it matter? Trends Ecol. Evol. 33, 582–594 (2018). A synthesis of fossil, archaeological and genomic evidence that suggests a pan-African model of human evolution.

    PubMed  PubMed Central  Google Scholar 

  102. 102.

    Mounier, A. & Mirazón Lahr, M. Deciphering African late middle Pleistocene hominin diversity and the origin of our species. Nat. Commun. 10, 3406 (2019).

    PubMed  PubMed Central  ADS  Google Scholar 

  103. 103.

    Lacruz, R. S. et al. The evolutionary history of the human face. Nat. Ecol. Evol. 3, 726–736 (2019).

    PubMed  Google Scholar 

  104. 104.

    Berger, L. R. & Hawks, J. Revisiting the age of the Florisbad hominin material. Preprint at https://doi.org/10.31730/osf.io/eqs7d (2020).

  105. 105.

    Bruner, E. & Lombard, M. The skull from Florisbad: a paleoneurological report. J. Anthropol. Sci. 98, 89–97 (2020).

  106. 106.

    Lipson, M. et al. Ancient West African foragers in the context of African population history. Nature 577, 665–670 (2020). Analysis of ancient and modern genomes from Central Africa suggests a model with multiple layers of ancestry on the African continent.

    CAS  PubMed  ADS  Google Scholar 

  107. 107.

    Jakobsson, M. et al. Genotype, haplotype and copy-number variation in worldwide human populations. Nature 451, 998–1003 (2008).

    CAS  PubMed  ADS  Google Scholar 

  108. 108.

    Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 46, 919–925 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109.

    Wang, K., Mathieson, I., O’Connell, J. & Schiffels, S. Tracking human population structure through time from whole genome sequences. PLoS Genet. 16, e1008552 (2020). Detailed analysis of the time depth of human population structure, including evidence for small amounts of a very deep structure.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Song, S., Sliwerska, E., Emery, S. & Kidd, J. M. modeling human population separation history using physically phased genomes. Genetics 205, 385–395 (2017).

    PubMed  Google Scholar 

  111. 111.

    Fan, S. et al. African evolutionary history inferred from whole genome sequence data of 44 indigenous African populations. Genome Biol. 20, 82 (2019).

    PubMed  PubMed Central  Google Scholar 

  112. 112.

    Gronau, I., Hubisz, M. J., Gulko, B., Danko, C. G. & Siepel, A. Bayesian inference of ancient human demography from individual genome sequences. Nat. Genet. 43, 1031–1034 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Veeramah, K. R. et al. An early divergence of KhoeSan ancestors from those of other modern humans is supported by an ABC-based analysis of autosomal resequencing data. Mol. Biol. Evol. 29, 617–630 (2012).

    CAS  PubMed  Google Scholar 

  114. 114.

    Lopez, M. et al. The demographic history and mutational load of African hunter-gatherers and farmers. Nat. Ecol. Evol. 2, 721–730 (2018).

    PubMed  Google Scholar 

  115. 115.

    Hsieh, P. et al. Model-based analyses of whole-genome data reveal a complex evolutionary history involving archaic introgression in Central African Pygmies. Genome Res. 26, 291–300 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116.

    Patin, E. et al. Inferring the demographic history of African farmers and pygmy hunter-gatherers using a multilocus resequencing data set. PLoS Genet. 5, e1000448 (2009).

    PubMed  PubMed Central  Google Scholar 

  117. 117.

    Scerri, E. M. L., Chikhi, L. & Thomas, M. G. Beyond multiregional and simple out-of-Africa models of human evolution. Nat. Ecol. Evol. 3, 1370–1372 (2019).

    PubMed  Google Scholar 

  118. 118.

    Henn, B. M., Steele, T. E. & Weaver, T. D. Clarifying distinct models of modern human origins in Africa. Curr. Opin. Genet. Dev. 53, 148–156 (2018).

    CAS  PubMed  Google Scholar 

  119. 119.

    Harvati, K. et al. The Later Stone Age calvaria from Iwo Eleru, Nigeria: morphology and chronology. PLoS One 6, e24024 (2011). Analysis of a partial skull from Iho Eleru in Nigeria suggests that the complex diversity of skeletal morphology persisted until as recently as 13 ka.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  120. 120.

    Stojanowski, C. M. Iwo Eleru’s place among Late Pleistocene and Early Holocene populations of North and East Africa. J. Hum. Evol. 75, 80–89 (2014).

    PubMed  Google Scholar 

  121. 121.

    Crevecoeur, I., Brooks, A., Ribot, I., Cornelissen, E. & Semal, P. Late Stone Age human remains from Ishango (Democratic Republic of Congo): new insights on Late Pleistocene modern human diversity in Africa. J. Hum. Evol. 96, 35–57 (2016).

    CAS  PubMed  Google Scholar 

  122. 122.

    Harding, R. M. & McVean, G. A structured ancestral population for the evolution of modern humans. Curr. Opin. Genet. Dev. 14, 667–674 (2004).

    CAS  PubMed  Google Scholar 

  123. 123.

    Plagnol, V. & Wall, J. D. Possible ancestral structure in human populations. PLoS Genet. 2, e105 (2006).

    PubMed  PubMed Central  Google Scholar 

  124. 124.

    Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. 125.

    Ragsdale, A. P. & Gravel, S. Models of archaic admixture and recent history from two-locus statistics. PLoS Genet. 15, e1008204 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126.

    Hammer, M. F., Woerner, A. E., Mendez, F. L., Watkins, J. C. & Wall, J. D. Genetic evidence for archaic admixture in Africa. Proc. Natl Acad. Sci. USA 108, 15123–15128 (2011).

    CAS  PubMed  ADS  Google Scholar 

  127. 127.

    Wall, J. D., Ratan, A. & Stawiski, E. Identification of African-specific admixture between modern and archaic humans. Am. J. Hum. Genet. 105, 1254–1261 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128.

    Lachance, J. et al. Evolutionary history and adaptation from high-coverage whole-genome sequences of diverse African hunter-gatherers. Cell 150, 457–469 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. 129.

    Durvasula, A. & Sankararaman, S. Recovering signals of ghost archaic introgression in African populations. Sci. Adv. 6, eaax5097 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130.

    Deshpande, O., Batzoglou, S., Feldman, M. W. & Cavalli-Sforza, L. L. A serial founder effect model for human settlement out of Africa. Proc. R. Soc. Lond. B 276, 291–300 (2009).

    Google Scholar 

  131. 131.

    Prugnolle, F., Manica, A. & Balloux, F. Geography predicts neutral genetic diversity of human populations. Curr. Biol. 15, R159–R160 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Pickrell, J. K. & Reich, D. Toward a new history and geography of human genes informed by ancient DNA. Trends Genet. 30, 377–389 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. 133.

    DeGiorgio, M., Jakobsson, M. & Rosenberg, N. A. Out of Africa: modern human origins special feature: explaining worldwide patterns of human genetic variation using a coalescent-based serial founder model of migration outward from Africa. Proc. Natl Acad. Sci. USA 106, 16057–16062 (2009).

    CAS  PubMed  ADS  Google Scholar 

  134. 134.

    Skoglund, P. et al. Genomic insights into the peopling of the Southwest Pacific. Nature 538, 510–513 (2016).

    PubMed  PubMed Central  ADS  Google Scholar 

  135. 135.

    Verdu, P. et al. Origins and genetic diversity of pygmy hunter-gatherers from Western Central Africa. Curr. Biol. 19, 312–318 (2009).

    MathSciNet  CAS  PubMed  Google Scholar 

  136. 136.

    Behar, D. M. et al. The dawn of human matrilineal diversity. Am. J. Hum. Genet. 82, 1130–1140 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. 137.

    Mendez, F. L. et al. An African American paternal lineage adds an extremely ancient root to the human Y chromosome phylogenetic tree. Am. J. Hum. Genet. 92, 454–459 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. 138.

    Haber, M. et al. A rare deep-rooting D0 African Y-chromosomal haplogroup and its implications for the expansion of modern humans out of Africa. Genetics 212, 1421–1428 (2019).

    PubMed  PubMed Central  Google Scholar 

  139. 139.

    Cole, C. B., Zhu, S. J., Mathieson, I., Prüfer, K. & Lunter, G. Ancient admixture into Africa from the ancestors of non-Africans. Preprint at https://doi.org/10.1101/2020.06.01.127555 (2020).

  140. 140.

    Hublin, J. J. The origin of Neandertals. Proc. Natl Acad. Sci. USA 106, 16022–16027 (2009).

    CAS  PubMed  ADS  Google Scholar 

  141. 141.

    Krause, J. et al. Neanderthals in central Asia and Siberia. Nature 449, 902–904 (2007).

    CAS  PubMed  ADS  Google Scholar 

  142. 142.

    Zhang, D. et al. Denisovan DNA in Late Pleistocene sediments from Baishiya Karst Cave on the Tibetan Plateau. Science 370, 584–587 (2020).

    CAS  PubMed  Google Scholar 

  143. 143.

    Galway‐Witham, J., Cole, J. & Stringer, C. Aspects of human physical and behavioural evolution during the last 1 million years. J. Quat. Sci. 34, 355–378 (2019).

    Google Scholar 

  144. 144.

    Athreya, S. & Wu, X. A multivariate assessment of the Dali hominin cranium from China: morphological affinities and implications for Pleistocene evolution in East Asia. Am. J. Phys. Anthropol. 164, 679–701 (2017).

    PubMed  Google Scholar 

  145. 145.

    Rosenberg, K. R., Zuné, L. & Ruff, C. B. Body size, body proportions, and encephalization in a Middle Pleistocene archaic human from northern China. Proc. Natl Acad. Sci. USA 103, 3552–3556 (2006).

    CAS  PubMed  ADS  Google Scholar 

  146. 146.

    Wu, X.-J. et al. Archaic human remains from Hualongdong, China, and Middle Pleistocene human continuity and variation. Proc. Natl Acad. Sci. USA 116, 9820–9824 (2019).

    CAS  PubMed  Google Scholar 

  147. 147.

    Chen, F. et al. A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau. Nature 569, 409–412 (2019).

    CAS  PubMed  ADS  Google Scholar 

  148. 148.

    Meyer, M. et al. Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature 531, 504–507 (2016). Retrieval of the oldest hominin DNA to date supports an early presence of Neanderthal-like ancestry in Europe.

    CAS  PubMed  ADS  Google Scholar 

  149. 149.

    Mafessoni, F. et al. A high-coverage Neandertal genome from Chagyrskaya Cave. Proc. Natl Acad. Sci. USA 117, 15132–15136 (2020).

    CAS  PubMed  Google Scholar 

  150. 150.

    Rogers, A. R., Harris, N. S. & Achenbach, A. A. Neanderthal–Denisovan ancestors interbred with a distantly related hominin. Sci. Adv. 6, eaay5483 (2020).

    PubMed  PubMed Central  ADS  Google Scholar 

  151. 151.

    Krause, J. et al. The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature 464, 894–897 (2010).

    CAS  PubMed  ADS  Google Scholar 

  152. 152.

    Posth, C. et al. Deeply divergent archaic mitochondrial genome provides lower time boundary for African gene flow into Neanderthals. Nat. Commun. 8, 16046 (2017).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  153. 153.

    Antón, S. C. et al. Morphological variation in Homo erectus and the origins of developmental plasticity. Phil. Trans. R. Soc. Lond. B 371, 20150236 (2016).

    Google Scholar 

  154. 154.

    Martinón-Torres, M. et al. New permanent teeth from Gran Dolina-TD6 (Sierra de Atapuerca). The bearing of Homo antecessor on the evolutionary scenario of Early and Middle Pleistocene Europe. J. Hum. Evol. 127, 93–117 (2019).

    PubMed  Google Scholar 

  155. 155.

    Noonan, J. P. et al. Sequencing and analysis of Neanderthal genomic DNA. Science 314, 1113–1118 (2006).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  156. 156.

    Meyer, M. et al. A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature 505, 403–406 (2014).

    CAS  PubMed  ADS  Google Scholar 

  157. 157.

    Green, R. E. et al. A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing. Cell 134, 416–426 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. 158.

    Petr, M. et al. The evolutionary history of Neanderthal and Denisovan Y chromosomes. Science 369, 1653–1656 (2020).

    CAS  PubMed  ADS  Google Scholar 

  159. 159.

    Arnold, L. J. et al. Luminescence dating and palaeomagnetic age constraint on hominins from Sima de los Huesos, Atapuerca, Spain. J. Hum. Evol. 67, 85–107 (2014).

    PubMed  Google Scholar 

  160. 160.

    Kuhlwilm, M. et al. Ancient gene flow from early modern humans into Eastern Neanderthals. Nature 530, 429–433 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  161. 161.

    Hubisz, M. J., Williams, A. L. & Siepel, A. Mapping gene flow between ancient hominins through demography-aware inference of the ancestral recombination graph. PLoS Genet. 16, e1008895 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. 162.

    Isaac, G. L. in After the Australopithecines (eds Butzer, K. W. & Isaac, G. L.) 875–887 (Mouton, 1975).

  163. 163.

    Zanolli, C. & Mazurier, A. Endostructural characterization of the H. heidelbergensis dental remains from the early Middle Pleistocene site of Tighenif, Algeria. C. R. Palevol 12, 293–304 (2013).

    Google Scholar 

  164. 164.

    Hammond, A. S., Almécija, S., Libsekal, Y., Rook, L. & Macchiarelli, R. A partial Homo pelvis from the Early Pleistocene of Eritrea. J. Hum. Evol. 123, 109–128 (2018).

    PubMed  Google Scholar 

  165. 165.

    Welker, F. et al. The dental proteome of Homo antecessor. Nature 580, 235–238 (2020). Retrieval of ancient dental enamel proteins from Homo antecessor highlights the biomolecular potential of proteomics to reach into the deep past.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  166. 166.

    Ferring, R. et al. Earliest human occupations at Dmanisi (Georgian Caucasus) dated to 1.85–1.78 Ma. Proc. Natl Acad. Sci. USA 108, 10432–10436 (2011).

    CAS  PubMed  ADS  Google Scholar 

  167. 167.

    Pearson, O. M. Statistical and biological definitions of “natomically modern” humans: suggestions for a unified approach to modern morphology. Evol. Anthropol. 17, 38–48 (2008).

    Google Scholar 

  168. 168.

    Pinhasi, R. et al. Optimal ancient DNA yields from the inner ear part of the human petrous bone. PLoS One 10, e0129102 (2015).

    PubMed  PubMed Central  Google Scholar 

  169. 169.

    Brown, S. et al. Identification of a new hominin bone from Denisova Cave, Siberia using collagen fingerprinting and mitochondrial DNA analysis. Sci. Rep. 6, 23559 (2016).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  170. 170.

    Slon, V. et al. Neandertal and Denisovan DNA from Pleistocene sediments. Science 356, 605–608 (2017).

    CAS  PubMed  ADS  Google Scholar 

Download references

Acknowledgements

We thank I. Mathieson, K. Prüfer, C. Schlebusch, Q. Fu and K. Harvati for comments. A.B., M.H. and P.S. were supported by Francis Crick Institute core funding (FC001595) from Cancer Research UK, the UK Medical Research Council and the Wellcome Trust. C.S. acknowledges support from the Calleva Foundation and the Human Origins Research Fund. M.H. was supported by Marie Skłodowska Curie Actions (844014). E.M.L.S. was supported by the Max Planck Society. P.S. was supported by the Vallee Foundation, the European Research Council (852558) and the Wellcome Trust (217223/Z/19/Z).

Author information

Affiliations

Authors

Contributions

All authors contributed to the conceptualization and writing of the manuscript.

Corresponding authors

Correspondence to Chris Stringer or Pontus Skoglund.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Qiaomei Fu, Katerina Harvati and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bergström, A., Stringer, C., Hajdinjak, M. et al. Origins of modern human ancestry. Nature 590, 229–237 (2021). https://doi.org/10.1038/s41586-021-03244-5

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing