Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Integrated optical multi-ion quantum logic

A Publisher Correction to this article was published on 19 January 2021

This article has been updated

Abstract

Practical and useful quantum information processing requires substantial improvements with respect to current systems, both in the error rates of basic operations and in scale. The fundamental qualities of individual trapped-ion1 qubits are promising for long-term systems2, but the optics involved in their precise control are a barrier to scaling3. Planar-fabricated optics integrated within ion-trap devices can make such systems simultaneously more robust and parallelizable, as suggested by previous work with single ions4. Here we use scalable optics co-fabricated with a surface-electrode ion trap to achieve high-fidelity multi-ion quantum logic gates, which are often the limiting elements in building up the precise, large-scale entanglement that is essential to quantum computation. Light is efficiently delivered to a trap chip in a cryogenic environment via direct fibre coupling on multiple channels, eliminating the need for beam alignment into vacuum systems and cryostats and lending robustness to vibrations and beam-pointing drifts. This allows us to perform ground-state laser cooling of ion motion and to implement gates generating two-ion entangled states with fidelities greater than 99.3(2) per cent. This work demonstrates hardware that reduces noise and drifts in sensitive quantum logic, and simultaneously offers a route to practical parallelization for high-fidelity quantum processors5. Similar devices may also find applications in atom- and ion-based quantum sensing and timekeeping6.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Device overview.
Fig. 2: Layer stackup and optical design.
Fig. 3: Two-ion manipulation and ground-state cooling.
Fig. 4: Integrated implementation of a two-ion quantum logic gate.

Data availability

The raw data generated during this study are available from the corresponding author on reasonable request.

Code availability

The analysis code employed in this study is available from the corresponding author on reasonable request.

Change history

  • 10 December 2020

    This Article was amended to remove a minor typographical error in the main text

  • 19 January 2021

    A Correction to this paper has been published: https://doi.org/ 10.1038/s41586-020-03097-4

References

  1. 1.

    Leibfried, D., Blatt, R., Monroe, C. & Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003).

    ADS  CAS  Google Scholar 

  2. 2.

    Häffner, H., Roos, C. F. & Blatt, R. Quantum computing with trapped ions. Phys. Rep. 469, 155–203 (2008).

    ADS  MathSciNet  Google Scholar 

  3. 3.

    Monroe, C. & Kim, J. Scaling the ion trap quantum processor. Science 339, 1164–1169 (2013).

    ADS  CAS  PubMed  Google Scholar 

  4. 4.

    Mehta, K. K. et al. Integrated optical addressing of an ion qubit. Nat. Nanotechnol. 11, 1066–1070 (2016).

    ADS  CAS  PubMed  Google Scholar 

  5. 5.

    Kielpinski, D., Monroe, C. & Wineland, D. J. Architecture for a large-scale ion-trap quantum computer. Nature 417, 709–711 (2002).

    ADS  CAS  PubMed  Google Scholar 

  6. 6.

    Keller, J. et al. Controlling systematic frequency uncertainties at the 10−19 level in linear Coulomb crystals. Phys. Rev. A 99, 013405 (2019).

    ADS  CAS  Google Scholar 

  7. 7.

    Harty, T. et al. High-fidelity preparation, gates, memory, and readout of a trapped-ion quantum bit. Phys. Rev. Lett. 113, 220501 (2014).

    ADS  CAS  PubMed  Google Scholar 

  8. 8.

    Ballance, C., Harty, T., Linke, N., Sepiol, M. & Lucas, D. High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys. Rev. Lett. 117, 060504 (2016).

    ADS  CAS  PubMed  Google Scholar 

  9. 9.

    Gaebler, J. P. et al. High-fidelity universal gate set for 9Be+ ion qubits. Phys. Rev. Lett. 117, 060505 (2016).

    ADS  CAS  PubMed  Google Scholar 

  10. 10.

    Fowler, A. G., Whiteside, A. C. & Hollenberg, L. C. Towards practical classical processing for the surface code. Phys. Rev. Lett. 108, 180501 (2012).

    ADS  PubMed  Google Scholar 

  11. 11.

    Amini, J. M. et al. Toward scalable ion traps for quantum information processing. New J. Phys. 12, 033031 (2010).

    ADS  Google Scholar 

  12. 12.

    Mehta, K. K., Zhang, C., Miller, S. & Home, J. P. Towards fast and scalable trapped-ion quantum logic with integrated photonics. Proc. SPIE 10933, 109330B (2019).

    Google Scholar 

  13. 13.

    Wörhoff, K., Heideman, R. G., Leinse, A. & Hoekman, M. TriPleX: a versatile dielectric photonic platform. Adv. Opt. Technol. 4, 189–207 (2015).

    ADS  Google Scholar 

  14. 14.

    Chiaverini, J. et al. Surface-electrode architecture for ion-trap quantum information processing. Quantum Inf. Comput. 5, 419–439 (2005).

    MathSciNet  CAS  MATH  Google Scholar 

  15. 15.

    Mehta, K. et al. Ion traps fabricated in a CMOS foundry. Appl. Phys. Lett. 105, 044103 (2014).

    ADS  Google Scholar 

  16. 16.

    Schindler, P. et al. A quantum information processor with trapped ions. New J. Phys. 15, 123012 (2013).

    ADS  Google Scholar 

  17. 17.

    Mehta, K. K. & Ram, R. J. Precise and diffraction-limited waveguide-to-free-space focusing gratings. Sci. Rep. 7, 2019 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Roos, C. et al. Experimental demonstration of ground state laser cooling with electromagnetically induced transparency. Phys. Rev. Lett. 85, 5547–5550 (2000).

    ADS  CAS  PubMed  Google Scholar 

  19. 19.

    James, D. F. Quantum dynamics of cold trapped ions with application to quantum computation. Appl. Phys. B 66, 181–190 (1998).

    ADS  CAS  Google Scholar 

  20. 20.

    Wineland, D. J. et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl Inst. Stand. Technol. 103, 259–328 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Brownnutt, M., Kumph, M., Rabl, P. & Blatt, R. Ion-trap measurements of electric-field noise near surfaces. Rev. Mod. Phys. 87, 1419–1482 (2015).

    ADS  CAS  Google Scholar 

  22. 22.

    Sørensen, A. & Mølmer, K. Entanglement and quantum computation with ions in thermal motion. Phys. Rev. A 62, 022311 (2000).

    ADS  Google Scholar 

  23. 23.

    Leibfried, D. et al. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422, 412–415 (2003).

    ADS  CAS  PubMed  Google Scholar 

  24. 24.

    Sedlacek, J. et al. Distance scaling of electric-field noise in a surface-electrode ion trap. Phys. Rev. A 97, 020302 (2018).

    ADS  CAS  Google Scholar 

  25. 25.

    Milne, A. R. et al. Phase-modulated entangling gates robust to static and time-varying errors. Phys. Rev. Appl. 13, 024022 (2020).

    ADS  CAS  Google Scholar 

  26. 26.

    Srinivas, R. et al. Trapped-ion spin-motion coupling with microwaves and a near-motional oscillating magnetic field gradient. Phys. Rev. Lett. 122, 163201 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Harty, T. et al. High-fidelity trapped-ion quantum logic using near-field microwaves. Phys. Rev. Lett. 117, 140501 (2016).

    ADS  CAS  PubMed  Google Scholar 

  28. 28.

    Zarantonello, G. et al. Robust and resource-efficient microwave near-field entangling 9Be+ gate. Phys. Rev. Lett. 123, 260503 (2019).

    ADS  CAS  PubMed  Google Scholar 

  29. 29.

    Debnath, S. et al. Demonstration of a small programmable quantum computer with atomic qubits. Nature 536, 63–66 (2016).

    ADS  CAS  PubMed  Google Scholar 

  30. 30.

    Lindenfelser, F., Marinelli, M., Negnevitsky, V., Ragg, S. & Home, J. P. Cooling atomic ions with visible and infra-red light. New J. Phys. 19, 063041 (2017).

    ADS  Google Scholar 

  31. 31.

    West, G. N. et al. Low-loss integrated photonics for the blue and ultraviolet regime. APL Photon. 4, 026101 (2019).

    ADS  Google Scholar 

  32. 32.

    Niffenegger, R. J. et al. Integrated multi-wavelength control of an ion qubit. Nature https://www.nature.com/articles/s41586-020-2811-x (2020).

  33. 33.

    Kaufmann, H. et al. Scalable creation of long-lived multipartite entanglement. Phys. Rev. Lett. 119, 150503 (2017).

    ADS  MathSciNet  CAS  PubMed  Google Scholar 

  34. 34.

    Schäfer, V. et al. Fast quantum logic gates with trapped-ion qubits. Nature 555, 75–78 (2018).

    ADS  PubMed  Google Scholar 

  35. 35.

    Saffman, M., Walker, T. G. & Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010).

    ADS  CAS  Google Scholar 

  36. 36.

    McKenna, T. P. et al. Cryogenic packaging of an optomechanical crystal. Opt. Express 27, 28782–28791 (2019).

    ADS  CAS  PubMed  Google Scholar 

  37. 37.

    Elshaari, A. W., Zadeh, I. E., Jöns, K. D. & Zwiller, V. Thermo-optic characterization of silicon nitride resonators for cryogenic photonic circuits. IEEE Photon. J. 8, 2701009 (2016).

    Google Scholar 

  38. 38.

    Leupold, F. M. Bang-bang Control of a Trapped-Ion Oscillator. PhD thesis, ETH Zurich (2015).

  39. 39.

    Lucas, D. et al. Isotope-selective photoionization for calcium ion trapping. Phys. Rev. A 69, 012711 (2004).

    ADS  Google Scholar 

  40. 40.

    Allcock, D. et al. Implementation of a symmetric surface-electrode ion trap with field compensation using a modulated Raman effect. New J. Phys. 12, 053026 (2010).

    ADS  Google Scholar 

  41. 41.

    Ballance, C. J. High-fidelity Quantum Logic in Ca +. PhD thesis, Oxford Univ. (2017).

  42. 42.

    Kotler, S., Akerman, N., Glickman, Y. & Ozeri, R. Nonlinear single-spin spectrum analyzer. Phys. Rev. Lett. 110, 110503 (2013).

    ADS  PubMed  Google Scholar 

  43. 43.

    Roos, C. et al. Nonlinear coupling of continuous variables at the single quantum level. Phys. Rev. A 77, 040302 (2008).

    ADS  Google Scholar 

  44. 44.

    Nie, X. R., Roos, C. F. & James, D. F. Theory of cross phase modulation for the vibrational modes of trapped ions. Phys. Lett. A 373, 422–425 (2009).

    ADS  CAS  MATH  Google Scholar 

  45. 45.

    Ma, L.-S., Jungner, P., Ye, J. & Hall, J. L. Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path. Opt. Lett. 19, 1777–1779 (1994).

    ADS  CAS  PubMed  Google Scholar 

  46. 46.

    Lechner, R. et al. Electromagnetically-induced-transparency ground-state cooling of long ion strings. Phys. Rev. A 93, 053401 (2016).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank D. Marchenko, D. Geuzebroek and A. Leinse at LioniX International for fabrication of the devices and for discussions during design; V. Negnevitsky and Matteo Marinelli for their work on the experimental control system and software used for these experiments; S. Miller for assistance in characterization of fabricated photonic devices; F. Gürkaynak at ETH for support with CAD software; the ETH FIRST cleanroom staff; and E. Schlatter for helpful advice on epoxies. We acknowledge funding from the Swiss National Fund grant number 200020165555, NCCR QSIT, ETH Zürich, the EU Quantum Flagship, and an ETH Postdoctoral Fellowship.

Author information

Affiliations

Authors

Contributions

K.K.M. conceived the work, and designed, characterized and assembled the trap devices. K.K.M., C.Z. and M.M. performed the trapped-ion experiments in an apparatus with substantial contributions from C.Z., M.M., T.-L.N. and M.S. KKM analysed the data. J.P.H. supervised the work, and K.K.M. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Karan K. Mehta.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Jungsang Kim and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Design layout.

a, Mask images for device fabrication across a four-inch wafer. b, Individual 2.2 × 2.2 cm2 reticle, showing trap designs as well as independent optics test structures. c, Trap design used in ion experiments presented here. In all images, SiN features are shown in red, the top trap electrode layer in grey and the ground plane in blue. The eight waveguides coupled to the fibre array are labelled at the left, with inputs 1 and 8 forming a loop structure used to align the fibre V-groove array.

Extended Data Fig. 2 Fibre attachment.

Fibre attachment process schematic and measured single-pass fibre–waveguide coupling losses inferred from a loop-back structure on-chip; solid line is a guide to the eye.

Extended Data Fig. 3 Ramsey coherence measurements.

We apply two π/2 pulses separated by a variable wait time, and the fringe contrast on scanning the phase of the second pulse relative to the first is plotted to assess \({T}_{2}^{\ast }\). Data are shown using the same light guided through the in-cryostat fibres and integrated couplers (black points and fit) or through free space (red points and fit). The fit to the data observed with the integrated coupler was used to infer laser noise parameters relevant to gate infidelity calculation; the observation of markedly faster decoherence when driving with the free-space beam (red points/fit) using the same 729-nm source indicates the integrated beam path’s advantage in insensitivity to cryostat vibrations. Error bars on points represent 68% confidence intervals on fit contrasts.

Extended Data Fig. 4 Readout histograms.

Histogram of photomultiplier tube (PMT) counts observed in detection events over all points in the parity scan of Fig. 4, fitted to a sum of three Poissonian distributions. Each distribution corresponds to counts obtained during a 250-μs detection period from events with either 0, 1 or 2 ions in the bright state.

Extended Data Fig. 5 Cross-talk characterization.

a, b, Rabi oscillations at zone 3 with light coupled to the port directly addressing this zone (input 3) (a), and with light coupled to the port intended to address zone 2 (input 5) (b). Fits to Rabi oscillations with a Gaussian envelope decay indicate π-times of 2.4 μs (a) and 2.6 ms (b).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mehta, K.K., Zhang, C., Malinowski, M. et al. Integrated optical multi-ion quantum logic. Nature 586, 533–537 (2020). https://doi.org/10.1038/s41586-020-2823-6

Download citation

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing