Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A quantum enhanced search for dark matter axions


The manipulation of quantum states of light1 holds the potential to enhance searches for fundamental physics. Only recently has the maturation of quantum squeezing technology coincided with the emergence of fundamental physics searches that are limited by quantum uncertainty2,3. In particular, the quantum chromodynamics axion provides a possible solution to two of the greatest outstanding problems in fundamental physics: the strong-CP (charge–parity) problem of quantum chromodynamics4 and the unknown nature of dark matter5,6,7. In dark matter axion searches, quantum uncertainty manifests as a fundamental noise source, limiting the measurement of the quadrature observables used for detection. Few dark matter searches have approached this limit3,8, and until now none has exceeded it. Here we use vacuum squeezing to circumvent the quantum limit in a search for dark matter. By preparing a microwave-frequency electromagnetic field in a squeezed state and near-noiselessly reading out only the squeezed quadrature9, we double the search rate for axions over a mass range favoured by some recent theoretical projections10,11. We find no evidence of dark matter within the axion rest energy windows of 16.96–17.12 and 17.14–17.28 microelectronvolts. Breaking through the quantum limit invites an era of fundamental physics searches in which noise reduction techniques yield unbounded benefit compared with the diminishing returns of approaching the quantum limit.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Illustration of the SSR-equipped haloscope, showing the transformation of the vacuum state in quadrature space.
Fig. 2: Advantage conferred by squeezing.
Fig. 3: Axion exclusion from this work.

Data availability

The data central to the results of this manuscript are available from the corresponding author upon reasonable request.

Code availability

The custom codes used to produce the results presented in this manuscript are available from the corresponding author upon reasonable request.


  1. 1.

    Slusher, R. E., Hollberg, L. W., Yurke, B., Mertz, J. C. & Valley, J. F. Observation of squeezed states generated by four-wave mixing in an optical cavity. Phys. Rev. Lett. 55, 2409–2412 (1985).

    ADS  CAS  PubMed  Article  Google Scholar 

  2. 2.

    Tse, M. et al. Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy. Phys. Rev. Lett. 123, 231107 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  3. 3.

    Brubaker, B. M. et al. First results from a microwave cavity axion search at 24 μeV. Phys. Rev. Lett. 118, 061302 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  4. 4.

    Peccei, R. D. & Quinn, H. R. CP conservation in the presence of pseudoparticles. Phys. Rev. Lett. 38, 1440–1443 (1977).

    ADS  CAS  Article  Google Scholar 

  5. 5.

    Preskill, J., Wise, M. B. & Wilczek, F. Cosmology of the invisible axion. Phys. Lett. B 120, 127–132 (1983).

    ADS  Article  Google Scholar 

  6. 6.

    Dine, M. & Fischler, W. The not-so-harmless axion. Phys. Lett. B 120, 137–141 (1983).

    ADS  Article  Google Scholar 

  7. 7.

    Abbott, L. & Sikivie, P. A cosmological bound on the invisible axion. Phys. Lett. B 120, 133–136 (1983).

    ADS  Article  Google Scholar 

  8. 8.

    Braine, T. et al. Extended search for the invisible axion with the axion dark matter experiment. Phys. Rev. Lett. 124, 101303 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  9. 9.

    Malnou, M. et al. Squeezed vacuum used to accelerate the search for a weak classical signal. Phys. Rev. X 9, 021023 (2019).

    CAS  Google Scholar 

  10. 10.

    Buschmann, M., Foster, J. W. & Safdi, B. R. Early-universe simulations of the cosmological axion. Phys. Rev. Lett. 124, 161103 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  11. 11.

    Klaer, V. B. & Moore, G. D. The dark-matter axion mass. J. Cosmol. Astropart. Phys. 2017, 049 (2017).

    Article  Google Scholar 

  12. 12.

    Ade, P. A. et al. Planck 2015 results – XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016).

    Article  Google Scholar 

  13. 13.

    Bertone, G. & Tait, T. M. P. A new era in the search for dark matter. Nature 562, 51–56 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  14. 14.

    Ouellet, J. L. et al. First results from ABRACADABRA-10 cm: a search for sub-μev axion dark matter. Phys. Rev. Lett. 122, 121802 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  15. 15.

    Majorovits, B. et al. Madmax: a new road to axion dark matter detection. J. Phys. Conf. Ser. 1342, 012098 (2020).

    Article  Google Scholar 

  16. 16.

    Arvanitaki, A. & Geraci, A. A. Resonantly detecting axion-mediated forces with nuclear magnetic resonance. Phys. Rev. Lett. 113, 161801 (2014).

    ADS  PubMed  Article  Google Scholar 

  17. 17.

    Garcon, A. et al. The cosmic axion spin precession ex-periment (CASPEr): a dark-matter search with nuclear magnetic resonance. Quantum Sci. Technol 3, 014008 (2018).

    ADS  Article  Google Scholar 

  18. 18.

    Zhong, L. et al. Results from phase 1 of the HAYSTAC microwave cavity axion experiment. Phys. Rev. D 97, 092001 (2018).

    ADS  CAS  Article  Google Scholar 

  19. 19.

    Lee, S., Ahn, S., Choi, J., Ko, B. R. & Semertzidis, Y. K. Axion dark matter search around 6.7 μeV. Phys. Rev. Lett. 124, 101802 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  20. 20.

    Sikivie, P. Experimental tests of the “invisible” axion. Phys. Rev. Lett. 51, 1415–1417 (1983).

    ADS  CAS  Article  Google Scholar 

  21. 21.

    Rapidis, N. M., Lewis, S. M. & van Bibber, K. Characterization of the HAYSTAC axion dark matter search cavity using microwave measurement and simulation techniques. Rev. Sci. Instrum. 90, 024706 (2019).

    ADS  PubMed  Article  Google Scholar 

  22. 22.

    Caves, C. M., Thorne, K. S., Drever, R. W. P., Sandberg, V. D. & Zimmermann, M. On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle. Rev. Mod. Phys. 52, 341–392 (1980).

    ADS  Article  Google Scholar 

  23. 23.

    Palken, D. A. et al. Improved analysis framework for axion dark matter searches. Phys. Rev. D 101, 123011 (2020).

    ADS  CAS  Article  Google Scholar 

  24. 24.

    Kim, J. E. Weak-interaction singlet and strong CP invariance. Phys. Rev. Lett. 43, 103–107 (1979).

    ADS  CAS  Article  Google Scholar 

  25. 25.

    Shifman, M. A., Vainshtein, A. I. & Zakharov, V. I. Can confinement ensure natural CP invariance of strong in-teractions? Nucl. Phys. B 166, 493–506 (1980).

    ADS  Article  Google Scholar 

  26. 26.

    Gorghetto, M., Hardy, E. & Villadoro, G. Axions from strings: the attractive solution. J. High Energy Phys. 2018, 151 (2018).

    MATH  Article  Google Scholar 

  27. 27.

    Yamamoto, T. et al. Flux-driven Josephson parametric amplifier. Appl. Phys. Lett. 93, 042510 (2008).

    ADS  Article  Google Scholar 

  28. 28.

    Primakoff, H. Photo-production of neutral mesons in nuclear electric fields and the mean life of the neutral meson. Phys. Rev. 81, 899 (1951).

    ADS  CAS  Article  Google Scholar 

  29. 29.

    Al Kenany, S. et al. Design and operational experience of a microwave cavity axion detector for the 20 – 100 μeV range. Nucl. Instrum. Methods Phys. Res. A 854, 11–24 (2017).

    ADS  CAS  Article  Google Scholar 

  30. 30.

    Caves, C. M. Quantum limits on noise in linear ampli-fiers. Phys. Rev. D 26, 1817–1839 (1982).

    ADS  Article  Google Scholar 

  31. 31.

    Malnou, M., Palken, D. A., Vale, L. R., Hilton, G. C. & Lehnert, K. W. Optimal operation of a Josephson parametric amplifier for vacuum squeezing. Phys. Rev. Appl. 9, 044023 (2018).

    ADS  CAS  Article  Google Scholar 

  32. 32.

    Brubaker, B. M., Zhong, L., Lamoreaux, S. K., Lehnert, K. W. & van Bibber, K. A. HAYSTAC axion search analysis procedure. Phys. Rev. D 96, 123008 (2017).

    ADS  Article  Google Scholar 

  33. 33.

    Burkhart, L. D. et al. Error-detected state transfer and entanglement in a superconducting quantum network. Preprint at (2020).

  34. 34.

    Braunstein, S. L. & van Loock, P. Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  35. 35.

    Tanabashi, M. et al. Review of particle physics. Phys. Rev. D 98, 030001 (2018).

    ADS  Article  Google Scholar 

  36. 36.

    Di Luzio, L., Giannotti, M., Nardi, E. & Visinelli, L. The landscape of QCD axion models. Phys. Rep. 870, 1–117 (2020).

    ADS  MathSciNet  Article  Google Scholar 

  37. 37.

    Dine, M., Fischler, W. & Srednicki, M. A simple solution to the strong CP problem with a harmless axion. Phys. Lett. B 104, 199–202 (1981).

    ADS  Article  Google Scholar 

  38. 38.

    Zhitnitsky, A. R. On possible suppression of the axion hadron interactions. Sov. J. Nucl. Phys. 31, 260 (1980).

    Google Scholar 

  39. 39.

    Palken, D. A. Enhancing the Scan Rate for Axion Dark Matter: Quantum Noise Evasion and Maximally Informative Analysis. PhD thesis, Univ. of Colorado Boulder (2020).

Download references


We acknowledge support from the National Science Foundation under grant numbers PHY-1701396, PHY-1607223, PHY-1734006, PHY-1914199 and PHY-2011357 and the Heising-Simons Foundation under grants 2016-044 and 2016-044. We thank K. Thatcher and C. Schwadron for work on the design and fabrication of the SSR mechanical components, F. Vietmeyer for work on the room-temperature electronics and S. Burrows for graphical design work. We thank V. Bernardo and the J. W. Gibbs Professional Shop as well as C. Miller and D. Johnson for assistance with fabricating the system’s mechanical components. We thank M. Buehler of Low-T Solutions for cryogenics advice. Finally, we thank the Wright laboratory for housing the experiment and providing computing and facilities support.

Author information




K.M.B. ran the experiment with support from D.A.P., D.H.S., S.G., H.W., S.B.C., R.H.M. and S.K.L. Data were analysed by D.A.P. and K.M.B. with D.H.S, E.C.v.A. and H.W. contributing. K.M.B., M.M., D.A.P., S.M.L., N.M.R., A.D., D.H.S., E.C.v.A., R.H.M and S.K.L. designed and assembled the experiment. D.A.P., M.M., B.M.B. and K.W.L. developed the squeezing concept. K.M.B. developed and implemented squeezing and other operational procedures with support from D.A.P., D.H.S, E.C.v.A. and H.W. The JPAs were designed by M.M., D.A.P. and K.W.L. and fabricated by L.R.V. and G.C.H. The cavity was designed and tested by N.M.R., S.M.L., S.A.K., H.J., A.F.L., M.S., A.D., I.U. and K.v.B. All authors, led by K.M.B. and D.A.P., contributed to the manuscript with figures created by S.G. and H.W.

Corresponding author

Correspondence to K. M. Backes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Igor Irastorza, David Marsh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Simplified HAYSTAC experimental diagram.

A single signal generator provides the local oscillator (LO) tone, as well as the tones for pumping both JPAs (SQ, AMP). Each JPA has two ports: one for the input of pump tones and one for input/output signals. The LO is set at half the pump frequencies via a frequency divider, and the relative phase and amplitude of the pump tones are set using a variable phase shifter and attenuator on the SQ pump line. Switches in the SQ and AMP pump lines (not shown) are used to toggle the JPAs on and off. Microwave circulators route signals nonreciprocally in order to realize the time sequence of operations illustrated in Fig. 1. Circulators with a 50-Ω termination on one port act as isolators, shielding upstream circuit elements from unwanted noise coming from further down the measurement chain. During data acquisition and calibration measurements, signal and noise emitted from and reflected off the cavity are amplified by a HEMT amplifier at 4 K, fed into the RF port of an IQ mixer and mixed down to an intermediate frequency, digitized (ADC) and read into the computer (PC) where the power spectral density is calculated. The cavity’s Lorentzian profile is monitored with reflection and transmission measurements taken using a VNA, for which a portion of the output is split off before the mixer. A switch that toggles between hot (333 mK) and cold (61 mK) 50-Ω loads is used for the calibration measurements described in the text.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Backes, K.M., Palken, D.A., Kenany, S.A. et al. A quantum enhanced search for dark matter axions. Nature 590, 238–242 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing