Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Towards a rigorous understanding of societal responses to climate change


A large scholarship currently holds that before the onset of anthropogenic global warming, natural climatic changes long provoked subsistence crises and, occasionally, civilizational collapses among human societies. This scholarship, which we term the ‘history of climate and society’ (HCS), is pursued by researchers from a wide range of disciplines, including archaeologists, economists, geneticists, geographers, historians, linguists and palaeoclimatologists. We argue that, despite the wide interest in HCS, the field suffers from numerous biases, and often does not account for the local effects and spatiotemporal heterogeneity of past climate changes or the challenges of interpreting historical sources. Here we propose an interdisciplinary framework for uncovering climate–society interactions that emphasizes the mechanics by which climate change has influenced human history, and the uncertainties inherent in discerning that influence across different spatiotemporal scales. Although we acknowledge that climate change has sometimes had destructive effects on past societies, the application of our framework to numerous case studies uncovers five pathways by which populations survived—and often thrived—in the face of climatic pressures.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Variability and change in palaeoclimate reconstructions.
Fig. 2: Meta-analysis of HCS studies.
Fig. 3: A process for undertaking research into past climate–society dynamics.
Fig. 4: Palmer drought severity indices for the Low Countries and southeastern California.
Fig. 5: Tree ring reconstructions of temperature in France, and moisture in both France and China.
Fig. 6: Palaeoclimate moisture proxies for Iron Age southern Africa.


  1. 1.

    Lieberman, B. & Gordon, E. Climate Change in Human History: Prehistory to the Present (Bloomsbury, 2018).

  2. 2.

    White, S., Pfister, C. & Mauelshagen, F. (eds) The Palgrave Handbook of Climate History (Palgrave Macmillan, 2018). This edited volume provides a state-of-the-art survey of scholarship in palaeoclimatology, historical climatology and climate history, a field that partly overlaps with HCS.

  3. 3.

    Ladurie, E. L. R. Abrégé d’Histoire du Climat: du Moyen Âge à Nos Jours (Fayard, 2007).

  4. 4.

    Brooke, J. Climate Change and the Course of Global History: A Rough Journey (Cambridge, 2015).

  5. 5.

    Linden, E. The Winds of Change: Climate, Weather, and the Destruction of Civilizations (Simon and Schuster, 2006).

  6. 6.

    Behringer, W. A Cultural History of Climate (Polity, 2010).

  7. 7.

    White, S. The Climate of Rebellion in the Early Modern Ottoman Empire (Cambridge Univ. Press, 2011).

  8. 8.

    Parker, G. Global Crisis: War, Climate Change and Catastrophe in the Seventeenth Century (Yale Univ. Press, 2013). This is perhaps the most influential and ambitious qualitative study in HCS that links the LIA to harvest failures, famines, epidemics, and violence within and between societies.

  9. 9.

    Büntgen, U. et al. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 ad. Nat. Geosci. 9, 231–236 (2016). This article by a consilient team coined the term ‘Late Antique Little Ice Age’, and links its purported cooling to crises endured by societies in the sixth century ad.

    ADS  Google Scholar 

  10. 10.

    Camenisch, C. et al. The 1430s: a cold period of extraordinary internal climate variability during the early Spörer Minimum with social and economic impacts in north-western and central Europe. Clim. Past 12, 2107–2126 (2016).

    Google Scholar 

  11. 11.

    Campbell, B. The Great Transition: Climate, Disease, and Society in the Late-Medieval World (Cambridge Univ. Press, 2016). This book is one of the most sophisticated attempts to identify disastrous effects of the LIA on European societies, but uses a reconstruction of the North Atlantic Oscillation that has now been fundamentally updated.

  12. 12.

    White, S. A Cold Welcome: The Little Ice Age and Europe’s Encounter with North America (Harvard Univ.y Press, 2017).

  13. 13.

    Skopyk, B. Colonial Cataclysms: Climate, Landscape, and Memory in Mexico’s Little Ice Age (Univ. of Arizona Press, 2020).

  14. 14.

    Weiss, H. et al. The genesis and collapse of third millennium north Mesopotamian civilization. Science 261, 995–1004 (1993). This seminal article introduces a particularly convincing example of a city and civilization that allegedly collapsed amid a decades-long drought.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Hodell, D. A., Curtis, J. H. & Brenner, M. Possible role of climate in the collapse of Classic Maya civilization. Nature 375, 391–394 (1995).

    ADS  CAS  Google Scholar 

  16. 16.

    Gill, R. B. The Great Maya Droughts: Water, Life, and Death (Univ. of New Mexico Press, 2000).

  17. 17.

    Weiss, H. & Bradley, R. S. What drives societal collapse? Science 291, 609–610 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Diamond, J. Collapse: How Societies Choose to Fail or Succeed, revised edn (Oxford Univ. Press, 2011). This influential book introduced a popular audience to the concept that societies collapsed when faced with pre-industrial climate changes, including those of the LIA.

  19. 19.

    McAnany, P. A. & Yoffee, N. (eds) Questioning Collapse: Human Resilience, Ecological Vulnerability, and the Aftermath of Empire (Cambridge Univ. Press, 2010).

  20. 20.

    Li, Z. et al. Drought promoted the disappearance of civilizations along the ancient silk road. Environ. Earth Sci. 75, 1116 (2016).

    Google Scholar 

  21. 21.

    Weiss, H. (ed.) Megadrought and Collapse: From Early Agriculture to Angkor (Oxford Univ. Press, 2017).

  22. 22.

    Holm, P. & Winiwarter, V. Climate change studies and the human sciences. Global Planet. Change 156, 115–122 (2017).

    ADS  Google Scholar 

  23. 23.

    Hambrecht, G. et al. Archaeological sites as distributed long-term observing networks of the past (DONOP). Quat. Int. 549, 218–226 (2020).

    Google Scholar 

  24. 24.

    Ljungqvist, F. C., Seim, A. & Huhtamaa, H. Climate and society in European history. Wiley Interdiscip. Rev. Clim. Change, (2020). This study surveys 165 studies in European HCS and helped us to build the database that we used to create Fig. 2.

  25. 25.

    White, S. The real Little Ice Age. J. Interdiscip. Hist. 44, 327–352 (2013).

    Google Scholar 

  26. 26.

    Brückner, E. Der Einfluß der Klimaschwankungen auf die Ernteerträge und Getreidepreise in Europa. Geogr. Z. 1, 39–51, 100–108 (1895).

    Google Scholar 

  27. 27.

    Beveridge, W. H. Weather and harvest cycles. Econ. J. (Lond.) 31, 429–452 (1921).

    Google Scholar 

  28. 28.

    Beveridge, W. H. Wheat prices and rainfall in western Europe. J. R. Stat. Soc. 85, 412–475 (1922).

    Google Scholar 

  29. 29.

    Douglass, A. E. A method of estimating rainfall by the growth of trees. Bull. Am. Geogr. Soc. 46, 321–335 (1914).

    Google Scholar 

  30. 30.

    Huntington, E. Changes of climate and history. Am. Hist. Rev. 18, 213–232 (1913).

    Google Scholar 

  31. 31.

    Huntington, E. Civilization and Climate (Yale Univ. Press, 1917).

  32. 32.

    Huntington, E. Climatic change and agricultural exhaustion as elements in the fall of Rome. Q. J. Econ. 31, 173–208 (1917).

    Google Scholar 

  33. 33.

    Martin, G. Ellsworth Huntington: His Life and Thought (Archon, 1973).

  34. 34.

    Le Roy Ladurie, E. Histoire du Climat Depuis l’An Mil (Flammarion, 1967).

  35. 35.

    Pfister, C. Climate and economy in eighteenth-century Switzerland. J. Interdiscip. Hist. 9, 223–243 (1978).

    Google Scholar 

  36. 36.

    de Vries, J. Measuring the impact of climate on history: the search for appropriate methodologies. J. Interdiscip. Hist. 10, 599–630 (1980).

    Google Scholar 

  37. 37.

    Carey, M. Climate and history: a critical review of historical climatology and climate change historiography. Wiley Interdiscip. Rev. Clim. Change 3, 233–249 (2012).

    Google Scholar 

  38. 38.

    Izdebski, A., Mordechai, L. & White, S. The social burden of resilience: a historical perspective. Hum. Ecol. Interdiscip. J. 46, 291–303 (2018).

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Hegmon, M. et al. Social transformation and its human costs in the prehispanic U.S. southwest. Am. Anthropol. 110, 313–324 (2008).

    Google Scholar 

  40. 40.

    Middleton, G. D. Nothing lasts forever: environmental discourses on the collapse of past societies. J. Archaeol. Res. 20, 257–307 (2012).

    Google Scholar 

  41. 41.

    Nelson, M. C. et al. Climate challenges, vulnerabilities, and food security. Proc. Natl Acad. Sci. USA 113, 298–303 (2016).

    ADS  CAS  Google Scholar 

  42. 42.

    Béné, C. et al. Is resilience socially constructed? Empirical evidence from Fiji, Ghana, Sri Lanka, and Vietnam. Glob. Environ. Change 38, 153–170 (2016).

    Google Scholar 

  43. 43.

    Middleton, G. D. The show must go on: collapse, resilience, and transformation in 21st-century archaeology. Rev. Anthropol. 46, 78–105 (2017).

    Google Scholar 

  44. 44.

    Feng, Q. et al. Domino effect of climate change over two millennia in ancient China’s Hexi corridor. Nature Sustainability 2, 957–961 (2019).

    Google Scholar 

  45. 45.

    Whittow, M. in (Theory and Practice in Late Antique Archaeology (eds Lavan, L. & Bowden, W.) 404–23 (Brill, 2003).

  46. 46.

    Wickman, T. in The Palgrave Handbook of Climate History (eds White, S. et al.) 387–411 (Palgrave Macmillan, 2018).

  47. 47.

    PAGES Hydro2k Consortium. Comparing proxy and model estimates of hydroclimate variability and change over the Common Era. Clim. Past 13, 1851–1900 (2017).

    Google Scholar 

  48. 48.

    Esper, J. et al. Large-scale, millennial-length temperature reconstructions from tree-rings. Dendrochronologia 50, 81–90 (2018).

    Google Scholar 

  49. 49.

    Franke, J. G. & R. V. Donner. Correlating paleoclimate time series: sources of uncertainty and potential pitfalls. Quat. Sci. Rev. 212, 69–79 (2019).

    ADS  Google Scholar 

  50. 50.

    Comboul, M. et al. A probabilistic model of chronological errors in layer-counted climate proxies: applications to annually banded coral archives. Clim. Past 10, 825–841 (2014).

    Google Scholar 

  51. 51.

    Crowley, T. J. Correlating high‐frequency climate variations. Paleoceanography 14, 271–272 (1999).

    ADS  Google Scholar 

  52. 52.

    Wang, J. et al. Fragility of reconstructed temperature patterns over the Common Era: implications for model evaluation. Geophys. Res. Lett. 42, 7162–7170 (2015).

    ADS  Google Scholar 

  53. 53.

    Newfield, T. in The Palgrave Handbook of Climate History (eds White, S. et al.) 447–493 (Palgrave Macmillan, 2018). This article provides the most thorough and interdisciplinary overview currently available of the cluster of volcanic eruptions that initiated the LALIA.

  54. 54.

    Gerring, J. Social Science Methodology: A Unified Framework (Cambridge Univ. Press, 2012).

  55. 55.

    Harper, K. & McCormick, M. in The Science of Roman History: Biology, Climate, and the Future of the Past (ed. Scheidel, W.) 11–52 (Princeton Univ. Press, 2018).

  56. 56.

    Blom, P. Nature’s Mutiny: How the Little Ice Age of the Long Seventeenth Century Transformed the West and Shaped the Present (Liveright, 2019).

  57. 57.

    Harper, K. The Fate of Rome: Climate, Disease, and the End of an Empire (Yale Univ. Press, 2017).

  58. 58.

    Miller, G. H. et al. Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys. Res. Lett. 39, L02708 (2012).

    ADS  Google Scholar 

  59. 59.

    Stoffel, M. et al. Estimates of volcanic-induced cooling in the northern hemisphere over the past 1,500 years. Nat. Geosci. 8, 784–788 (2015).

    ADS  CAS  Google Scholar 

  60. 60.

    Masson-Delmotte, V. et al. in Climate Change 2013: The Physical Science Basis (Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change) (eds Stocker, T. F. et al.) 383–464 (Cambridge Univ. Press, 2013).

  61. 61.

    PAGES2k Consortium. A global multiproxy database for temperature reconstructions of the Common Era. Sci. Data 4, 170088 (2017). The PAGES2k consortium provides some of the most important data on climate change over the past 2,000 years.

    Google Scholar 

  62. 62.

    Tardif, R. et al. Last millennium reanalysis with an expanded proxy database and seasonal proxy modeling. Clim. Past 15, 1251–1273 (2019).

    Google Scholar 

  63. 63.

    Neukom, R., Steiger, N., Gómez-Navarro, J. J., Wang, J. & Werner, J. P. No evidence for globally coherent warm and cold periods over the preindustrial Common Era. Nature 571, 550–554 (2019). This important article emphasizes the spatiotemporal heterogeneity of climate changes in the past 2,000 years (and prior to anthropogenic global warming).

    ADS  CAS  Google Scholar 

  64. 64.

    Neukom, R. et al. Consistent multidecadal variability in global temperature reconstructions and simulations over the Common Era. Nat. Geosci. 12, 643–649 (2019).

    PubMed  PubMed Central  Google Scholar 

  65. 65.

    Helama, S., Jones, P. D. & Briffa, K. R. Limited Late Antique cooling. Nat. Geosci. 10, 242–243 (2017).

    ADS  CAS  Google Scholar 

  66. 66.

    Mangini, A., Spötl, C. & Verdes, P. Reconstruction of temperature in the Central Alps during the past 2000 yr from a δ18O stalagmite record. Earth Planet. Sci. Lett. 235, 741–751 (2005).

    ADS  CAS  Google Scholar 

  67. 67.

    Helama, S., Jones, P. D. & Briffa, K. R. Dark Ages cold period: a literature review and directions for future research. Holocene 27, 1600–1606 (2017).

    ADS  Google Scholar 

  68. 68.

    Riechelmann, D. & Gouw-Bouman, M. T. I. J. Climate during the first millennium ad in NW Europe: a review of climate reconstructions from terrestrial archives. Quat. Res. 91, 111–131 (2019).

    Google Scholar 

  69. 69.

    Labuhn, I. et al. in Environment and Society in the Long Late Antiquity (eds In Izdebski, A. & Mulryan, M.) 65–88 (Brill, 2018).

  70. 70.

    Matthews, J. A. & Briffa, K. R. The ‘Little Ice Age’: re-evaluation of an evolving concept. Geogr. Ann., Ser. A 87, 17–36 (2005).

    Google Scholar 

  71. 71.

    Cook, B. I. & Wolkovich, E. M. Climate change decouples drought from early wine grape harvests in France. Nat. Clim. Chang. 6, 715–719 (2016).

    ADS  Google Scholar 

  72. 72.

    De Dreu, C. K. & van Dijk, M. A. Climatic shocks associate with innovation in science and technology. PLoS ONE, 13, e0190122 (2018).

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    Lee, H. F. et al. Demographic impact of climate change on northwestern China in the late imperial era. Quat. Int. 425, 237–247 (2016).

    Google Scholar 

  74. 74.

    Peregrine, P. N. Social resilience to climate change during the Late Antique Little Ice Age: a replication study. Weather Clim. Soc. 12, 561–573 (2020).

    Google Scholar 

  75. 75.

    Zhang, D. D., Brecke, P., Lee, H. F., He, Y. Q. & Zhang, J. Global climate change, war, and population decline in recent human history. Proc. Natl Acad. Sci. USA 104, 19214–19219 (2007). An early and influential study by D. Zhang, a pioneer in the statistical approach to HCS, that links war (the social event most often considered by statistical HCS scholars) to pre-industrial climate changes.

    ADS  CAS  Google Scholar 

  76. 76.

    Tol, R. S. J. & Wagner, S. Climate change and violent conflict in Europe over the last millennium. Clim. Change 99, 65–79 (2010).

    ADS  Google Scholar 

  77. 77.

    Zhang, Z. et al. Periodic climate cooling enhanced natural disasters and wars in China during ad 10–1900. Proc. Royal Soc. B 277, 3745–3753 (2010).

    Google Scholar 

  78. 78.

    Büntgen, U. et al. 2500 years of European climate variability and human susceptibility. Science 331, 578–582 (2011).

    ADS  Google Scholar 

  79. 79.

    Lee, H. F., Zhang, D. D., Brecke, P. & Pei, Q. Climate change, population pressure, and wars in European history. Asian Geogr. 36, 29–45 (2019).

    Google Scholar 

  80. 80.

    Carleton, T. A. & Hsiang, S. M. Social and economic impacts of climate. Science 353, aad9837 (2016).

    PubMed  PubMed Central  Google Scholar 

  81. 81.

    Lee, H. F. & Yue, R. P. Ocean/atmosphere interaction and Malthusian catastrophes on the northern fringe of the Asian summer monsoon region in China, 1368–1911. J. Quat. Sci. 35, 974–986 (2020).

    Google Scholar 

  82. 82.

    Pei, Q., Zhang, D. D., Fei, J. & Hui, P. Y. Demographic crises of different climate phases in preindustrial northern hemisphere. Hum. Ecol. 48, 519–527 (2020).

    Google Scholar 

  83. 83.

    Zhang, D. D. et al. The causality analysis of climate change and large-scale human crisis. Proc. Natl Acad. Sci. USA 108, 17296–17301 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Zhang, D. & Lee, H. Climate change, food shortage and war: a quantitative case study in China during 1500–1800. Catrina Int. J. Environ. Sci. 5, 63–71 (2010).

    Google Scholar 

  85. 85.

    Burke, M. B., Miguel, E., Satyanath, S., Dykema, J. A. & Lobell, D. B. Warming increases the risk of civil war in Africa. Proc. Natl Acad. Sci. USA 106, 20670–20674 (2009). This influential study provides one of the clearest examples of statistical scholarship in HCS being used to model and predict the future effects of anthropogenic global warming on society.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Peregrine, P. N. Climate and social change at the start of the Late Antique Little Ice Age. Holocene 30, 1643–1648 (2020).

    ADS  Google Scholar 

  87. 87.

    Zhang, D. D., Zhang, J., Lee, H. F. & He, Y. Q. Climate change and war frequency in eastern China over the last millennium. Hum. Ecol. 35, 403–414 (2007).

    Google Scholar 

  88. 88.

    van Bavel, B. J. P. et al. Climate and society in long-term perspective: opportunities and pitfalls in the use of historical datasets. Wiley Interdiscip. Rev. Clim. Change 10, e611 (2019).

    PubMed  PubMed Central  Google Scholar 

  89. 89.

    Degroot, D. in The Palgrave Handbook of Climate History (eds. White, S. et al.) 367–385 (Palgrave Macmillan, 2018).

  90. 90.

    O’Mahony, S. Medicine and the McNamara fallacy. J. R. Coll. Physicians Edinb. 47, 281–287 (2017).

    PubMed  PubMed Central  Google Scholar 

  91. 91.

    Zhang, P. et al. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science 322, 940–942 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Adams, C., Ide, T., Barnett, J. & Detges, A. Sampling bias in climate–conflict research. Nat. Clim. Chang. 8, 200–203 (2018).

    ADS  Google Scholar 

  93. 93.

    Kelly, M. & Ó Gráda, C. The waning of the Little Ice Age: climate change in early modern Europe. J. Interdiscip. Hist. 44, 301–325 (2013).

    Google Scholar 

  94. 94.

    Degroot, D. Climate change and society from the fifteenth through the eighteenth centuries. Wiley Interdiscip. Rev. Clim. Change 9, e518 (2018). This article provides an overview of how scholars have thought about the effects of the LIA on society, and suggests that resilience has been understudied in this scholarship.

    Google Scholar 

  95. 95.

    Haldon, J. et al. History meets palaeoscience: consilience and collaboration in studying past societal responses to environmental change. Proc. Natl Acad. Sci. USA 115, 3210–3218 (2018). This article was among the first to call for a consilient approach in HCS, which it links to studies that consider small spatiotemporal scales and thereby provide more convincing accounts of causation.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Erdkamp, P. War, food, climate change, and the decline of the Roman empire. J. Late Antiq. 12, 422–465 (2019).

    Google Scholar 

  97. 97.

    White, S. & Degroot, D. Climate History Network Zotero Bibliographical Project. Climate History Network, (accessed 28 October 2020).

  98. 98.

    Fei, J., Zhou, J. & Hou, Y. Circa ad 626 volcanic eruption, climatic cooling, and the collapse of the eastern Turkic empire. Clim. Change 81, 469–475 (2007).

    ADS  Google Scholar 

  99. 99.

    Warde, P. Global crisis or global coincidence? Past Present 228, 287–301 (2015).

    Google Scholar 

  100. 100.

    Drake, B. L. Changes in North Atlantic Oscillation drove population migrations and the collapse of the western Roman empire. Sci. Rep. 7, 1227 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  101. 101.

    Contreras, D. A. in The Archaeology of Human–Eenvironment Interactions (ed. Contreras, D. A.) 17–36 (Routledge, 2016).

  102. 102.

    Baillie, M. G. Suck-in and smear: two related chronological problems for the 90s. Journal of Theoretical Archaeology 2, 12–16 (1991).

    Google Scholar 

  103. 103.

    Degroot, D. The Frigid Golden Age: Climate Change, the Little Ice Age, and the Dutch Republic, 1560–1720 (Cambridge Univ. Press, 2018). This book is the first devoted to the resilience of a society during the LIA, and provides a brief overview of some of the challenges in HCS that we explain in greater and more interdisciplinary detail in this Review.

  104. 104.

    Camenisch, C. & Rohr, C. When the weather turned bad: the research of climate impacts on society and economy during the Little Ice Age in Europe, an overview. CIG 44, 99–114 (2018).

    Google Scholar 

  105. 105.

    Izdebski, A. et al. Realising consilience: how better communication between archaeologists, historians and natural scientists can transform the study of past climate change in the Mediterranean. Quat. Sci. Rev. 136, 5–22 (2016).

    ADS  Google Scholar 

  106. 106.

    Newfield, T. P. & Labuhn, I. Realizing consilience in studies of pre-instrumental climate and pre-laboratory disease. J. Interdiscip. Hist. 48, 211–240 (2017).

    Google Scholar 

  107. 107.

    McCormick, M. History’s changing climate: climate science, genomics, and the emerging consilient approach to interdisciplinary history. J. Interdiscip. Hist. 42, 251–273 (2011).

    Google Scholar 

  108. 108.

    Riede, F. et al. Prospects and pitfalls in integrating volcanology and archaeology: a review. J. Volcanol. Geotherm. Res. 401, 106977 (2020).

    CAS  Google Scholar 

  109. 109.

    Heymann, M., Gramelsberger, G. & Mahony, M. (eds) Cultures of Prediction in Atmospheric and Climate Science: Epistemic and Cultural Shifts in Computer-based Modelling and Simulation (Taylor & Francis, 2017).

  110. 110.

    Degroot, D. Testing the limits of climate history: the quest for a northeast passage during the Little Ice Age, 1594–1597. J. Interdiscip. Hist. 45, 459–484 (2015).

    Google Scholar 

  111. 111.

    Xoplaki, E. et al. The Medieval Climate Anomaly and Byzantium: a review of the evidence on climatic fluctuations, economic performance and societal change. Quat. Sci. Rev. 136, 229–252 (2016).

    ADS  Google Scholar 

  112. 112.

    Butzer, K. W. Collapse, environment, and society. Proc. Natl Acad. Sci. USA 109, 3632–3639 (2012).

    ADS  CAS  Google Scholar 

  113. 113.

    Butzer, K. W. & Endfield, G. H. Critical perspectives on historical collapse. Proc. Natl Acad. Sci. USA 109, 3628–3631 (2012).

    ADS  CAS  Google Scholar 

  114. 114.

    Caseldine, C. J. & Turney, C. The bigger picture: towards integrating palaeoclimate and environmental data with a history of societal change. J. Quaternary Sci. 25, 88–93 (2010).

    ADS  Google Scholar 

  115. 115.

    Xoplaki, E. et al. Modelling climate and societal resilience in the eastern Mediterranean in the last millennium. Hum. Ecol. 46, 363–379 (2018). This HCS study provides a model for integrating perspectives from many disciplines, identifying climate effects on limited spatiotemporal scales, understanding resilience and navigating uncertainty.

    Google Scholar 

  116. 116.

    Endfield, G. H. Climate and Society in Colonial Mexico: A Study in Vulnerability (John Wiley, 2011).

  117. 117.

    Wickman, T. Snowshoe Country: An Environmental and Cultural History of Winter in the Early American Northeast (Cambridge Univ. Press, 2018).

  118. 118.

    de Souza, J. G. et al. Climate change and cultural resilience in late pre-Columbian Amazonia. Nat. Ecol. Evol. 3, 1007–1017 (2019).

    PubMed  PubMed Central  Google Scholar 

  119. 119.

    Ebert, C. E. et al. The role of diet in resilience and vulnerability to climate change among early agricultural communities in the Maya lowlands. Curr. Anthropol. 60, 589–601 (2019).

    Google Scholar 

  120. 120.

    Åkesson, C. M. et al. 2,100 years of human adaptation to climate change in the High Andes. Nat. Ecol. Evol. 4, 66–74 (2020).

    PubMed  PubMed Central  Google Scholar 

  121. 121.

    Bradtmöller, M., Grimm, S. & Riel-Salvatore, J. Resilience theory in archaeological practice–an annotated review. Quat. Int. 446, 3–16 (2017). This article explains how archaeologists have used and challenged resilience theory and its concept of adaptive cycles.

    Google Scholar 

  122. 122.

    Nicoll, K. & Zerboni, A. Is the past key to the present? Observations of cultural continuity and resilience reconstructed from geoarchaeological records. Quat. Int. 545, 119–127 (2020).

    Google Scholar 

  123. 123.

    Soens, T. in Strategies, Dispositions and Resources of Social Resilience (eds Endress, M. et al.) 253–274 (Springer, 2020). This study surveys some criticisms of the concept of resilience, and provides a road map for using the term in historical disaster studies that has obvious relevance for HCS.

  124. 124.

    Endfield, G. H. Exploring particularity: vulnerability, resilience, and memory in climate change discourses. Environ. Hist. 19, 303–310 (2014).

    Google Scholar 

  125. 125.

    Van Bavel, B. et al. Disasters and History: The Vulnerability and Resilience of Past Societies (Cambridge Univ. Press, 2020).

  126. 126.

    Matthews, J. B. R. (ed.) in Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) Annex I: Glossary (IPCC, 2018). This IPCC report on the consequences of 1.5 °C of warming, relative to the pre-industrial average, includes the definitions for ‘resilience’ and ‘adaptation’ that we use in this article.

  127. 127.

    Haldon, J. & Rosen, A. Society and environment in the east Mediterranean ca 300–1800 ce, problems of resilience, adaptation and transformation: introductory essay. Hum. Ecol. 46, 275–290 (2018).

    Google Scholar 

  128. 128.

    Soens, T. Resilient societies, vulnerable people: coping with North Sea floods before 1800. Past Present 241, 143–177 (2018).

    Google Scholar 

  129. 129.

    Holling, C. S. in Sustainable Development of the Biosphere (eds Clarke, W. C. & Munn, R. E.) 292–317 (Cambridge Univ. Press, 1986).

  130. 130.

    Pederson, N., Hessl, A. E., Baatarbileg, N., Anchukaitis, K. J. & Di Cosmo, N. Pluvials, droughts, the Mongol empire, and modern Mongolia. Proc. Natl Acad. Sci. USA 111, 4375–4379 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  131. 131.

    Bintliff, J. in The Transition to Late Antiquity: On the Danube and Beyond (ed. Poulter, A. G.) 649–78 (British Academy, 2007).

  132. 132.

    Decker, M. Tilling the Hateful Earth: Agricultural Production and Trade in the Late Antique East (Oxford Univ. Press, 2009).

  133. 133.

    Izdebski, A. A rural economy in transition: Asia Minor from Late Antiquity into the Early Middle Ages. J. Juristic Papyrol. (Supplement Series), 18 (2013).

  134. 134.

    Izdebski, A., Koloch, G. & Słoczyński, T. Exploring Byzantine and Ottoman economic history with the use of palynological data: a quantitative approach. Jahrbuch Der Österreichischen Byzantinistik 65, 67–110 (2015).

    Google Scholar 

  135. 135.

    Izdebski, A., Pickett, J., Roberts, N. & Waliszewski, T. The environmental, archaeological and historical evidence for regional climatic changes and their societal impacts in the eastern Mediterranean in Late Antiquity. Quat. Sci. Rev. 136, 189–208 (2016).

    ADS  Google Scholar 

  136. 136.

    Banaji, J. Exploring the Economy of Late Antiquity: Selected Essays (Cambridge Univ. Press, 2016).

  137. 137.

    Cook, E. R. et al. Old World megadroughts and pluvials during the Common Era. Sci. Adv. 1, e1500561 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  138. 138.

    Degroot, D. ‘Never such weather known in these seas’: climatic fluctuations and the Anglo-Dutch wars of the seventeenth century, 1652–1674. Environ. Hist. 20, 239–273 (2014).

    Google Scholar 

  139. 139.

    Degroot, D. War of the whales: climate change, weather and arctic conflict in the early seventeenth century. Environ. Hist. 26, 549–577 (2020).

    Google Scholar 

  140. 140.

    Hacquebord, L. The hunting of the Greenland right whale in Svalbard, its interaction with climate and its impact on the marine ecosystem. Polar Res. 18, 375–382 (1999).

    Google Scholar 

  141. 141.

    Gerrard, C. M. & Petley, D. N. A risk society? Environmental hazards, risk and resilience in the later Middle Ages in Europe. Nat. Hazards 69, 1051–1079 (2013).

    Google Scholar 

  142. 142.

    TeBrake, W. Ecology and economy in Early Medieval Frisia. Viator 9, 1–30 (1978).

    Google Scholar 

  143. 143.

    Lebecq, S. Marchands et Navigateurs Frisons du Haut Moyen âge I: Essai (Presses Univ. de Lille, 1983).

  144. 144.

    Verhulst, A. The Carolingian Economy (Cambridge Univ. Press, 2002).

  145. 145.

    Devroey, J. P. Économie Rurale et Société dans l’Europe Franque (VIe-IXe siècles) (Belin, 2003).

  146. 146.

    Bazelmans, J. De Late Prehistorie en Protohistorie van Holoceen Noord-Nederland (Waddenacademie KNAW, 2009).

  147. 147.

    Vos, P. Origin of the Dutch Coastal Landscape: Long-Term Landscape Evolution of the Netherlands during the Holocene (Barkhuis, 2015).

  148. 148.

    Knol, E. & Ijssennagger, N. in Frisians and their North Sea Neighbours: From the Fifth Century to the Viking Age (eds Hines, J. & IJssennagger, N.) 5–24 (Boydell, 2017).

  149. 149.

    Gräslund, B. & Price, N. Twilight of the gods? The ‘dust veil event’ of ad 536 in critical perspective. Antiquity 86, 428–443 (2012).

    Google Scholar 

  150. 150.

    Tvauri, A. The impact of the climate catastrophe of 536–537 ad in Estonia and neighbouring areas. Eesti Arheoloogia Ajakiri 18, 30–56 (2014).

    Google Scholar 

  151. 151.

    Oinonen, M. et al. Buried in water, burdened by nature–resilience carried the Iron Age people through Fimbulvinter. PLoS ONE 15, e0231787 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. 152.

    Dijkman, J. in Famines During the ’Little Ice Ageʼ (1300–1800) (eds Collet, D. & Schuh, M.) 171–193 (Springer, 2018).

  153. 153.

    Unger, R. W. Energy sources for the Dutch golden age: peat, wind, and coal. Res. Econ. Hist. 9, 221–253 (1984).

    Google Scholar 

  154. 154.

    Curtis, D. R. & Dijkman, J. The escape from famine in the northern Netherlands: a reconsideration using the 1690s harvest failures and a broader northwest European perspective. Seventeenth Century 34, 229–258 (2019).

    Google Scholar 

  155. 155.

    Huhtamaa, H. & Helama, S. Distant impact: tropical volcanic eruptions and climate-driven agricultural crises in seventeenth-century Ostrobothnia, Finland. J. Hist. Geogr. 57, 40–51 (2017).

    Google Scholar 

  156. 156.

    Huhtamaa, H. & Helama, S. Reconstructing crop yield variability in Finland: long-term perspective of the cultivation history on the agricultural periphery since ad 760. Holocene 27, 3–11 (2017).

    ADS  Google Scholar 

  157. 157.

    Soininen, A. M. Vanha maataloutemme: Maatalous ja Maatalousväestö Suomessa Perinnäisen Maatalouden Loppukaudella 1720-Luvulta 1870-Luvulle (Suomen HIstoriallinen Seura, 1975).

  158. 158.

    Taavitsainen, J. P., Simola, H. & Grönlund, E. Cultivation history beyond the periphery: early agriculture in the north European boreal forest. J. World Prehist. 12, 199–253 (1998).

    Google Scholar 

  159. 159.

    Korpela, J. Sisä-Suomen asuttaminen ja väestön kasvu myöhäiskeskiajalla ja uuden ajan alussa. Hist. Aikak. 110, 275–290 (2012).

    Google Scholar 

  160. 160.

    Epstein, S. R. Freedom and Growth: The Rise of States and Markets in Europe, 1300–1750 (Routledge, 2006).

  161. 161.

    Bateman, V. N. The evolution of markets in early modern Europe, 1350–1800: a study of wheat prices 1. Econ. Hist. Rev. 64, 447–471 (2011).

    Google Scholar 

  162. 162.

    Federico, G. How much do we know about market integration in Europe? 1. Econ. Hist. Rev. 65, 470–497 (2012).

    Google Scholar 

  163. 163.

    Chilosi, D., Murphy, T. E., Studer, R. & Tunçer, A. C. Europe’s many integrations: geography and grain markets, 1620–1913. Explor. Econ. Hist. 50, 46–68 (2013).

    Google Scholar 

  164. 164.

    Faugeron, F. Nourrir la Ville: Ravitaillement, Marchés et Métiers de l’Alimentation à Venise dans les Derniers Siècles du Moyen Âge (École Française de Rome, 2014).

  165. 165.

    Hämäläinen, P. The Comanche Empire (Yale Univ. Press, 2008).

  166. 166.

    Hambrecht, G. Zooarchaeology and modernity in Iceland. Int. J. Hist. Archaeol. 16, 472–487 (2012).

    Google Scholar 

  167. 167.

    Hartman, S. et al. Medieval Iceland, Greenland, and the new human condition: a case study in integrated environmental humanities. Global Planet. Change 156, 123–139 (2017).

    ADS  Google Scholar 

  168. 168.

    Laylander, D. The last days of Lake Cahuilla: the Elmore site. Pac. Coast Archaeol. Soc. Q. 33, 1–69 (1997).

    Google Scholar 

  169. 169.

    Cook, E. R. et al. Megadroughts in North America: placing IPCC projections of hydroclimatic change in a long-term paleoclimate context. J. Quat. Sci. 25, 48–61 (2010).

    Google Scholar 

  170. 170.

    Cook, E. R., Woodhouse, C. A., Eakin, C. M., Meko, D. M. & Stahle, D. W. Long-term aridity changes in the western United States. Science 306, 1015–1018 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  171. 171.

    Anderson, M. K. Tending the Wild: Native American Knowledge and the Management of California’s Natural Resources (Univ. of California Press, 2005).

  172. 172.

    Smith, B. D. The Subsistence Economies of Indigenous North American Societies: A Handbook (Smithsonian Institution, 2011).

  173. 173.

    Huckell, B. B. A Ground Stone Implement Quarry on the Lower Colorado River, Northwestern Arizona (Cultural Resource Series 3) (Bureau of Land Management, 1986).

  174. 174.

    Luthin, H. W. Surviving Through the Days: Translations of Native California Stories and Songs, A California Indian Reader (Univ. of California Press, 2002).

  175. 175.

    Hegmon, M. The Archaeology of Regional Interaction: Religion, Warfare, and Exchange Across the American Southwest and Beyond (Univ. of Colorado Press, 2000).

  176. 176.

    Zappia, N. A. Traders and Raiders: The Indigenous World of the Colorado Basin, 1540–1859 (UNC Press, 2014).

  177. 177.

    Guillet, S. et al. Climate response to the Samalas volcanic eruption in 1257 revealed by proxy records. Nat. Geosci. 10, 123–128 (2017).

    ADS  CAS  Google Scholar 

  178. 178.

    Lavigne, F. et al. Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani volcanic complex, Indonesia. Proc. Natl Acad. Sci. USA 110, 16742–16747 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  179. 179.

    Campbell, B. M. S. Global climates, the 1257 mega-eruption of Samalas volcano, Indonesia and the English food crisis of 1258. Trans. R. Hist. Soc. 27, 87–121 (2017).

    Google Scholar 

  180. 180.

    Bauch, M. in The Dance of Death in Late Medieval and Renaissance Europe. Environmental Stress, Mortality and Social Response (eds Kiss, A. & Pribyl, K.) 214–232 (Routledge, 2020).

  181. 181.

    Sánchez Rodrigo, F. in El Cambio Climático en Andalucía: Evolución y Consecuencias Medioambientales (eds Sousa, A. et al.) 25–41 (Alfecat Impresores, 2007).

  182. 182.

    Sánchez Rodrigo, F. A review of the Little Ice Age in Andalusia (southern Spain): results and research challenges. Cuadernos de Investigación Geográfica 44, 245–265 (2018).

    Google Scholar 

  183. 183.

    Ponsot, P. Atlas de la Historia Económica de la Baja Andalucía, Siglos XVI–XIX (Editoriales Andaluzas Unidas, 1986).

  184. 184.

    Ortiz, A. D. Alteraciones Andaluzas (Narcea, 1973).

  185. 185.

    Glaser, R. & Riemann, D. A thousand‐year record of temperature variations for Germany and central Europe based on documentary data. J. Quat. Sci. 24, 437–449 (2009).

    Google Scholar 

  186. 186.

    Luterbacher, J. et al. European summer temperatures since Roman times. Environ. Res. Lett. 11, 024001 (2016).

    Google Scholar 

  187. 187.

    Berger, P. Pontchartrain and the grain trade during the famine of 1693. J. Mod. Hist. 48, 37–86 (1976).

    Google Scholar 

  188. 188.

    Jacques, D., Le Roy Ladurie, E. & Sauvy, A. (eds) Histoire de la Population Française, first ed. (Presses Univ. France, 1988).

  189. 189.

    Lachiver, M. Les Années de Misère: La Famine au Temps du Grand Roi, 1680–1720 (Fayard, 1991).

  190. 190.

    Le Roy Ladurie, E. & Rousseau, D. Impact du climat sur la mortalité en France, de 1680 à l’époque actuelle. Meteorologie 64, 43–53 (2009).

    Google Scholar 

  191. 191.

    Dieppois, B. et al. Multidecadal climate variability over northern France during the past 500 years and its relation to large‐scale atmospheric circulation. Int. J. Climatol. 36, 4679–4696 (2016).

    Google Scholar 

  192. 192.

    Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M. & Wanner, H. European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303, 1499–1503 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  193. 193.

    Goubert, P. Beauvais et Le Beauvaisis de 1600 à 1730: Contribution à l’Histoire Sociale de la France du XVIIe Siècle (Éditions de l’École des Hautes Études en Sciences Sociales, 1982).

  194. 194.

    Glaser, R. & Hagedorn, H. Die Überschwemmungskatastrophe von 1784 im Maintal. Eine Chronologie ihrer witterungsklimatischen Voraussetzungen und Auswirkungen. Erde 121, 1–14 (1990).

    Google Scholar 

  195. 195.

    Demarée, G. R. The catastrophic floods of February 1784 in and around Belgium—a Little Ice Age event of frost, snow, river ice … and floods. J. Sci. Hydro. 51, 878–898 (2006).

    Google Scholar 

  196. 196.

    Glaser, R. et al. The variability of European floods since ad 1500. Clim. Change 101, 235–256 (2010).

    ADS  Google Scholar 

  197. 197.

    Brázdil, R. et al. European Floods during the winter 1783/1784: scenarios of an extreme event during the ‘Little Ice Age’. Theor. Appl. Climatol. 100, 163–189 (2010).

    ADS  Google Scholar 

  198. 198.

    Benito, G., Brázdil, R., Herget, J. & Machado, M. J. Quantitative historical hydrology in Europe. Hydrol. Earth Syst. Sci. 19, 3517–3539 (2015).

    ADS  Google Scholar 

  199. 199.

    Weichselgartner, J. Naturgefahren als Soziale Konstruktion. Eine Geographische Beobachtung der Gesellschaftlichen Auseinandersetzung mit Naturrisiken (Rheinische Friedrich Wilhelms Univ. Bonn, 2001).

  200. 200.

    Benson, L., Petersen, K. & Stein, J. Anasazi (pre-Columbian Native-American) migrations during the middle-12th and late-13th centuries–were they drought induced? Clim. Change 83, 187–213 (2007).

    ADS  Google Scholar 

  201. 201.

    Cook, E. R. et al. Asian monsoon failure and megadrought during the last millennium. Science 328, 486–489 (2010).

    ADS  CAS  Google Scholar 

  202. 202.

    Shen, C., Wang, W. C., Hao, Z. & Gong, W. Exceptional drought events over eastern China during the last five centuries. Clim. Change 85, 453–471 (2007).

    ADS  Google Scholar 

  203. 203.

    Fang, K. et al. Tree-ring based reconstruction of drought variability (1615–2009) in the Kongtong Mountain area, northern China. Global Planet. Change 80-81, 190–197 (2012).

    ADS  Google Scholar 

  204. 204.

    Zhang, H. et al. East Asian warm season temperature variations over the past two millennia. Sci. Rep. 8, 7702 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  205. 205.

    Sun, C. & Liu, Y. Tree-ring-based drought variability in the eastern region of the silk road and its linkages to the Pacific Ocean. Ecol. Indic. 96, 421–429 (2019).

    Google Scholar 

  206. 206.

    Brook, T. The Troubled Empire: China in the Yuan and Ming Dynasties (Harvard Univ. Press, 2010).

  207. 207.

    Tierney, J. E., Smerdon, J. E., Anchukaitis, K. J. & Seager, R. Multidecadal variability in East African hydroclimate controlled by the Indian Ocean. Nature 493, 389–392 (2013).

    ADS  CAS  Google Scholar 

  208. 208.

    Tierney, J. E. et al. Late-twentieth-century warming in Lake Tanganyika unprecedented since ad 500. Nat. Geosci. 3, 422–425 (2010).

    ADS  CAS  Google Scholar 

  209. 209.

    Anchukaitis, K. J. & Tierney, J. E. Identifying coherent spatiotemporal modes in time-uncertain proxy paleoclimate records. Clim. Dyn. 41, 1291–1306 (2013).

    Google Scholar 

  210. 210.

    Sletten, H. R. et al. A petrographic and geochemical record of climate change over the last 4600 years from a northern Namibia stalagmite, with evidence of abruptly wetter climate at the beginning of southern Africa’s Iron Age. Palaeogeogr. Palaeoclimatol. Palaeoecol. 376, 149–162 (2013).

    Google Scholar 

  211. 211.

    Voarintsoa, N. R. G. et al. Stalagmite multi-proxy evidence of wet and dry intervals in northeastern Namibia: linkage to latitudinal shifts of the Inter-Tropical Convergence Zone and changing solar activity from ad 1400 to 1950. Holocene 27, 384–396 (2017).

    ADS  Google Scholar 

  212. 212.

    de Luna, K. M. Surveying the boundaries of history and archaeology: early Botatwe settlement in south central Africa and the ‘sibling disciplines’ debate. Afr. Archaeol. Rev. 29, 209–251 (2012).

    Google Scholar 

  213. 213.

    de Luna, K. M. Collecting Food, Cultivating People: Subsistence and Society in Central Africa (Yale Univ. Press, 2016).

  214. 214.

    de Luna, K. M. & Fleisher, J. B. Speaking with Substance: Methods of Language and Materials in African History (Springer, 2019).

  215. 215.

    Nash, D. J. et al. African hydroclimatic variability during the last 2000 years. Quat. Sci. Rev. 154, 1–22 (2016).

    ADS  Google Scholar 

  216. 216.

    de Luna, K. M. Classifying Botatwe: M.60 and K.40 languages and the settlement chronology of south central Africa. Afr. Linguist. 16, 65–96 (2010).

    Google Scholar 

  217. 217.

    Hoegh-Guldberg, O. et al. in Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) Ch. 3 (IPCC, 2018).

  218. 218.

    O’Neill, B. C. et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Clim. Change 122, 387–400 (2014).

    ADS  Google Scholar 

  219. 219.

    Burke, M., Hsiang, S. M. & Miguel, E. Global non-linear effect of temperature on economic production. Nature 527, 235–239 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  220. 220.

    van Weezel, S. Local warming and violent armed conflict in Africa. World Dev. 126, 104708 (2020).

    Google Scholar 

  221. 221.

    Wilson, R. et al. Last millennium northern hemisphere summer temperatures from tree rings: part I: the long term context. Quat. Sci. Rev. 134, 1–18 (2016).

    ADS  Google Scholar 

  222. 222.

    Schneider, L. et al. Revising midlatitude summer temperatures back to ad 600 based on a wood density network. Geophys. Res. Lett. 42, 4556–4562 (2015).

    ADS  Google Scholar 

  223. 223.

    Anchukaitis, K. J. et al. Last millennium Northern Hemisphere summer temperatures from tree rings: part II, spatially resolved reconstructions. Quat. Sci. Rev. 163, 1–22 (2017).

    ADS  Google Scholar 

Download references


We thank the Georgetown Environment Initiative for providing support for the workshop that launched this project; the Georgetown Humanities Initiative for fostering dialogue between co-authors at Georgetown University; and R. Hoffmann, J. Luterbacher, J. R. McNeill and S. White for comments and criticism. Audiences at the University of Arizona, Georgetown University, the University of Manitoba and the University of Texas at Austin provided comments that improved this article. K.A. acknowledges support from NSF grants CNH- 0908971 and CNH-1210360; K.K. acknowledges support from the Andrea von Braun Foundation; M.B. acknowledges support from the Volkswagen Foundation’s Freigeist Fellowship ‘The Dantean Anomaly’; and E.X. acknowledges support from the Federal Ministry of Education and Research (BMBF) projects ClimXtreme/CROP and RegIKlim/NUKLEUS.

Author information




D.D. designed the study, organized and attended the planning workshop, revised the case studies, wrote complete paper drafts, and created all tables and diagrams. K.A., M.B., J.B., K.d.L., K.K., T.N., E.X. and Q.P. attended the workshop and revised the study design. K.A. wrote sections on palaeoclimate and created all figures using climate reconstructions. E.M., N.N. K.A. and P.G. interpreted models and statistics. M.B., J.B., F.C., J.C., D.D., K.d.L., G.H., H.H., A.I., K.K., T.N., Q.P., E.X. and N.Z. contributed and revised case studies. K.A., D.D., K.d.L., G.H., H.H., A.I., K.K., T.N. and E.X. revised paper drafts.

Corresponding author

Correspondence to Dagomar Degroot.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Manon Bajard, Michael Frachetti, Markus Stoffel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Figure 1, showing the geographical locations covered by our case studies, Supplementary Figures 2-4, which provide additional information about our case studies and our methods for developing and revising them, and Supplementary References.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Degroot, D., Anchukaitis, K., Bauch, M. et al. Towards a rigorous understanding of societal responses to climate change. Nature 591, 539–550 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing