Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sources of particulate-matter air pollution and its oxidative potential in Europe


Particulate matter is a component of ambient air pollution that has been linked to millions of annual premature deaths globally1,2,3. Assessments of the chronic and acute effects of particulate matter on human health tend to be based on mass concentration, with particle size and composition also thought to play a part4. Oxidative potential has been suggested to be one of the many possible drivers of the acute health effects of particulate matter, but the link remains uncertain5,6,7,8. Studies investigating the particulate-matter components that manifest an oxidative activity have yielded conflicting results7. In consequence, there is still much to be learned about the sources of particulate matter that may control the oxidative potential concentration7. Here we use field observations and air-quality modelling to quantify the major primary and secondary sources of particulate matter and of oxidative potential in Europe. We find that secondary inorganic components, crustal material and secondary biogenic organic aerosols control the mass concentration of particulate matter. By contrast, oxidative potential concentration is associated mostly with anthropogenic sources, in particular with fine-mode secondary organic aerosols largely from residential biomass burning and coarse-mode metals from vehicular non-exhaust emissions. Our results suggest that mitigation strategies aimed at reducing the mass concentrations of particulate matter alone may not reduce the oxidative potential concentration. If the oxidative potential can be linked to major health impacts, it may be more effective to control specific sources of particulate matter rather than overall particulate mass.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: PM and OPv sources at rural and urban sites.
Fig. 2: Levels and sources of PM10 and DTTvPM10 in Europe.
Fig. 3: Source-segregated exposures to PM10 and OPvPM10, their dependence on population density, and historical and projected emissions.

Data availability

The full dataset shown in the figures and tables is publicly available at data are provided with this paper.

Code availability

The standard CAMx model (version 6.3) is an open source model and free to download at The modified module with split OA sources (PSI-VBS) is available at


  1. 1.

    Apte, J. S., Marshall, J. D., Cohen, A. J. & Brauer, M. Addressing global mortality from ambient PM2. 5. Environ. Sci. Technol. 49, 8057–8066 (2015).

    ADS  CAS  Google Scholar 

  2. 2.

    Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D. & Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525, 367–371 (2015).

    ADS  CAS  PubMed  Google Scholar 

  3. 3.

    Cohen, A. J. et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 389, 1907–1918 (2017).

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Valavanidis, A., Fiotakis, K. & Vlachogianni, T. Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J. Environ. Sci. Health C 26, 339–362 (2008).

    CAS  Google Scholar 

  5. 5.

    Li, N., Hao, M., Phalen, R. F., Hinds, W. C. & Nel, A. E. Particulate air pollutants and asthma: a paradigm for the role of oxidative stress in PM-induced adverse health effects. Clin. Immunol. 109, 250–265 (2003).

    CAS  Google Scholar 

  6. 6.

    Xiao, G. G., Wang, M., Li, N., Loo, J. A. & Nel, A. E. Use of proteomics to demonstrate a hierarchical oxidative stress response to diesel exhaust particle chemicals in a macrophage cell line. J. Biol. Chem. 278, 50781–50790 (2003).

    CAS  Google Scholar 

  7. 7.

    Bates, J. T. et al. Review of acellular assays of ambient particulate matter oxidative potential: methods and relationships with composition, sources, and health effects. Environ. Sci. Technol. 53, 4003–4019 (2019).

    ADS  CAS  PubMed  Google Scholar 

  8. 8.

    Weichenthal, S., Lavigne, E., Evans, G., Pollitt, K. & Burnett, R. T. Ambient PM 2.5 and risk of emergency room visits for myocardial infarction: impact of regional PM 2.5 oxidative potential: a case-crossover study. J. Environ. Health 15, 46 (2016).

    Google Scholar 

  9. 9.

    Forouzanfar, M. H. et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1659–1724 (2016).

    Google Scholar 

  10. 10.

    Crobeddu, B., Aragao-Santiago, L., Bui, L.-C., Boland, S. & Squiban, A. B. Oxidative potential of particulate matter 2.5 as predictive indicator of cellular stress. Environ. Pollut. 230, 125–133 (2017).

    CAS  Google Scholar 

  11. 11.

    Liu, Q. et al. Oxidative potential and inflammatory impacts of source apportioned ambient air pollution in Beijing. Environ. Sci. Technol. 48, 12920–12929 (2014).

    ADS  CAS  Google Scholar 

  12. 12.

    Shiraiwa, M. et al. Aerosol health effects from molecular to global scales. Environ. Sci. Technol. 51, 13545–13567 (2017).

    ADS  CAS  Google Scholar 

  13. 13.

    Daellenbach, K. R. et al. Characterization and source apportionment of organic aerosol using offline aerosol mass spectrometry. Atmos. Meas. Tech. 9, 23–39 (2016).

    CAS  Google Scholar 

  14. 14.

    Daellenbach, K. R. et al. Long-term chemical analysis and organic aerosol source apportionment at nine sites in central Europe: source identification and uncertainty assessment. Atmos. Chem. Phys. 17, 13265–13282 (2017).

    ADS  CAS  Google Scholar 

  15. 15.

    Daellenbach, K. R. et al. Impact of anthropogenic and biogenic sources on the seasonal variation of the molecular composition of urban organic aerosols: a field and laboratory study using ultra-high resolution mass spectrometry. Atmos. Chem. Phys. 19, 5973–5991 (2019).

    ADS  CAS  Google Scholar 

  16. 16.

    Vlachou, A. et al. Advanced source apportionment of carbonaceous aerosols by coupling offline AMS and radiocarbon size-segregated measurements over a nearly 2-year period. Atmos. Chem. Phys. 18, 6187–6206 (2018).

    ADS  CAS  Google Scholar 

  17. 17.

    Amato, F. et al. Urban air quality: the challenge of traffic non-exhaust emissions. J. Hazard. Mater. 275, 31–36 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    World Health Organization Regional Office for Europe. Review Of Evidence On Health Aspects Of Air Pollution. REVIHAAP Project. (WHO, 2013).

  19. 19.

    Calas, A. et al. The importance of simulated lung fluid (SLF) extractions for a more relevant evaluation of the oxidative potential of particulate matter. Sci. Rep. 7, 11617 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Charrier, J. & Anastasio, C. On dithiothreitol (DTT) as a measure of oxidative potential for ambient particles: evidence for the importance of soluble transition metals. Atmos. Chem. Phys. 12, 9321–9333 (2012).

    ADS  CAS  Google Scholar 

  21. 21.

    Sauvain, J.-J., Rossi, M. J. & Riediker, M. Comparison of three acellular tests for assessing the oxidation potential of nanomaterials. Aerosol Sci. Technol. 47, 218–227 (2013).

    ADS  CAS  Google Scholar 

  22. 22.

    Fang, T. et al. Highly acidic ambient particles, soluble metals, and oxidative potential: a link between sulfate and aerosol toxicity. Environ. Sci. Technol. 51, 2611–2620 (2017).

    ADS  CAS  Google Scholar 

  23. 23.

    Bruns, E. A. et al. Characterization of primary and secondary wood combustion products generated under different burner loads. Atmos. Chem. Phys. 15, 2825–2841 (2015).

    ADS  CAS  Google Scholar 

  24. 24.

    Jiang, J. et al. Sources of organic aerosols in Europe: a modeling study using CAMx with modified volatility basis set scheme. Atmos. Chem. Phys. 19, 15247–15270 (2019).

    ADS  CAS  Google Scholar 

  25. 25.

    Brugge, D., Durant, J. L. & Rioux, C. Near-highway pollutants in motor vehicle exhaust: a review of epidemiologic evidence of cardiac and pulmonary health risks. J. Environ. Health 6, 23 (2007).

    Google Scholar 

  26. 26.

    European Environment Agency Air Quality In Europe 2016. Report No. 28/2016, (EEA, 2016).

  27. 27.

    Denier van der Gon, H. et al. Non-exhaust emissions. In European Emission Inventories and Projections for Road Transport Non-Exhaust Emissions: Analysis of Consistency and Gaps in Emission Inventories from EU Member States (ed. Amato, F.) Ch. 5, 101–121, (Academic Press, 2018).

  28. 28.

    European Official Journal Directive (EU) 2016/2284 of the European Parliament and of the Council of 14 December 2016 on the reduction of national emissions of certain atmospheric pollutants, amending Directive 2003/35/EC and repealing Directive 2001/81/EC. (2016).

  29. 29.

    Cofala, J. & Klimont, Z. Emissions From Households And Other Small Combustion Sources And Their Reduction Potential. TSAP Report 5, Version 1.0, (DG Environment of the European Commission, 2012).

  30. 30.

    European Environment Agency Size Of The Vehicle Fleet. (EEA, 2018).

  31. 31.

    European Statistical Office Population And Population Statistics. (Eurostat, 2018).

  32. 32.

    Canagaratna, M. et al. Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrom. Rev. 26, 185–222 (2007).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Allan, J. D. et al. Quantitative sampling using an Aerodyne aerosol mass spectrometer. 1. Techniques of data interpretation and error analysis. J. Geophys. Res. Atmos. 108, (2003).

  34. 34.

    Waked, A. et al. Source apportionment of PM10 in a north-western Europe regional urban background site (Lens, France) using positive matrix factorization and including primary biogenic emissions. Atmos. Chem. Phys. 14, 3325–3346 (2014).

    ADS  Google Scholar 

  35. 35.

    Albinet, A., Tomaz, S. & Lestremau, F. A really quick easy cheap effective rugged and safe (QuEChERS) extraction procedure for the analysis of particle-bound PAHs in ambient air and emission samples. Sci. Total Environ. 450/451, 31–38 (2013).

    ADS  Google Scholar 

  36. 36.

    Albinet, A., Nalin, F., Tomaz, S., Beaumont, J. & Lestremau, F. A simple QuEChERS-like extraction approach for molecular chemical characterization of organic aerosols: application to nitrated and oxygenated PAH derivatives (NPAH and OPAH) quantified by GC–NICIMS. Anal. Bioanal. Chem. 406, 3131–3148 (2014).

    CAS  Google Scholar 

  37. 37.

    Srivastava, D. et al. Speciation of organic fractions does matter for aerosol source apportionment. Part 2: Intensive short-term campaign in the Paris area (France). Sci. Total Environ. 634, 267–278 (2018).

    ADS  CAS  Google Scholar 

  38. 38.

    Verlhac, S. & Albinet, A. European interlaboratory comparison for the analysis of PAH in ambient air. (LCSQA, 2015).

  39. 39.

    Samaké, A. et al. Polyols and glucose particulate species as tracers of primary biogenic organic aerosols at 28 French sites. Atmos. Chem. Phys. 19, 3357–3374 (2019).

    ADS  Google Scholar 

  40. 40.

    Nozière, B. et al. The molecular identification of organic compounds in the atmosphere: state of the art and challenges. Chem. Rev. 115, 3919–3983 (2015).

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Birch, M. & Cary, R. Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci. Technol. 25, 221–241 (1996).

    ADS  CAS  Google Scholar 

  42. 42.

    Cavalli, F., Viana, M., Yttri, K. E., Genberg, J. & Putaud, J.-P. Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol. Atmos. Meas. Tech. 3, 79–89 (2010).

    CAS  Google Scholar 

  43. 43.

    Piazzalunga, A., Bernardoni, V., Fermo, P. & Vecchi, R. Optimisation of analytical procedures for the quantification of ionic and carbonaceous fractions in the atmospheric aerosol and applications to ambient samples. Anal. Bioanal. Chem. 405, 1123–1132 (2013).

    CAS  Google Scholar 

  44. 44.

    Jaffrezo, J., Calas, N. & Bouchet, M. Carboxylic acids measurements with ionic chromatography. Atmos. Environ. 32, 2705–2708 (1998).

    ADS  CAS  Google Scholar 

  45. 45.

    Calas, A. et al. Comparison between five acellular oxidative potential measurement assays performed with detailed chemistry on PM 10 samples from the city of Chamonix (France). Atmos. Chem. Phys. 18, 7863–7875 (2018).

    ADS  CAS  Google Scholar 

  46. 46.

    Foucaud, L., Wilson, M., Brown, D. & Stone, V. Measurement of reactive species production by nanoparticles prepared in biologically relevant media. Toxicol. Lett. 174, 1–9 (2007).

    CAS  Google Scholar 

  47. 47.

    Zhou, J. et al. Development, characterization and first deployment of an improved online reactive oxygen species analyzer. Atmos. Meas. Tech. 11, 65–80 (2018).

    CAS  Google Scholar 

  48. 48.

    Zhou, J. et al. Particle-bound reactive oxygen species (PB-ROS) emissions and formation pathways in residential wood smoke under different combustion and aging conditions. Atmos. Chem. Phys. 18, 6985–7000 (2018).

    ADS  CAS  Google Scholar 

  49. 49.

    Charrier, J. G. et al. Oxidant production from source-oriented particulate matter. Part 1: Oxidative potential using the dithiothreitol (DTT) assay. Atmos. Chem. Phys. 15, 2327–2340 (2015).

    ADS  CAS  Google Scholar 

  50. 50.

    Cho, A. K. et al. Redox activity of airborne particulate matter at different sites in the Los Angeles Basin. Environ. Res. 99, 40–47 (2005).

    CAS  Google Scholar 

  51. 51.

    Mudway, I. S. et al. An in vitro and in vivo investigation of the effects of diesel exhaust on human airway lining fluid antioxidants. Arch. Biochem. Biophys. 423, 200–212 (2004).

    CAS  Google Scholar 

  52. 52.

    Huang, W. et al. Optimization of the measurement of particle-bound reactive oxygen species with 2′, 7′-dichlorofluorescin (DCFH). Wat. Air Soil Pollut. 227, 164 (2016).

    ADS  Google Scholar 

  53. 53.

    Künzi, L. et al. Toxicity of aged gasoline exhaust particles to normal and diseased airway epithelia. Sci. Rep. 5, 11801 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Paatero, P. & Tapper, U. Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5, 111–126 (1994).

    Google Scholar 

  55. 55.

    Paatero, P. The multilinear engine—a table-driven, least squares program for solving multilinear problems, including the n-way parallel factor analysis model. J. Comput. Graph. Stat. 8, 854–888 (1999).

    MathSciNet  Google Scholar 

  56. 56.

    Canonaco, F., Crippa, M., Slowik, J., Baltensperger, U. & Prévôt, A. SoFi, an IGOR-based interface for the efficient use of the generalized multilinear engine (ME-2) for the source apportionment: ME-2 application to aerosol mass spectrometer data. Atmos. Meas. Tech. 6, 3649–3661 (2013).

    Google Scholar 

  57. 57.

    Crippa, M. et al. Identification of marine and continental aerosol sources in Paris using high resolution aerosol mass spectrometry. J. Geophys. Res. Atmos. 118, 1950–1963 (2013).

    ADS  CAS  Google Scholar 

  58. 58.

    Bozzetti, C. et al. Size-resolved identification, characterization, and quantification of primary biological organic aerosol at a European rural site. Environ. Sci. Technol. 50, 3425–3434 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Amato, F. et al. Traffic induced particle resuspension in Paris: emission factors and source contributions. Atmos. Environ. 129, 114–124 (2016).

    ADS  CAS  Google Scholar 

  60. 60.

    Yang, A. et al. Children’s respiratory health and oxidative potential of PM2. 5: the PIAMA birth cohort study. Occup. Environ. Med. 73, 154–160 (2016).

    PubMed  Google Scholar 

  61. 61.

    Fang, T. et al. Oxidative potential of ambient water-soluble PM2.5 in the southeastern United States: contrasts in sources and health associations between ascorbic acid (AA) and dithiothreitol (DTT) assays. Atmos. Chem. Phys. 16, 3865–3879 (2016).

    ADS  CAS  Google Scholar 

  62. 62.

    Bates, J. T. et al. Reactive oxygen species generation linked to sources of atmospheric particulate matter and cardiorespiratory effects. Environ. Sci. Technol. 49, 13605–13612 (2015).

    ADS  CAS  PubMed  Google Scholar 

  63. 63.

    Yang, A. et al. Agreement of central site measurements and land use regression modeled oxidative potential of PM2.5 with personal exposure. Environ. Res. 140, 397–404 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Yanosky, J. D., Tonne, C. C., Beevers, S. D., Wilkinson, P. & Kelly, F. J. Modeling exposures to the oxidative potential of PM10. Environ. Sci. Technol. 46, 7612–7620 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Perrone, M. G. et al. PM chemical composition and oxidative potential of the soluble fraction of particles at two sites in the urban area of Milan, Northern Italy. Atmos. Environ. 128, 104–113 (2016).

    ADS  CAS  Google Scholar 

  66. 66.

    Szigeti, T. et al. Changes in chemical composition and oxidative potential of urban PM2.5 between 2010 and 2013 in Hungary. Sci. Total Environ. 518/519, 534–544 (2015).

    ADS  Google Scholar 

  67. 67.

    Ntziachristos, L., Froines, J. R., Cho, A. K. & Sioutas, C. Relationship between redox activity and chemical speciation of size-fractionated particulate matter. Part. Fibre Toxicol. 4, 5 (2007).

    PubMed  PubMed Central  Google Scholar 

  68. 68.

    Shirmohammadi, F. et al. Fine and ultrafine particulate organic carbon in the Los Angeles basin: trends in sources and composition. Sci. Total Environ. 541, 1083–1096 (2016).

    ADS  CAS  Google Scholar 

  69. 69.

    Shafer, M. M., Hemming, J. D. C., Antkiewicz, D. S. & Schauer, J. J. Oxidative potential of size-fractionated atmospheric aerosol in urban and rural sites across Europe. Faraday Discuss. 189, 381–405 (2016).

    ADS  CAS  Google Scholar 

  70. 70.

    Verma, V. et al. Organic aerosols associated with the generation of reactive oxygen species (ROS) by water-soluble PM2.5. Environ. Sci. Technol. 49, 4646–4656 (2015).

    ADS  CAS  Google Scholar 

  71. 71.

    Weber, S. et al. An apportionment method for the oxidative potential of atmospheric particulate matter sources: application to a one-year study in Chamonix, France. Atmos. Chem. Phys. 18, 9617–9629 (2018).

    ADS  CAS  Google Scholar 

  72. 72.

    Kramer, A. J. et al. Assessing the oxidative potential of isoprene-derived epoxides and secondary organic aerosol. Atmos. Environ. 130, 211–218 (2016).

    ADS  CAS  Google Scholar 

  73. 73.

    Wang, S. et al. Relationship between chemical composition and oxidative potential of secondary organic aerosol from polycyclic aromatic hydrocarbons. Atmos. Chem. Phys. 18, 3987–4003 (2018).

    ADS  CAS  Google Scholar 

  74. 74.

    Saffari, A. et al. Impact of primary and secondary organic sources on the oxidative potential of quasi-ultrafine particles (PM0.25) at three contrasting locations in the Los Angeles Basin. Atmos. Environ. 120, 286–296 (2015).

    ADS  CAS  Google Scholar 

  75. 75.

    Tong, H. et al. Reactive oxygen species formed by secondary organic aerosols in water and surrogate lung fluid. Environ. Sci. Technol. 52, 11642–11651 (2018).

    CAS  Google Scholar 

  76. 76.

    Lovett, C., Sowlat, M. H., Saliba, N. A., Shihadeh, A. L. & Sioutas, C. Oxidative potential of ambient particulate matter in Beirut during Saharan and Arabian dust events. Atmos. Environ. 188, 34–42 (2018).

    ADS  CAS  Google Scholar 

  77. 77.

    Jiang, H. & Jang, M. Dynamic oxidative potential of atmospheric organic aerosol under ambient sunlight. Environ. Sci. Technol. 52, 7496–7504 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Tuet, W. Y. et al. Chemical oxidative potential of secondary organic aerosol (SOA) generated from the photooxidation of biogenic and anthropogenic volatile organic compounds. Atmos. Chem. Phys. 17, 839–853 (2017).

    ADS  CAS  Google Scholar 

  79. 79.

    McWhinney, R., Zhou, S. & Abbatt, J. Naphthalene SOA: redox activity and naphthoquinone gas–particle partitioning. Atmos. Chem. Phys. 13, 9731–9744 (2013).

    ADS  Google Scholar 

  80. 80.

    Chung, M. Y. et al. Aerosol-borne quinones and reactive oxygen species generation by particulate matter extracts. Environ. Sci. Technol. 40, 4880–4886 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Lakey, P. S. et al. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract. Sci. Rep. 6, 32916 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Huang, R.-J. et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 514, 218–222 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Hildebrandt Ruiz, L. & Yarwood, G. Interactions Between Organic Aerosol And NOy: Influence On Oxidant Production. (University of Texas at Austin and ENVIRON International Corporation, 2013).

  84. 84.

    Nenes, A., Pandis, S. N. & Pilinis, C. ISORROPIA: a new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquat. Geochem. 4, 123–152 (1998).

    CAS  Google Scholar 

  85. 85.

    Koo, B., Knipping, E. & Yarwood, G. 1.5-dimensional volatility basis set approach for modeling organic aerosol in CAMx and CMAQ. Atmos. Environ. 95, 158–164 (2014).

    ADS  CAS  Google Scholar 

  86. 86.

    Ciarelli, G. et al. Modelling winter organic aerosol at the European scale with CAMx: evaluation and source apportionment with a VBS parameterization based on novel wood burning smog chamber experiments. Atmos. Chem. Phys. 17, 7653–7669 (2017).

    ADS  CAS  Google Scholar 

  87. 87.

    Jiang, J. et al. Effects of two different biogenic emission models on modelled ozone and aerosol concentrations in Europe. Atmos. Chem. Phys. 19, 3747–3768 (2019).

    ADS  CAS  Google Scholar 

  88. 88.

    Platt, S. M. et al. Gasoline cars produce more carbonaceous particulate matter than modern filter-equipped diesel cars. Sci. Rep. 7, 4926 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Kuenen, J., Visschedijk, A., Jozwicka, M. & Denier Van Der Gon, H. TNO-MACC_II emission inventory; a multi-year (2003–2009) consistent high-resolution European emission inventory for air quality modelling. Atmos. Chem. Phys. 14, 10963–10976 (2014).

    ADS  Google Scholar 

  90. 90.

    Emmons, L. K. et al. Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geosci. Model Dev. 3, 43–67 (2010).

    ADS  Google Scholar 

  91. 91.

    Fernandes, A. et al. Comparisons of aerosol optical depth provided by seviri satellite observations and CAMx air quality modelling. In 36th Int. Symp. on Remote Sensing of Environment Vol. 47, 187–193 (International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences, 2015).

  92. 92.

    Denjean, C. et al. Size distribution and optical properties of mineral dust aerosols transported in the western Mediterranean. Atmos. Chem. Phys. 16, 1081–1104 (2016).

    ADS  CAS  Google Scholar 

  93. 93.

    Hulskotte, J., van der Gon, H. D., Visschedijk, A. & Schaap, M. Brake wear from vehicles as an important source of diffuse copper pollution. Water Sci. Technol. 56, 223–231 (2007).

    CAS  Google Scholar 

  94. 94.

    Tørseth, K. et al. Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009. Atmos. Chem. Phys. 12, 5447–5481 (2012).

    ADS  Google Scholar 

  95. 95.

    Aas, W. & Breivik, K. Heavy Metals and POP Measurements, 2011. EMEP/CCC-Report 4/2013, (European Monitoring and Evaluation Programme, 2013).

  96. 96.

    Crippa, M. et al. Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach. Atmos. Chem. Phys. 14, 6159–6176 (2014).

    ADS  Google Scholar 

  97. 97.

    Putaud, J.-P. et al. A European aerosol phenomenology. 3: Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmos. Environ. 44, 1308–1320 (2010).

    ADS  CAS  Google Scholar 

  98. 98.

    Charron, A. et al. Identification and quantification of particulate tracers of exhaust and non-exhaust vehicle emissions. Atmos. Chem. Phys. 19, 5187–5207 (2019).

    ADS  CAS  Google Scholar 

  99. 99.

    European Chemicals Agency Default Human Factor Values For Use In Exposure Assessments For Biocidal Products. Recommendation no. 14 of the BPC Ad hoc Working Group on Human Exposure (ECHA, accessed 12 June 2017).

  100. 100.

    United States Environmental Protection Agency A Summary of The Recommended Values From the Exposure Factors Handbook: 2011 Edition (EPA, 2011).

  101. 101.

    Miller, F. J., Asgharian, B., Schroeter, J. D. & Price, O. Improvements and additions to the multiple path particle dosimetry model. J. Aerosol Sci. 99, 14–26 (2016).

    ADS  CAS  Google Scholar 

  102. 102.

    Amann, M. et al. Cost-effective control of air quality and greenhouse gases in Europe: modeling and policy applications. Environ. Model. Softw. 26, 1489–1501 (2011).

    Google Scholar 

  103. 103.

    Leni, Z. et al. Oxidative stress-induced inflammation in susceptible airways by anthropogenic aerosol. PLoS One pone.0233425 (2020).

  104. 104.

    National Center for Atmospheric Research. Weather Research and Forecasting Model WRF-ARW Version 3 Modeling System User’s Guide (NCAR, 2016).

Download references


We thank the Swiss Federal Office of Environment; Liechtenstein; Ostluft; and the Swiss cantons Basel, Graubünden and Thurgau. We also thank AWEL Zurich for providing us with samples collected in Islisbergtunnel. For the air-quality modelling, we thank the TNO for providing anthropogenic emissions, the European Centre for Medium-Range Weather Forecasts (ECMWF) for access to the meteorological data, National Center for Atmospheric Research (NCAR) for the initial and boundary conditions, the European Environmental Agency (EEA) for the air-quality data and the Swiss National Supercomputing Centre (CSCS). The support by Ramboll for the CAMx model is gratefully acknowledged. We acknowledge the Swiss Federal Laboratories for Materials Science and Technology (Empa) and the National Air Pollution Monitoring Network (NABEL) for providing air-quality data. We acknowledge the use of country borders from shared under a Creative Commons Attribution-Share Alike license. We thank N. Marchand for scientific discussions. K.R.D. acknowledges support by VULCAIN and Swiss National Science Foundation mobility grant P2EZP2_181599. M.G. and J.D. acknowledge financial support by the Swiss National Science Foundation grant CR32I3_166325. A.A. and O.F. acknowledge financial support by the French Ministry of Environment. G.U. and J.L.J. thank the programmes LEFE CHAT (grant 863353), LABEX OSUG@2020 (ANR-10-LABX-56), ANR-19-CE34-0002-01, and the " Investissements d’avenir” programme (ANR-15-IDEX-02) for supporting this work and funding analytical instruments.

Author information




K.R.D., I.E.H. and A.S.H.P. designed the research. G.U. performed the OP measurements. K.R.D., G.S. and A.V. performed the offline aerosol mass spectrometer measurements. J.-L.J. measured the organic markers. A.A. measured the polyaromatic hydrocarbons and oxy-polyaromatic hydrocarbons (quinones). Z.L., L.-E.C. and M.G. performed the toxicological experiments. J.J., S.A., K.R.D. and I.E.H. performed the air-quality and OP modelling. A.S. and M.S. performed the TNO model runs. J.J.P.K. and M.S. provided emission data. S.W., O.F. and G.U. provided OP data for model validation. F.C. provided analytical software for source apportionment. K.R.D., J.J. and I.E.H. performed the data analysis. K.R.D., G.U., J.J., L.-E.C., A.V., G.S., F.C., A.S., M.S., A.A., S.A., J.D., U.B., I.E.H., J.-L.J. and A.S.H.P. interpreted the results and wrote the manuscript.

Corresponding authors

Correspondence to Jianhui Jiang, Imad El Haddad or André S. H. Prévôt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Flemming Cassee, Ally Lewis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Seasonal variability of SOA types, their markers and quinones.

Concentration time series (every fourth day) of bioSOA and the sum of 3-MBTCA and pinic acid (both oxidation products of terpenes), aSOA and phthalic acid (an oxidation product of naphthalene and methyl-naphthalenes), as well as time series (bimonthly) of the mass fraction of polyaromatic quinones of OA in Frauenfeld..

Source data.

Extended Data Fig. 2 Cellular response to exposure to PM with varying OP activity.

Comparison between IL-6 release (fold change to field blank) in re-differentiated human bronchial epithelia exposed to filter extracts and DTT activity of the deposited PM per cell surface. The error bars represent the standard error of replicate experiments. The relative errors for DTT per cell surface are in comparison to IL-6 release five to ten times smaller and are therefore not displayed. A linear regression (IL-6 release = (1.17 ± 0.14) × DTT per cell surface + (0.28 ± 0.07)) is displayed (grey line) with 95% confidence interval (grey-shaded area). More detailed comparisons between the cellular responses to deposited PM are presented in Leni et al.103..

Source data.

Extended Data Fig. 3 DCFHv sources at rural and urban measurement sites.

Contributions of metal (crustal, vehicular wear, residential heating) and OA (SCOA, HOA, COA, BBOA, aSOA, bioSOA) sources and other PM components to \({{\rm{DCFH}}}_{{\rm{PM}}10}^{{\rm{v}}}\) and \({{\rm{DCFH}}}_{{\rm{PM}}2.5}^{{\rm{v}}}\) at five sites with different emission characteristics (109 composite samples): a and f, urban roadside (ber, Bern Bollwerk); b and g, urban background (zue, Zurich Kaserne); c and h, rural background (pay, Payerne MeteoSuisse); d, rural alpine valley (mag, Magadino-Cadenazzo); e, wintertime pollution episode in alpine valley (vi, S. Vittore Center); i, DCHFm of contributing metal and OA sources; and j, comparison between modelled (mod.) and measured DCHFv..

Source data.

Extended Data Fig. 4 AAv sources at rural and urban measurement sites.

Contributions of metal (crustal, vehicular wear, residential heating) and OA (SCOA, HOA, COA, BBOA, aSOA, bioSOA) sources and other PM components to \({{\rm{AA}}}_{{\rm{PM}}10}^{{\rm{v}}}\) and \({{\rm{AA}}}_{{\rm{PM}}2.5}^{{\rm{v}}}\) at five sites with different emission characteristics (109 composite samples): a and f, urban roadside; b and g, urban background; c and h, rural background; d, rural alpine valley; e, wintertime pollution episode in alpine valley; i, AAv of contributing metal and OA sources; and j, comparison between modelled and measured AAv..

Source data.

Extended Data Fig. 5 Source contributions to different OPv assays.

The modelled total \({{\rm{DTT}}}_{{\rm{PM}}10}^{{\rm{v}}},{\,{\rm{DCFH}}}_{{\rm{PM}}10}^{{\rm{v}}}{\,{\rm{and}}\,{\rm{AA}}}_{{\rm{PM}}10}^{{\rm{v}}}\) (top row) and the contributions of the relevant sources (lower rows) (chosen in the multiple linear regression model): traffic POA (HOA), biomass-burning POA (BBOA), biogenic SOA (bioSOA), anthropogenic SOA (aSOA), coarse organic vehicular emissions (SCOA), and coarse inorganic/metal vehicular emissions (vehicular wear)..

Source data.

Extended Data Fig. 6 Validation of OPv modelling results.

Detailed comparison between measured and modelled OP at Lens for the three essays investigated here (DTT, DCFH and AA). a, location of Lens along with the dominating DTT source; b, modelled contributions of the different sources to OP; and c, comparison between modelled and measured OP..

Source data.

Extended Data Fig. 7 Largest contributing sources to OPv and PM mass concentrations in Europe.

Largest contributors to OPv in PM10 (DTTv, DCFHv, AAv) in each grid cell over land surface in the modelled area for PM10 and PM2.5..

Source data.

Extended Data Fig. 8 Source contributions to PM and OP exposure, and their dependence on population density for PM2.5 and OPvPM2.5.

a, Contributions of aerosol sources and components to the total PM, DTT, DCFH and AA exposure for both PM10 and PM2.5 in Europe (relative contributions to the respective exposure and absolute exposure, copied from Fig. 3a). Exposures are computed as population integrated amount of OPv or PM in inhaled ambient air accumulated over a full year. Error bars depict the range between the 25% and 75% quartiles obtained from the Monte Carlo analysis propagating the uncertainty of OPm of the single sources from the multiple linear regression model. b, \({{\rm{DTT}}}_{{\rm{PM}}2.5}^{{\rm{v}}}/{{\rm{PM}}}_{2.5}\) and population (top), PM2.5 concentrations and relative source contributions to PM2.5 (middle), and relative source contributions to \({{\rm{DTT}}}_{{\rm{PM}}2.5}^{{\rm{v}}}\) and \({{\rm{DTT}}}_{{\rm{PM}}2.5}^{{\rm{v}}}\) (bottom) in comparison to the population density in the modelled domain. We note that data for PM2.5 are shown here, while Fig. 3b shows data for PM10.

Source data.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-3 and Supplementary Figures 1-30.

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Daellenbach, K.R., Uzu, G., Jiang, J. et al. Sources of particulate-matter air pollution and its oxidative potential in Europe. Nature 587, 414–419 (2020).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing