Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum circuits with many photons on a programmable nanophotonic chip


Growing interest in quantum computing for practical applications has led to a surge in the availability of programmable machines for executing quantum algorithms1,2. Present-day photonic quantum computers3,4,5,6,7 have been limited either to non-deterministic operation, low photon numbers and rates, or fixed random gate sequences. Here we introduce a full-stack hardware−software system for executing many-photon quantum circuit operations using integrated nanophotonics: a programmable chip, operating at room temperature and interfaced with a fully automated control system. The system enables remote users to execute quantum algorithms that require up to eight modes of strongly squeezed vacuum initialized as two-mode squeezed states in single temporal modes, a fully general and programmable four-mode interferometer, and photon number-resolving readout on all outputs. Detection of multi-photon events with photon numbers and rates exceeding any previous programmable quantum optical demonstration is made possible by strong squeezing and high sampling rates. We verify the non-classicality of the device output, and use the platform to carry out proof-of-principle demonstrations of three quantum algorithms: Gaussian boson sampling, molecular vibronic spectra and graph similarity8. These demonstrations validate the platform as a launchpad for scaling photonic technologies for quantum information processing.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Overview of apparatus.
Fig. 2: Component statistics.
Fig. 3: Total photon-number distribution.
Fig. 4: GBS experiment.
Fig. 5: Vibronic spectra experiment.
Fig. 6: Graph similarity experiment.

Data availability

All data underlying the findings of this work are available upon request from the authors.

Code availability

Codes used for data analysis in this work are available upon request from the authors. The Supplementary Information contains example Strawberry Fields code, parameters of the theoretical model, and interferometer unitaries used in the demonstrations.


  1. 1.

    Wright, K. et al. Benchmarking an 11-qubit quantum computer. Nat. Commun. 10, 5464 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    ADS  CAS  Google Scholar 

  3. 3.

    Larsen, M. V., Guo, X., Breum, C. R., Neergaard-Nielsen, J. S. & Andersen, U. L. Deterministic generation of a two-dimensional cluster state. Science 366, 369–372 (2019).

    ADS  MathSciNet  CAS  MATH  Google Scholar 

  4. 4.

    Asavanant, W. et al. Generation of time-domain-multiplexed two-dimensional cluster state. Science 366, 373–376 (2019).

    ADS  MathSciNet  CAS  Google Scholar 

  5. 5.

    Qiang, X. et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photon. 12, 534–539 (2018).

    ADS  CAS  Google Scholar 

  6. 6.

    Paesani, S. et al. Generation and sampling of quantum states of light in a silicon chip. Nat. Phys. 15, 925–929 (2019).

    CAS  Google Scholar 

  7. 7.

    Zhong, H.-S. et al. Experimental Gaussian boson sampling. Sci. Bull. 64, 511–515 (2019).

    CAS  Google Scholar 

  8. 8.

    Bromley, T. R. et al. Applications of near-term photonic quantum computers: Software and algorithms. Quant. Sci. Technol. 5, 034010 (2020).

    ADS  Google Scholar 

  9. 9.

    Kielpinski, D., Monroe, C. & Wineland, D. J. Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002).

    ADS  CAS  Google Scholar 

  10. 10.

    Clarke, J. & Wilhelm, F. K. Superconducting quantum bits. Nature 453, 1031–1042 (2008).

    ADS  CAS  Google Scholar 

  11. 11.

    Wootton, J. R. & Loss, D. Repetition code of 15 qubits. Phys. Rev. A 97, 052313 (2018).

    ADS  CAS  Google Scholar 

  12. 12.

    Dumitrescu, E. F. et al. Cloud quantum computing of an atomic nucleus. Phys. Rev. Lett. 120, 210501 (2018).

    ADS  CAS  Google Scholar 

  13. 13.

    Anschuetz, E., Olson, J., Aspuru-Guzik, A. & Cao, Y. Variational quantum factoring. In Int. Worksh. on Quantum Technology and Optimization Problems 74–85 (Springer, 2019).

  14. 14.

    Nielsen, M. A. & Chuang, I. Quantum Computation And Quantum Information (Cambridge Univ. Press, 2010).

  15. 15.

    Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).

    Google Scholar 

  16. 16.

    Gottesman, D., Kitaev, A. & Preskill, J. Encoding a qubit in an oscillator. Phys. Rev. A 64, 012310 (2001).

    ADS  Google Scholar 

  17. 17.

    Flühmann, C. et al. Encoding a qubit in a trapped-ion mechanical oscillator. Nature 566, 513–517 (2019).

    ADS  Google Scholar 

  18. 18.

    Huh, J., Guerreschi, G. G., Peropadre, B., McClean, J. R. & Aspuru-Guzik, A. Boson sampling for molecular vibronic spectra. Nat. Photon. 9, 615 (2015).

    ADS  CAS  Google Scholar 

  19. 19.

    Arrazola, J. M. & Bromley, T. R. Using Gaussian boson sampling to find dense subgraphs. Phys. Rev. Lett. 121, 030503 (2018).

    ADS  CAS  Google Scholar 

  20. 20.

    Brádler, K., Friedland, S., Izaac, J., Killoran, N. & Su, D. Graph isomorphism and gaussian boson sampling. Preprint at (2018).

  21. 21.

    Brádler, K., Dallaire-Demers, P.-L., Rebentrost, P., Su, D. & Weedbrook, C. Gaussian boson sampling for perfect matchings of arbitrary graphs. Phys. Rev. A 98, 032310 (2018).

    ADS  Google Scholar 

  22. 22.

    Schuld, M., Brádler, K., Israel, R., Su, D. & Gupt, B. Measuring the similarity of graphs with a Gaussian boson sampler. Phys. Rev. A 101, 032314 (2020).

    ADS  CAS  Google Scholar 

  23. 23.

    Banchi, L., Fingerhuth, M., Babej, T., Ing, C. & Arrazola, J. M. Molecular docking with Gaussian boson sampling. Sci. Adv. 6, eaax1950 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Killoran, N. et al. Continuous-variable quantum neural networks. Phys. Rev. Res. 1, 033063 (2019).

    CAS  Google Scholar 

  25. 25.

    Arrazola, J. M., Kalajdzievski, T., Weedbrook, C. & Lloyd, S. Quantum algorithm for nonhomogeneous linear partial differential equations. Phys. Rev. A 100, 032306 (2019).

    ADS  MathSciNet  CAS  Google Scholar 

  26. 26.

    Wang, J., Sciarrino, F., Laing, A. & Thompson, M. G. Integrated photonic quantum technologies. Nat. Photon. 14, 273–284 (2019).

    ADS  Google Scholar 

  27. 27.

    Rudolph, T. Why I am optimistic about the silicon-photonic route to quantum computing. APL Photon. 2, 030901 (2017).

    ADS  Google Scholar 

  28. 28.

    Hamilton, C. S. et al. Gaussian boson sampling. Phys. Rev. Lett. 119, 170501 (2017).

    ADS  Google Scholar 

  29. 29.

    Lvovsky, A. Squeezed light. In Photonics Vol. 1 Fundamentals of Photonics and Physics 121–164 (Wiley, 2015)

  30. 30.

    Vaidya, V. D. et al. Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device. Sci. Adv. 6, eaba9186 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Killoran, N. et al. Strawberry Fields: a software platform for photonic quantum computing. Quantum 3, 129 (2019).

    Google Scholar 

  32. 32.

    Rosenberg, D., Lita, A. E., Miller, A. J. & Nam, S. W. Noise-free high-efficiency photon-number-resolving detectors. Phys. Rev. A 71, 061803 (2005).

    ADS  Google Scholar 

  33. 33.

    Qi, H., Brod, D. J., Quesada, N. & García-Patrón, R. Regimes of classical simulability for noisy Gaussian boson sampling. Phys. Rev. Lett. 124, 100502 (2020).

    ADS  CAS  Google Scholar 

  34. 34.

    Aytür, O. & Kumar, P. Pulsed twin beams of light. Phys. Rev. Lett. 65, 1551 (1990).

    ADS  Google Scholar 

  35. 35.

    Christ, A., Laiho, K., Eckstein, A., Cassemiro, K. N. & Silberhorn, C. Probing multimode squeezing with correlation functions. New J. Phys. 13, 033027 (2011).

    ADS  MATH  Google Scholar 

  36. 36.

    Glauber, R. J. Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963).

    ADS  MathSciNet  MATH  Google Scholar 

  37. 37.

    Sudarshan, E. Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963).

    ADS  MathSciNet  MATH  Google Scholar 

  38. 38.

    Burenkov, I. A. et al. Full statistical mode reconstruction of a light field via a photon-number-resolved measurement. Phys. Rev. A 95, 053806 (2017).

    ADS  Google Scholar 

  39. 39.

    Aaronson, S. & Arkhipov, A. The computational complexity of linear optics. Theor. Comput. 9, 143–252 (2013).

    MathSciNet  MATH  Google Scholar 

  40. 40.

    Quesada, N. Franck-Condon factors by counting perfect matchings of graphs with loops. J. Chem. Phys. 150, 164113 (2019).

    ADS  Google Scholar 

  41. 41.

    Brádler, K., Israel, R., Schuld, M. & Su, D. A duality at the heart of gaussian boson sampling. Preprint at (2019).

  42. 42.

    Vernon, Z. et al. Scalable squeezed-light source for continuous-variable quantum sampling. Phys. Rev. Appl. 12, 064024 (2019).

    ADS  CAS  Google Scholar 

  43. 43.

    Clements, W. R., Humphreys, P. C., Metcalf, B. J., Kolthammer, W. S. & Walmsley, I. A. Optimal design for universal multiport interferometers. Optica 3, 1460–1465 (2016).

    ADS  Google Scholar 

  44. 44.

    Levine, Z. H. et al. Algorithm for finding clusters with a known distribution and its application to photon-number resolution using a superconducting transition-edge sensor. J. Opt. Soc. Am. B 29, 2066–2073 (2012).

    ADS  CAS  Google Scholar 

  45. 45.

    Humphreys, P. C. et al. Tomography of photon-number resolving continuous-output detectors. New J. Phys. 17, 103044 (2015).

    ADS  Google Scholar 

  46. 46.

    Vignat, C. A generalized Isserlis theorem for location mixtures of Gaussian random vectors. Stat. Probab. Lett. 82, 67–71 (2012).

    MathSciNet  MATH  Google Scholar 

  47. 47.

    Pfeiffer, M. H. P. et al. Photonic damascene process for low-loss, high-confinement silicon nitride waveguides. IEEE J. Sel. Top. Quant. Electron. 24, 1–11 (2018).

    Google Scholar 

  48. 48.

    Rahimi-Keshari, S., Ralph, T. C. & Caves, C. M. Sufficient conditions for efficient classical simulation of quantum optics. Phys. Rev. X 6, 021039 (2016).

    Google Scholar 

  49. 49.

    Gupt, B., Izaac, J. & Quesada, N. The Walrus: a library for the calculation of hafnians, Hermite polynomials and Gaussian boson sampling. J. Open Source Softw. 4, 1705 (2019).

    ADS  Google Scholar 

  50. 50.

    Caianiello, E. R. On quantum field theory–I: explicit solution of Dyson’s equation in electrodynamics without use of Feynman graphs. Il Nuovo Cimento 10, 1634–1652, (1953).

    ADS  MathSciNet  MATH  Google Scholar 

  51. 51.

    Lund, A. P. et al. Boson sampling from a gaussian state. Phys. Rev. Lett. 113, 100502 (2014).

    ADS  CAS  Google Scholar 

  52. 52.

    Brod, D. J. & Oszmaniec, M. Classical simulation of linear optics subject to nonuniform losses. Quantum 4, 267 (2020).

    Google Scholar 

  53. 53.

    Sharp, T. & Rosenstock, H. Franck–Condon factors for polyatomic molecules. J. Chem. Phys. 41, 3453–3463 (1964).

    ADS  CAS  Google Scholar 

  54. 54.

    Sawaya, N. P., Paesani, F. & Tabor, D. P. Near-and long-term quantum algorithmic approaches for vibrational spectroscopy. Preprint at (2020).

  55. 55.

    Mebel, A., Hayashi, M., Liang, K. & Lin, S. Ab initio calculations of vibronic spectra and dynamics for small polyatomic molecules: Role of duschinsky effect. J. Phys. Chem. A 103, 10674–10690 (1999).

    CAS  Google Scholar 

  56. 56.

    Müller, C. W., Newby, J. J., Liu, C.-P., Rodrigo, C. P. & Zwier, T. S. Duschinsky mixing between four non-totally symmetric normal coordinates in the s 1–s 0 vibronic structure of (E)-phenylvinylacetylene: a quantitative analysis. Phys. Chem. Chem. Phys. 12, 2331–2343 (2010).

    Google Scholar 

Download references


Certain commercial equipment, instruments, or materials are identified in this paper to foster understanding. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment identified are necessarily the best available for the purpose.

Author information




B.M., D.H.M., A.G., J.L., M.M., K.T., Z.V. and Y.Z. designed and tested the chip, and developed its components. D.H.M. also led the development of the control hardware system, designing and building the machine alongside A.R. and V.D.V. M.J.C., T.G., A.E.L. and S.W.N. developed the photon detection system. L.N., L.G.H. and J.H. developed the control and data acquisition software. V.B., A.F., T.I., J.I., R.J., N.K., N.Q., J.S., A.S., P.T. and Z.Z. designed and deployed the platform for remote programming of the device. J.M.A., K.B., T.B., R.I., S.J., K.K.S., M.S. and D.S. designed, and implemented the demonstrations. I.D., S.P.K., H.Y.Q. and N.Q. designed and implemented the non-classicality test. Z.V. and J.M.A. led the project and wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to J. M. Arrazola or Z. Vernon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Strawberry Fields coding, Supplementary Tables and Graphs.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arrazola, J.M., Bergholm, V., Brádler, K. et al. Quantum circuits with many photons on a programmable nanophotonic chip. Nature 591, 54–60 (2021).

Download citation


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing