Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The physical mechanisms of fast radio bursts

Abstract

Fast radio bursts are mysterious millisecond-duration transients prevalent in the radio sky. Rapid accumulation of data in recent years has facilitated an understanding of the underlying physical mechanisms of these events. Knowledge gained from the neighbouring fields of gamma-ray bursts and radio pulsars has also offered insights. Here I review developments in this fast-moving field. Two generic categories of radiation model invoking either magnetospheres of compact objects (neutron stars or black holes) or relativistic shocks launched from such objects have been much debated. The recent detection of a Galactic fast radio burst in association with a soft gamma-ray repeater suggests that magnetar engines can produce at least some, and probably all, fast radio bursts. Other engines that could produce fast radio bursts are not required, but are also not impossible. 

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2: Cartoon pictures of the two general types of FRB radiation models.
Fig. 3: Two extreme versions of FRB source models.

Data availability

The data that support the plots within this paper and other finding of this study are available from the corresponding authors upon reasonable request.

References

  1. 1.

    Lorimer, D. R., Bailes, M., McLaughlin, M. A., Narkevic, D. J. & Crawford, F. A bright millisecond radio burst of extragalactic origin. Science 318, 777–780 (2007). This discovery paper marks the birth of the FRB research field.

    ADS  CAS  PubMed  Google Scholar 

  2. 2.

    Thornton, D. et al. A population of fast radio bursts at cosmological distances. Science 341, 53–56 (2013).

    ADS  CAS  PubMed  Google Scholar 

  3. 3.

    Petroff, E. et al. Identifying the source of perytons at the Parkes radio telescope. Mon. Not. R. Astron. Soc. 451, 3933–3940 (2015).

    ADS  Google Scholar 

  4. 4.

    Spitler, L. G. et al. A repeating fast radio burst. Nature 531, 202–205 (2016). This paper reports the discovery of the first repeating FRB source: FRB 121102.

    ADS  CAS  PubMed  Google Scholar 

  5. 5.

    Chatterjee, S. et al. A direct localization of a fast radio burst and its host. Nature 541, 58–61 (2017).

    ADS  CAS  PubMed  Google Scholar 

  6. 6.

    Marcote, B. et al. The repeating fast radio burst FRB 121102 as seen on milliarcsecond angular scales. Astrophys. J. 834, L8 (2017).

    ADS  Google Scholar 

  7. 7.

    Tendulkar, S. P. et al. The host galaxy and redshift of the repeating fast radio burst FRB 121102. Astrophys. J. 834, L7 (2017). This paper reports the discovery of the first host galaxy and redshift of an FRB source: FRB 121102.

    ADS  Google Scholar 

  8. 8.

    Loeb, A., Shvartzvald, Y. & Maoz, D. Fast radio bursts may originate from nearby flaring stars. Mon. Not. R. Astron. Soc. 439, L46–L50 (2014).

    ADS  Google Scholar 

  9. 9.

    Platts, E. et al. A living theory catalogue for fast radio bursts. Phys. Rep. 821, 1–27 (2019).

    ADS  MathSciNet  Google Scholar 

  10. 10.

    Kulkarni, S. R. From gamma-ray bursts to fast radio bursts. Nat. Astron. 2, 832–835 (2018).

    ADS  Google Scholar 

  11. 11.

    The CHIME/FRB Collaboration. A bright millisecond-duration radio burst from a Galactic magnetar. Nature http://doi.org/10.1038/s41586-020-2863-y (2020). This paper reports the discovery of an FRB associated with a Galactic SGR, establishing the magnetar origin of at least some FRBs.

  12. 12.

    Bochenek, C. D. et al. A fast radio burst associated with a Galactic magnetar. Nature https://doi.org/10.1038/s41586-020-2872-x (2020). This paper also reports the discovery of an FRB associated with a Galactic SGR, establishing the magnetar origin of at least some FRBs.

  13. 13.

    Li, C. K. et al. Identification of a non-thermal X-ray burst with the Galactic magnetar SGR 1935+2154 and a fast radio burst with Insight-HXMT. Preprint at https://arxiv.org/abs/2005.11071 (2020).

  14. 14.

    Ridnaia, A. et al. A peculiar hard X-ray counterpart of a Galactic fast radio burst. Preprint at https://arxiv.org/abs/2005.11178 (2020).

  15. 15.

    Mereghetti, S. et al. INTEGRAL discovery of a burst with associated radio emission from the magnetar SGR 1935+2154. Astrophys. J. 898, L29 (2020).

    ADS  CAS  Google Scholar 

  16. 16.

    Tavani, M. et al. An X-ray burst from a magnetar enlightening the mechanism of fast radio bursts. Preprint at https://arxiv.org/abs/2005.12164 (2020).

  17. 17.

    Petroff, E., Hessels, J. W. T. & Lorimer, D. R. Fast radio bursts. Astron. Astrophys. Rev. 27, 4 (2019). This paper is a comprehensive review of the FRB field summarizing observational properties of FRBs as of 2019.

    ADS  Google Scholar 

  18. 18.

    Cordes, J. M. & Chatterjee, S. Fast radio bursts: an extragalactic enigma. Annu. Rev. Astron. Astrophys. 57, 417–465 (2019). This paper is another comprehensive review of the FRB field summarizing the observational properties of FRBs as of 2019.

    ADS  Google Scholar 

  19. 19.

    Lorimer, D. R. A decade of fast radio bursts. Nat. Astron. 2, 860–864 (2018).

    ADS  Google Scholar 

  20. 20.

    Katz, J. I. Fast radio bursts. Prog. Part. Nucl. Phys. 103, 1–18 (2018).

    ADS  Google Scholar 

  21. 21.

    Popov, S. B., Postnov, K. A. & Pshirkov, M. S. Fast radio bursts. Phys. Uspekhi 61, 965 (2018).

    ADS  CAS  Google Scholar 

  22. 22.

    CHIME/FRB Collaboration. A second source of repeating fast radio bursts. Nature 566, 235–238 (2019).

    ADS  Google Scholar 

  23. 23.

    The CHIME/FRB Collaboration. CHIME/FRB detection of eight new repeating fast radio burst sources. Astrophys. J. 885, L24 (2019).

    ADS  Google Scholar 

  24. 24.

    Kumar, P. et al. Faint repetitions from a bright fast radio burst source. Astrophys. J. 887, L30 (2019).

    ADS  Google Scholar 

  25. 25.

    Luo, R. et al. Diverse polarisation angle swings from a repeating fast radio burst source. Nature (in the press).

  26. 26.

    Ravi, V. The prevalence of repeating fast radio bursts. Nat. Astron. 3, 928–931 (2019).

    ADS  Google Scholar 

  27. 27.

    Lu, W., Piro, A. L. & Waxman, E. Implications of CHIME repeating fast radio bursts. Preprint at https://arxiv.org/abs/2003.12581 (2020).

  28. 28.

    Petroff, E. et al. A survey of FRB fields: limits on repeatability. Mon. Not. R. Astron. Soc. 454, 457–462 (2015).

    ADS  Google Scholar 

  29. 29.

    Palaniswamy, D., Li, Y. & Zhang, B. Are there multiple populations of fast radio bursts? Astrophys. J. 854, L12 (2018).

    ADS  Google Scholar 

  30. 30.

    Caleb, M., Stappers, B. W., Rajwade, K. & Flynn, C. Are all fast radio bursts repeating sources? Mon. Not. R. Astron. Soc. 484, 5500–5508 (2019).

    ADS  CAS  Google Scholar 

  31. 31.

    Zhang, Y. G. et al. Fast radio burst 121102 pulse detection and periodicity: a machine learning approach. Astrophys. J. 866, 149 (2018).

    ADS  Google Scholar 

  32. 32.

    The CHIME/FRB Collaboration. Periodic activity from a fast radio burst source. Nature 582, 351–355 (2020).

    ADS  Google Scholar 

  33. 33.

    Rajwade, K. M. et al. Possible periodic activity in the repeating FRB 121102. Mon. Not. R. Astron. Soc. 495, 3551–3558 (2020).

    ADS  Google Scholar 

  34. 34.

    Ioka, K. & Zhang, B. A binary comb model for periodic fast radio bursts. Astrophys. J. 893, L26 (2020).

    ADS  CAS  Google Scholar 

  35. 35.

    Lyutikov, M., Barkov, M. V. & Giannios, D. FRB periodicity: mild pulsars in tight O/B-star binaries. Astrophys. J. 893, L39 (2020).

    ADS  Google Scholar 

  36. 36.

    Dai, Z. G. & Zhong, S. Q. Periodic fast radio bursts as a probe of extragalactic asteroid belts. Astrophys. J. 895, L1 (2020).

    ADS  Google Scholar 

  37. 37.

    Levin, Y., Beloborodov, A. M. & Bransgrove, A. Precessing flaring magnetar as a source of repeating FRB 180916.J0158+65. Astrophys. J. 895, L30 (2020).

    ADS  CAS  Google Scholar 

  38. 38.

    Zanazzi, J. J. & Lai, D. Periodic fast radio bursts with neutron star free precession. Astrophys. J. 892, L15 (2020).

    ADS  CAS  Google Scholar 

  39. 39.

    Yang, H. & Zou, Y.-C. Orbit-induced spin precession as a possible origin for periodicity in periodically repeating fast radio bursts. Astrophys. J. 893, L31 (2020).

    ADS  Google Scholar 

  40. 40.

    Luan, J. & Goldreich, P. Physical constraints on fast radio bursts. Astrophys. J. 785, L26 (2014).

    ADS  Google Scholar 

  41. 41.

    Cordes, J. M., Wharton, R. S., Spitler, L. G., Chatterjee, S. & Wasserman, I. Radio wave propagation and the provenance of fast radio bursts. Preprint at https://arxiv.org/abs/1605.05890 (2016).

  42. 42.

    Xu, S. & Zhang, B. On the origin of the scatter broadening of fast radio burst pulses and astrophysical implications. Astrophys. J. 832, 199 (2016).

    ADS  Google Scholar 

  43. 43.

    Hessels, J. W. T. et al. FRB 121102 bursts show complex time-frequency structure. Astrophys. J. 876, L23 (2019).

    ADS  CAS  Google Scholar 

  44. 44.

    Petroff, E. et al. FRBCAT: the fast radio burst catalogue. Publ. Astron. Soc. Aust. 33, 45 (2016).

    ADS  Google Scholar 

  45. 45.

    Bannister, K. W. et al. A single fast radio burst localized to a massive galaxy at cosmological distance. Science 365, 565–570 (2019).

    ADS  CAS  PubMed  Google Scholar 

  46. 46.

    Ravi, V. et al. A fast radio burst localized to a massive galaxy. Nature 572, 352–354 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Marcote, B. et al. A repeating fast radio burst source localized to a nearby spiral galaxy. Nature 577, 190–194 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Prochaska, J. X. et al. The low density and magnetization of a massive galaxy halo exposed by a fast radio burst. Science 366, 231–234 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Macquart, J. P. et al. A census of baryons in the Universe from localized fast radio bursts. Nature 581, 391–395 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Li, Z. et al. Cosmology-insensitive estimate of IGM baryon mass fraction from five localized fast radio bursts. Mon. Not. R. Astron. Soc. 496, L28–L32 (2020).

    ADS  Google Scholar 

  51. 51.

    Zhang, B. Fast radio burst energetics and detectability from high redshifts. Astrophys. J. 867, L21 (2018).

    ADS  Google Scholar 

  52. 52.

    Lin, L. et al. No pulsed radio emission during a bursting phase of a Galactic magnetar. Nature https://doi.org/10.1038/s41586-020-2839-y (2020). This paper reports the non-detection of FRBs from many SGR bursts, suggesting that the FRB–SGR associations are rather rare.

  53. 53.

    Kellermann, K. I. & Pauliny-Toth, I. I. K. The spectra of opaque radio sources. Astrophys. J. 155, L71 (1969).

    ADS  Google Scholar 

  54. 54.

    Chawla, P. et al. Detection of repeating FRB 180916.J0158+65 down to frequencies of 300 MHz. Astrophys. J. 896, L41 (2020).

    ADS  CAS  Google Scholar 

  55. 55.

    Gajjar, V. et al. Highest frequency detection of FRB 121102 at 4–8 GHz using the Breakthrough Listen digital backend at the Green Bank Telescope. Astrophys. J. 863, 2 (2018).

    ADS  Google Scholar 

  56. 56.

    Law, C. J. et al. A multi-telescope campaign on FRB 121102: implications for the FRB population. Astrophys. J. 850, 76 (2017).

    ADS  Google Scholar 

  57. 57.

    Karastergiou, A. et al. Limits on fast radio bursts at 145 MHz with ARTEMIS, a real-time software backend. Mon. Not. R. Astron. Soc. 452, 1254–1262 (2015).

    ADS  Google Scholar 

  58. 58.

    Michilli, D. et al. An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102. Nature 553, 182–185 (2018).

    ADS  CAS  Google Scholar 

  59. 59.

    Cho, H. et al. Spectropolarimetric analysis of FRB 181112 at microsecond resolution: implications for fast radio burst emission mechanism. Astrophys. J. 891, L38 (2020).

    ADS  Google Scholar 

  60. 60.

    Day, C. K. et al. High time resolution and polarisation properties of ASKAP-localised fast radio bursts. Mon. Not. R. Astron. Soc. 497, 3335–3350 (2020) (2020).

    ADS  Google Scholar 

  61. 61.

    Lorimer, D. R. & Kramer, M. Handbook of Pulsar Astronomy (Cambridge Univ. Press, 2012). This is a comprehensive book on pulsar astronomy, enabling comparison of FRB phenomenology with pulsar phenomenology.

  62. 62.

    Radhakrishnan, V. & Cooke, D. J. Magnetic poles and the polarization structure of pulsar radiation. Astrophys. Lett. 3, 225 (1969).

    ADS  Google Scholar 

  63. 63.

    Ravi, V. et al. The magnetic field and turbulence of the cosmic web measured using a brilliant fast radio burst. Science 354, 1249–1252 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Margalit, B. & Metzger, B. A concordance picture of FRB 121102 as a flaring magnetar embedded in a magnetized ion-electron wind nebula. Astrophys. J. 868, L4 (2018).

    ADS  CAS  Google Scholar 

  65. 65.

    Yang, Y.-P., Li, Q.-C. & Zhang, B. Are persistent emission luminosity and rotation measure of fast radio bursts related? Astrophys. J. 895, 7 (2020).

    ADS  Google Scholar 

  66. 66.

    Petroff, E. et al. A real-time fast radio burst: polarization detection and multiwavelength follow-up. Mon. Not. R. Astron. Soc. 447, 246–255 (2015).

    ADS  CAS  Google Scholar 

  67. 67.

    Yi, S.-X., Gao, H. & Zhang, B. Multi-wavelength afterglows of fast radio bursts. Astrophys. J. 792, L21 (2014).

    ADS  Google Scholar 

  68. 68.

    Bannister, K. W., Murphy, T., Gaensler, B. M. & Reynolds, J. E. Limits on prompt, dispersed radio pulses from gamma-ray bursts. Astrophys. J. 757, 38 (2012).

    ADS  Google Scholar 

  69. 69.

    DeLaunay, J. J. et al. Discovery of a transient gamma-ray counterpart to FRB 131104. Astrophys. J. 832, L1 (2016).

    ADS  Google Scholar 

  70. 70.

    Cunningham, V. et al. A search for high-energy counterparts to fast radio bursts. Astrophys. J. 879, 40 (2019).

    ADS  CAS  Google Scholar 

  71. 71.

    Metzger, B. D., Berger, E. & Margalit, B. Millisecond magnetar birth connects FRB 121102 to superluminous supernovae and long-duration gamma-ray bursts. Astrophys. J. 841, 14 (2017). This paper proposes that young magnetars born in extreme explosions such as GRBs and superluminous supernovae are the engines of repeating FRBs.

    ADS  Google Scholar 

  72. 72.

    Law, C. J. et al. A search for late-time radio emission and fast radio bursts from superluminous supernovae. Astrophys. J. 886, 24 (2019).

    ADS  CAS  Google Scholar 

  73. 73.

    Men, Y. et al. Non-detection of fast radio bursts from six gamma-ray burst remnants with possible magnetar engines. Mon. Not. R. Astron. Soc. 489, 3643–3647 (2019).

    ADS  Google Scholar 

  74. 74.

    Wang, X.-G. et al. Is GRB 110715A the progenitor of FRB 171209? Astrophys. J. 894, L22 (2020).

    ADS  CAS  Google Scholar 

  75. 75.

    Bhandari, S. et al. The SUrvey for Pulsars and Extragalactic Radio Bursts—II. New FRB discoveries and their follow-up. Mon. Not. R. Astron. Soc. 475, 1427–1446 (2018).

    ADS  CAS  Google Scholar 

  76. 76.

    Luo, R., Lee, K., Lorimer, D. R. & Zhang, B. On the normalized FRB luminosity function. Mon. Not. R. Astron. Soc. 481, 2320–2337 (2018).

    ADS  CAS  Google Scholar 

  77. 77.

    Lu, W. & Piro, A. L. Implications from ASKAP fast radio burst statistics. Astrophys. J. 883, 40 (2019).

    ADS  CAS  Google Scholar 

  78. 78.

    Luo, R. et al. On the FRB luminosity function. II. Event rate density. Mon. Not. R. Astron. Soc. 494, 665–679 (2020).

    ADS  Google Scholar 

  79. 79.

    Lu, W., Kumar, P. & Zhang, B. A unified picture of Galactic and cosmological fast radio bursts. Mon. Not. R. Astron. Soc. 498, 1397–1405 (2020). (2020).

    ADS  Google Scholar 

  80. 80.

    Nicholl, M. et al. Empirical constraints on the origin of fast radio bursts: volumetric rates and host galaxy demographics as a test of millisecond magnetar connection. Astrophys. J. 843, 84 (2017).

    ADS  Google Scholar 

  81. 81.

    Bhandari, S. et al. The host galaxies and progenitors of fast radio bursts localized with the Australian Square Kilometre Array Pathfinder. Astrophys. J. 895, L37 (2020).

    ADS  CAS  Google Scholar 

  82. 82.

    Li, Y. & Zhang, B. A comparative study of host galaxy properties between fast radio bursts and stellar transients. Astrophys. J. 899, L6 (2020).

    ADS  CAS  Google Scholar 

  83. 83.

    Totani, T. Cosmological fast radio bursts from binary neutron star mergers. Publ. Astron. Soc. Jpn. 65, L12 (2013).

    ADS  Google Scholar 

  84. 84.

    Zhang, B. A possible connection between fast radio bursts and gamma-ray bursts. Astrophys. J. 780, L21 (2013).

    ADS  Google Scholar 

  85. 85.

    Wang, J.-S., Yang, Y.-P., Wu, X.-F., Dai, Z.-G. & Wang, F.-Y. Fast radio bursts from the inspiral of double neutron stars. Astrophys. J. 822, L7 (2016).

    ADS  Google Scholar 

  86. 86.

    Margalit, B., Berger, E. & Metzger, B. D. Fast radio bursts from magnetars born in binary neutron star mergers and accretion induced collapse. Astrophys. J. 886, 110 (2019).

    ADS  CAS  Google Scholar 

  87. 87.

    Wang, F. Y. et al. Fast radio bursts from activity of neutron stars newborn in BNS mergers: offset, birth rate, and observational properties. Astrophys. J. 891, 72 (2020).

    ADS  CAS  Google Scholar 

  88. 88.

    Zhang, B. Fast radio bursts from interacting binary neutron star systems. Astrophys. J. 890, L24 (2020).

    ADS  CAS  Google Scholar 

  89. 89.

    Zhang, B. The Physics of Gamma-Ray Bursts (Cambridge Univ. Press, 2018). This is a comprehensive book on GRB phenomenology and theoretical models, enabling cross-comparison of the FRB and the GRB fields.

  90. 90.

    Popov, S. B. & Postnov, K. A. Hyperflares of SGRs as an engine for millisecond extragalactic radio bursts. In Evolution of Cosmic Objects through their Physical Activity (eds Harutyunian, H. A., Mickaelian, A. M. & Terzian, Y.) 129–132 (2010). This paper was the first to propose that SGRs are the sources of FRBs, an idea recently proved by the FRB 200428–SGR 1935+2154 association.

  91. 91.

    Kulkarni, S. R., Ofek, E. O., Neill, J. D., Zheng, Z. & Juric, M. Giant sparks at cosmological distances? Astrophys. J. 797, 70 (2014).

    ADS  Google Scholar 

  92. 92.

    Katz, J. I. How soft gamma repeaters might make fast radio bursts. Astrophys. J. 826, 226 (2016).

    ADS  Google Scholar 

  93. 93.

    Lyubarsky, Y. A model for fast extragalactic radio bursts. Mon. Not. R. Astron. Soc. 442, L9–L13 (2014). This paper first proposes the synchrotron maser coherent mechanism to interpret FRBs.

    ADS  Google Scholar 

  94. 94.

    Beloborodov, A. M. A flaring magnetar in FRB 121102? Astrophys. J. 843, L26 (2017).

    ADS  Google Scholar 

  95. 95.

    Kumar, P., Lu, W. & Bhattacharya, M. Fast radio burst source properties and curvature radiation model. Mon. Not. R. Astron. Soc. 468, 2726–2739 (2017).

    ADS  CAS  Google Scholar 

  96. 96.

    Yang, Y.-P. & Zhang, B. Bunching coherent curvature radiation in three-dimensional magnetic field geometry: application to pulsars and fast radio bursts. Astrophys. J. 868, 31 (2018).

    ADS  CAS  Google Scholar 

  97. 97.

    Wadiasingh, Z. et al. The fast radio burst luminosity function and death line in the low-twist magnetar model. Astrophys. J. 891, 82 (2020).

    ADS  CAS  Google Scholar 

  98. 98.

    Nemiroff, R. J. A century of gamma ray burst models. AIP Conf. Proc. 307, 730 (1994).

    ADS  CAS  Google Scholar 

  99. 99.

    Waxman, E. On the origin of fast radio bursts (FRBs). Astrophys. J. 842, 34 (2017).

    ADS  Google Scholar 

  100. 100.

    Plotnikov, I. & Sironi, L. The synchrotron maser emission from relativistic shocks in fast radio bursts: 1D PIC simulations of cold pair plasmas. Mon. Not. R. Astron. Soc. 485, 3816–3833 (2019).

    ADS  CAS  Google Scholar 

  101. 101.

    Metzger, B. D., Margalit, B. & Sironi, L. Fast radio bursts as synchrotron maser emission from decelerating relativistic blast waves. Mon. Not. R. Astron. Soc. 485, 4091–4106 (2019).

    ADS  CAS  Google Scholar 

  102. 102.

    Beloborodov, A. M. Blast waves from magnetar flares and fast radio bursts. Astrophys. J. 896, 142 (2020).

    ADS  Google Scholar 

  103. 103.

    Melrose, D. B. Coherent emission mechanisms in astrophysical plasmas. Rev. Mod. Plasma Phys. 1, 5 (2017). This is a comprehensive review for coherent radio emission models for the sources in the Universe other than FRBs.

    ADS  Google Scholar 

  104. 104.

    Harding, A. K. Gamma-ray pulsar light curves as probes of magnetospheric structure. J. Plasma Phys. 82, 635820306 (2016).

    Google Scholar 

  105. 105.

    Rankin, J. M. Toward an empirical theory of pulsar emission. VI. The geometry of the conal emission region. Astrophys. J. 405, 285 (1993).

    ADS  Google Scholar 

  106. 106.

    Ruderman, M. A. & Sutherland, P. G. Theory of pulsars—polar caps, sparks, and coherent microwave radiation. Astrophys. J. 196, 51–72 (1975).

    ADS  CAS  Google Scholar 

  107. 107.

    Camilo, F. et al. The magnetar XTE J1810–197: variations in torque, radio flux density, and pulse profile morphology. Astrophys. J. 663, 497–504 (2007).

    ADS  CAS  Google Scholar 

  108. 108.

    Zhang, B. Mergers of charged black holes: gravitational-wave events, short gamma-ray bursts, and fast radio bursts. Astrophys. J. 827, L31 (2016).

    ADS  Google Scholar 

  109. 109.

    Levin, J., D’Orazio, D. J. & Garcia-Saenz, S. Black hole pulsar. Phys. Rev. D 98, 123002 (2018).

    ADS  MathSciNet  CAS  Google Scholar 

  110. 110.

    Long, K. & Pe’er, A. Synchrotron maser from weakly magnetized neutron stars as the emission mechanism of fast radio bursts. Astrophys. J. 864, L12 (2018).

    ADS  Google Scholar 

  111. 111.

    Katz, J. I. Coherent emission in fast radio bursts. Phys. Rev. D 89, 103009 (2014).

    ADS  Google Scholar 

  112. 112.

    Lu, W. & Kumar, P. On the radiation mechanism of repeating fast radio bursts. Mon. Not. R. Astron. Soc. 477, 2470–2493 (2018). This paper is a comprehensive survey of many coherent emission models and a critical assessment of the validity of these models for FRBs.

    ADS  CAS  Google Scholar 

  113. 113.

    Ghisellini, G. Synchrotron masers and fast radio bursts. Mon. Not. R. Astron. Soc. 465, L30–L33 (2017).

    ADS  CAS  Google Scholar 

  114. 114.

    Lu, W., Kumar, P. & Narayan, R. Fast radio burst source properties from polarization measurements. Mon. Not. R. Astron. Soc. 483, 359–369 (2019).

    ADS  CAS  Google Scholar 

  115. 115.

    Lyubarsky, Y. Induced scattering of short radio pulses. Astrophys. J. 682, 1443–1449 (2008).

    ADS  Google Scholar 

  116. 116.

    Murase, K., Kashiyama, K. & Mészáros, P. A burst in a wind bubble and the impact on baryonic ejecta: high-energy gamma-ray flashes and afterglows from fast radio bursts and pulsar-driven supernova remnants. Mon. Not. R. Astron. Soc. 461, 1498–1511 (2016).

    ADS  CAS  Google Scholar 

  117. 117.

    Kumar, P. & Lu, W. Radiation forces constrain the FRB mechanism. Mon. Not. R. Astron. Soc. 494, 1217–1228 (2020).

    ADS  Google Scholar 

  118. 118.

    Piro, A. L. The impact of a supernova remnant on fast radio bursts. Astrophys. J. 824, L32 (2016).

    ADS  Google Scholar 

  119. 119.

    Yang, Y.-P. & Zhang, B. Dispersion measure variation of repeating fast radio burst sources. Astrophys. J. 847, 22 (2017).

    ADS  Google Scholar 

  120. 120.

    Yang, Y.-P., Zhang, B. & Dai, Z.-G. Synchrotron heating by a fast radio burst in a self-absorbed synchrotron nebula and its observational signature. Astrophys. J. 819, L12 (2016).

    ADS  Google Scholar 

  121. 121.

    Goldreich, P. & Julian, W. H. Pulsar electrodynamics. Astrophys. J. 157, 869 (1969).

    ADS  Google Scholar 

  122. 122.

    Lyubarsky, Y. Fast radio bursts from reconnection in a magnetar magnetosphere. Astrophys. J. 897, 1 (2020).

    ADS  Google Scholar 

  123. 123.

    Melrose, D. B. Amplified linear acceleration emission applied to pulsars. Astrophys. J. 225, 557–573 (1978).

    ADS  Google Scholar 

  124. 124.

    Melikidze, G. I., Gil, J. A. & Pataraya, A. D. The spark-associated soliton model for pulsar radio emission. Astrophys. J. 544, 1081–1096 (2000).

    ADS  CAS  Google Scholar 

  125. 125.

    Yang, Y.-P., Zhu, J.-P., Zhang, B. & Wu, X.-F. Pair separation in parallel electric field in magnetar magnetosphere and narrow spectra of fast radio bursts. Astrophys. J. 901, L13 (2020). (2020).

    ADS  CAS  Google Scholar 

  126. 126.

    Kumar, P. & Bošnjak, Ž. FRB coherent emission from decay of Alfvén waves. Mon. Not. R. Astron. Soc. 494, 2385–2395 (2020).

    ADS  Google Scholar 

  127. 127.

    Zhang, B. A “cosmic comb” model of fast radio bursts. Astrophys. J. 836, L32 (2017).

    ADS  Google Scholar 

  128. 128.

    Wang, W., Zhang, B., Chen, X. & Xu, R. On the time-frequency downward drifting of repeating fast radio bursts. Astrophys. J. 876, L15 (2019).

    ADS  CAS  Google Scholar 

  129. 129.

    Usov, V. V. & Katz, J. I. Low frequency radio pulses from gamma-ray bursts? Astron. Astrophys. 364, 655–659 (2000).

    ADS  Google Scholar 

  130. 130.

    Sagiv, A. & Waxman, E. Collective processes in relativistic plasma and their implications for gamma-ray burst afterglows. Astrophys. J. 574, 861–872 (2002).

    ADS  Google Scholar 

  131. 131.

    Kaspi, V. M. & Beloborodov, A. M. Magnetars. Annu. Rev. Astron. Astrophys. 55, 261–301 (2017).

    ADS  CAS  Google Scholar 

  132. 132.

    Thompson, C. & Duncan, R. C. Neutron star dynamos and the origins of pulsar magnetism. Astrophys. J. 408, 194–217 (1993).

    ADS  Google Scholar 

  133. 133.

    Beniamini, P., Hotokezaka, K., van der Horst, A. & Kouveliotou, C. Formation rates and evolution histories of magnetars. Mon. Not. R. Astron. Soc. 487, 1426–1438 (2019).

    ADS  Google Scholar 

  134. 134.

    Vink, J. & Kuiper, L. Supernova remnant energetics and magnetars: no evidence in favour of millisecond proto-neutron stars. Mon. Not. R. Astron. Soc. 370, L14–L18 (2006).

    ADS  Google Scholar 

  135. 135.

    Tendulkar, S. P., Kaspi, V. M. & Patel, C. Radio nondetection of the SGR 1806–20 giant flare and implications for fast radio bursts. Astrophys. J. 827, 59 (2016).

    ADS  Google Scholar 

  136. 136.

    Li, Y., Zhang, B., Nagamine, K. & Shi, J. The FRB 121102 host is atypical among nearby FRBs. Astrophys. J. 884, L26 (2019 (2019).

    ADS  CAS  Google Scholar 

  137. 137.

    Thompson, C. & Duncan, R. C. The soft gamma repeaters as very strongly magnetized neutron stars—I. Radiative mechanism for outbursts. Mon. Not. R. Astron. Soc. 275, 255–300 (1995).

    ADS  Google Scholar 

  138. 138.

    Margalit, B., Beniamini, P., Sridhar, N. & Metzger, B. D. implications of a “fast radio burst” from a galactic magnetar. Astrophys. J. 899, L27 (2020).

    ADS  CAS  Google Scholar 

  139. 139.

    Katz, J. I. The FRB-SGR connection. Preprint at https://arxiv.org/abs/2006.03468 (2020).

  140. 140.

    Yu, Y.-W., Zou, Y.-C., Dai, Z.-G. & Yu, W.-F. Revisiting the confrontation of the shock-powered synchrotron maser model with the Galactic FRB 200428. Preprint at https://arxiv.org/abs/2006.00484 (2020).

  141. 141.

    Connor, L., Sievers, J. & Pen, U.-L. Non-cosmological FRBs from young supernova remnant pulsars. Mon. Not. R. Astron. Soc. 458, L19–L23 (2016).

    ADS  CAS  Google Scholar 

  142. 142.

    Cordes, J. M. & Wasserman, I. Supergiant pulses from extragalactic neutron stars. Mon. Not. R. Astron. Soc. 457, 232–257 (2016).

    ADS  CAS  Google Scholar 

  143. 143.

    Katz, J. I. Are fast radio bursts made by neutron stars? Mon. Not. R. Astron. Soc. 494, L64–L68 (2020).

    ADS  Google Scholar 

  144. 144.

    Gu, W.-M., Dong, Y.-Z., Liu, T., Ma, R. & Wang, J. A neutron star-white dwarf binary model for repeating fast radio burst 121102. Astrophys. J. 823, L28 (2016).

    ADS  Google Scholar 

  145. 145.

    Zhang, B. FRB 121102: a repeatedly combed neutron star by a nearby low-luminosity accreting supermassive black hole. Astrophys. J. 854, L21 (2018).

    ADS  Google Scholar 

  146. 146.

    Katz, J. I. Searching for Galactic micro-FRB with lunar scattering. Mon. Not. R. Astron. Soc. 494, 3464–3468 (2020).

    ADS  Google Scholar 

  147. 147.

    Dai, Z. G., Wang, J. S., Wu, X. F. & Huang, Y. F. Repeating fast radio bursts from highly magnetized pulsars traveling through asteroid belts. Astrophys. J. 829, 27 (2016).

    ADS  Google Scholar 

  148. 148.

    Smallwood, J. L., Martin, R. G. & Zhang, B. Investigation of the asteroid-neutron star collision model for the repeating fast radio bursts. Mon. Not. R. Astron. Soc. 485, 1367–1376 (2019).

    ADS  CAS  Google Scholar 

  149. 149.

    Dai, Z. G. A magnetar-asteroid impact model for FRB 200428 associated with an X-ray burst from SGR 1935+2154. Astrophys. J. 897, L40 (2020).

    ADS  CAS  Google Scholar 

  150. 150.

    Falcke, H. & Rezzolla, L. Fast radio bursts: the last sign of supramassive neutron stars. Astron. Astrophys. 562, A137 (2014).

    ADS  Google Scholar 

  151. 151.

    Ai, S., Gao, H. & Zhang, B. On the true fractions of repeating and non-repeating FRB sources. Preprint at https://arxiv.org/abs/2007.02400 (2020).

  152. 152.

    Wang, M.-H. et al. Testing the hypothesis of a compact-binary-coalescence origin of fast radio bursts using a multimessenger approach. Astrophys. J. 891, L39 (2020).

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

I thank P. Kumar, W. Lu, J. I. Katz. Y.-P. Yang and Z.-G. Dai for comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bing Zhang.

Ethics declarations

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, B. The physical mechanisms of fast radio bursts. Nature 587, 45–53 (2020). https://doi.org/10.1038/s41586-020-2828-1

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing