Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Strategic vision for improving human health at The Forefront of Genomics


Starting with the launch of the Human Genome Project three decades ago, and continuing after its completion in 2003, genomics has progressively come to have a central and catalytic role in basic and translational research. In addition, studies increasingly demonstrate how genomic information can be effectively used in clinical care. In the future, the anticipated advances in technology development, biological insights, and clinical applications (among others) will lead to more widespread integration of genomics into almost all areas of biomedical research, the adoption of genomics into mainstream medical and public-health practices, and an increasing relevance of genomics for everyday life. On behalf of the research community, the National Human Genome Research Institute recently completed a multi-year process of strategic engagement to identify future research priorities and opportunities in human genomics, with an emphasis on health applications. Here we describe the highest-priority elements envisioned for the cutting-edge of human genomics going forward—that is, at ‘The Forefront of Genomics’.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Four-area strategic framework at The Forefront of Genomics.
Fig. 2: Funding trends of NIH and NHGRI over the past 30 years.
Fig. 3: Virtuous cycles in human genomics research and clinical care.


  1. 1.

    The Human Genome Project; (accessed 28 June 2020)

  2. 2.

    Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    CAS  PubMed  ADS  Google Scholar 

  3. 3.

    International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004).

    ADS  Google Scholar 

  4. 4.

    NHGRI. The cost of sequencing a human genome; (accessed 12 June 2020)

  5. 5.

    Moore, J. E. et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583, 699–710 (2020).

    PubMed  PubMed Central  ADS  Google Scholar 

  6. 6.

    Shema, E., Bernstein, B. E. & Buenrostro, J. D. Single-cell and single-molecule epigenomics to uncover genome regulation at unprecedented resolution. Nat. Genet. 51, 19–25 (2019).

    CAS  PubMed  Google Scholar 

  7. 7.

    The 1000 Genomes Project Consortium et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

    PubMed Central  Google Scholar 

  8. 8.

    Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020). Analysis of a large dataset of exome sequences, yielding important descriptions of the extent and nature of human genomic variation and insights into protein evolution.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  9. 9.

    Posey, J. E. et al. Insights into genetics, human biology and disease gleaned from family based genomic studies. Genet. Med. 21, 798–812 (2019).

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Claussnitzer, M. et al. A brief history of human disease genetics. Nature 577, 179–189 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. 11.

    Manolio, T. A. et al. Opportunities, resources, and techniques for implementing genomics in clinical care. Lancet 394, 511–520 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Mardis, E. R. The impact of next-generation sequencing on cancer genomics: from discovery to clinic. Cold Spring Harb. Perspect. Med. 9, a036269 (2019).

    CAS  PubMed  Google Scholar 

  13. 13.

    Bianchi, D. W. & Chiu, R. W. K. Sequencing of circulating cell-free DNA during pregnancy. N. Engl. J. Med. 379, 464–473 (2018).

    CAS  PubMed  Google Scholar 

  14. 14.

    Wright, C. F., FitzPatrick, D. R. & Firth, H. V. Paediatric genomics: diagnosing rare disease in children. Nat. Rev. Genet. 19, 253–268 (2018).

    CAS  PubMed  Google Scholar 

  15. 15.

    Collins, F. S., Green, E. D., Guttmacher, A. E. & Guyer, M. S. A vision for the future of genomics research. Nature 422, 835–847 (2003).

    CAS  PubMed  ADS  Google Scholar 

  16. 16.

    Green, E. D. & Guyer, M. S. Charting a course for genomic medicine from base pairs to bedside. Nature 470, 204–213 (2011).

    CAS  PubMed  Google Scholar 

  17. 17.

    McEwen, J. E. et al. The Ethical, Legal, and Social Implications Program of the National Human Genome Research Institute: reflections on an ongoing experiment. Annu. Rev. Genomics Hum. Genet. 15, 481–505 (2014).

    CAS  PubMed  Google Scholar 

  18. 18.

    Burke, W. et al. The translational potential of research on the ethical, legal, and social implications of genomics. Genet. Med. 17, 1–9 (2014).

    Google Scholar 

  19. 19.

    Popejoy, A. B. & Fullerton, S. M. Genomics is failing on diversity. Nature 538, 161–164 (2016). Comprehensive analysis of genome-wide association studies, demonstrating continued severe underrepresentation of individuals of African and Latin American ancestry and Indigenous peoples.

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  20. 20.

    Wolf, S. M. et al. Integrating rules for genomic research, clinical care, public health screening and DTC testing: creating translational law for translational genomics. J. Law Med. Ethics 48, 69–86 (2020).

    PubMed  Google Scholar 

  21. 21.

    Adam, D. The promise and peril of the new science of social genomics. Nature 574, 618–620 (2019). Summary of recent studies examining the genetics of bio-behavioural traits, highlighting dangers to groups and society of over-interpreting results in this new field.

    CAS  PubMed  ADS  Google Scholar 

  22. 22.

    Dias, R. & Torkamani, A. Artificial intelligence in clinical and genomic diagnostics. Genome Med. 11, 70 (2019).

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Schloss, J. A., Gibbs, R. A., Makhijani, V. B. & Marziali, A. Cultivating DNA sequencing technology after the human genome project. Annu. Rev. Genomics Hum. Genet. 21, 117–138 (2020). Retrospective overview of the NHGRI program for advancing DNA-sequencing technologies, the goal of which was to reduce the cost of sequencing a human genome to $1,000.

    CAS  PubMed  Google Scholar 

  24. 24.

    ENCODE: Encyclopedia of DNA Elements; (accessed 24 June 2020).

  25. 25.

    Risca, V. I. & Greenleaf, W. J. Unraveling the 3D genome: genomics tools for multiscale exploration. Trends Genet. 31, 357–372 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Logsdon, G. A., Vollger, M. R. & Eichler, E. E. Long-read human genome sequencing and its applications. Nat. Rev. Genet. (2020).

  27. 27.

    Miga, K. H. et al. Telomere-to-telomere assembly of a complete human X chromosome. Nature 585, 79–84 (2020). Demonstration of the use of emerging DNA-sequencing technologies, analysis methods, and validation routines to produce the first gapless de novo assembly of a human chromosome sequence.

    CAS  PubMed  Google Scholar 

  28. 28.

    Human Pangenome Reference Consortium. Diverse human references drive genomic discoveries for everyone; (accessed 29 June 2020)

  29. 29.

    Zerbino, D. R., Frankish, A. & Flicek, P. Progress, challenges, and surprises in annotating the human genome. Annu. Rev. Genomics Hum. Genet. 21, 55–79 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Rood, J. E. et al. Toward a common coordinate framework for the human body. Cell 179, 1455–1467 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Stuart, T. & Satija, R. Integrative single-cell analysis. Nat. Rev. Genet. 20, 257–272 (2019).

    CAS  PubMed  Google Scholar 

  32. 32.

    Mimitou, E. P. et al. Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells. Nat. Methods 16, 409–412 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Schreiber, J., Durham, T., Bilmes, J. & Noble, W. S. Avocado: a multi-scale deep tensor factorization method learns a latent representation of the human epigenome. Genome Biol. 21, 81 (2020).

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Cunningham, F. et al. Ensembl 2019. Nucleic Acids Res. 47 (D1), D745–D751 (2019).

    CAS  PubMed  Google Scholar 

  35. 35.

    Lewin, H. A. et al. Earth BioGenome Project: Sequencing life for the future of life. Proc. Natl Acad. Sci. USA 115, 4325–4333 (2018).

    CAS  PubMed  Google Scholar 

  36. 36.

    Lindblad-Toh, K. What animals can teach us about evolution, the human genome, and human disease. Ups. J. Med. Sci. 125, 1–9 (2020).

    PubMed  PubMed Central  Google Scholar 

  37. 37.

    Schatz, M. C. Biological data sciences in genome research. Genome Res. 25, 1417–1422 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016). Description of foundational principles to improve data sharing and stewardship by ensuring that biomedical research data (including genomic data) are findable, accessible, interoperable, and reusable.

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Anderson, W. et al. Towards coordinated international support of core data resources for the life sciences. Preprint at (2017).

  40. 40.

    Grossman, R. L. Data lakes, clouds, and commons: a review of platforms for analyzing and sharing genomic data. Trends Genet. 35, 223–234 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Haendel, M. A., Chute, C. G. & Robinson, P. N. Classification, ontology, and precision medicine. N. Engl. J. Med. 379, 1452–1462 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Martínez-Romero, M. et al. Using association rule mining and ontologies to generate metadata recommendations from multiple biomedical databases. Database (Oxford) 2019, 59 (2019).

    Google Scholar 

  43. 43.

    Levy, K. D. et al. Opportunities to implement a sustainable genomic medicine program: lessons learned from the IGNITE Network. Genet. Med. 21, 743–747 (2019).

    CAS  PubMed  Google Scholar 

  44. 44.

    Williams, M. S. et al. Genomic information for clinicians in the electronic health record: Lessons learned from the clinical genome resource project and the electronic medical records and genomics network. Front. Genet. 10, 1059 (2019).

    PubMed  PubMed Central  Google Scholar 

  45. 45.

    Lemke, A. A. et al. Primary care physician experiences utilizing a family health history tool with electronic health record-integrated clinical decision support: an implementation process assessment. J. Community Genet. 11, 339–350 (2020).

    PubMed  PubMed Central  ADS  Google Scholar 

  46. 46.

    Khera, A. V. et al. Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat. Genet. 50, 1219–1224 (2018). Development and validation of genome-wide polygenic scores that identify population subsets with risk levels equivalent to monogenic genomic variants that are commonly reported and acted upon.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Zeggini, E., Gloyn, A. L., Barton, A. C. & Wain, L. V. Translational genomics and precision medicine: Moving from the lab to the clinic. Science 365, 1409–1413 (2019).

    CAS  PubMed  ADS  Google Scholar 

  48. 48.

    Koehly, L. M. et al. Social and behavioral science at the forefront of genomics: discovery, translation, and health equity. Soc. Sci. Med. 112450, 112450 (2019).

    Google Scholar 

  49. 49.

    Khan, S. S., Cooper, R. & Greenland, P. Do polygenic risk scores improve patient selection for prevention of coronary artery disease? J. Am. Med. Assoc. 323, 614–615 (2020).

    Google Scholar 

  50. 50.

    Mostafavi, H. et al. Variable prediction accuracy of polygenic scores within an ancestry group. eLife 9, 1–52 (2020).

    Google Scholar 

  51. 51.

    Morris, T. T., Davies, N. M., Hemani, G. & Smith, G. D. Population phenomena inflate genetic associations of complex social traits. Sci. Adv. 6, eaay0328 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  52. 52.

    Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  53. 53.

    Denny, J. C. et al. The “All of Us” Research Program. N. Engl. J. Med. 381, 668–676 (2019).

    PubMed  Google Scholar 

  54. 54.

    Garrison, N. A. et al. Genomic research through an indigenous lens: understanding the expectations. Annu. Rev. Genomics Hum. Genet. 20, 495–517 (2019). Discussion of issues related to conducting genomics research with Indigenous peoples, coupled with suggestions for respecting tribal governance and protecting Indigenous people from group harms.

    CAS  PubMed  Google Scholar 

  55. 55.

    Sanderson, S. C. et al. Public attitudes toward consent and data sharing in biobank research: a large multi-site experimental survey in the US. Am. J. Hum. Genet. 100, 414–427 (2017). Survey results from 13,000 individuals regarding participation in research in which their data are shared with others, yielding insight into factors that predict a willingness of people to participate in research and concerns about data privacy.

    CAS  Google Scholar 

  56. 56.

    Milne, R. et al. Trust in genomic data sharing among members of the general public in the UK, USA, Canada and Australia. Hum. Genet. 138, 1237–1246 (2019).

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    Grishin, D., Obbad, K. & Church, G. M. Data privacy in the age of personal genomics. Nat. Biotechnol. 37, 1115–1117 (2019).

    CAS  PubMed  Google Scholar 

  58. 58.

    Genomic Literacy, Education and Engagement Initiative; (accessed 29 June 2020)

  59. 59.

    Manolio, T. A. & Murray, M. F. The growing role of professional societies in educating clinicians in genomics. Genet. Med. 16, 571–572 (2014).

    PubMed  Google Scholar 

  60. 60.

    Krakow, M., Ratcliff, C. L., Hesse, B. W. & Greenberg-Worisek, A. J. Assessing genetic literacy awareness and knowledge gaps in the US population: results from the health information national trends survey. Public Health Genomics 20, 343–348 (2017).

    PubMed  Google Scholar 

  61. 61.

    LaRue, K. M., McKernan, M. P., Bass, K. M. & Wray, C. G. Teaching the genome generation: bringing modern human genetics into the classroom through teacher professional development. J. STEM Outreach 1, 48–60 (2018).

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Mboowa, G. & Sserwadda, I. Role of genomics literacy in reducing the burden of common genetic diseases in Africa. Mol. Genet. Genomic Med. 7, e00776 (2019).

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Veilleux, S., Bouffard, M. & Bourque Bouliane, M. Patient and health care provider needs and preferences in understanding pharmacogenomic and genomic testing: a meta-data analysis. Qual. Health Res. 30, 43–59 (2020).

    PubMed  Google Scholar 

  64. 64.

    Kung, J. & Wu, C.-T. Leveling the playing field: closing the gap in public awareness of genetics between the well served and underserved. Hastings Cent. Rep. 46, 17–20 (2016).

    PubMed  Google Scholar 

  65. 65.

    Stephens, Z. D. et al. Big data: astronomical or genomical? PLoS Biol. 13, e1002195 (2015).

    PubMed  PubMed Central  Google Scholar 

  66. 66.

    Attwood, T. K., Blackford, S., Brazas, M. D., Davies, A. & Schneider, M. V. A global perspective on evolving bioinformatics and data science training needs. Brief. Bioinform. 20, 398–404 (2019).

    PubMed  Google Scholar 

  67. 67.

    Genomics Education Partnership; (accessed 16 June 2020).

  68. 68.

    Campion, M., Goldgar, C., Hopkin, R. J., Prows, C. A. & Dasgupta, S. Genomic education for the next generation of health-care providers. Genet. Med. 21, 2422–2430 (2019).

    PubMed  Google Scholar 

  69. 69.

    McClaren, B. J. et al. Development of an evidence-based, theory-informed national survey of physician preparedness for genomic medicine and preferences for genomics continuing education. Front. Genet. 11, 59 (2020).

    PubMed  PubMed Central  Google Scholar 

  70. 70.

    Dougherty, M. J., Wicklund, C. & Johansen Taber, K. A. Challenges and opportunities for genomics education: Insights from an Institute of Medicine Roundtable Activity. J. Contin. Educ. Health Prof. 36, 82–85 (2016).

    PubMed  Google Scholar 

  71. 71.

    NHGRI. Inter-Society Coordinating Committee for Practitioner Education in Genomics; (accessed 16 June 2020).

  72. 72.

    Valantine, H. A., Collins, F. S. & Verma, I. M. National Institutes of Health addresses the science of diversity. Proc. Natl Acad. Sci. USA 112, 12240–12242 (2015).

    CAS  PubMed  ADS  Google Scholar 

  73. 73.

    Hofstra, B. et al. The diversity–innovation paradox in science. Proc. Natl Acad. Sci. USA 117, 9284–9291 (2020). Study of the US doctorate recipients from 1977 to 2015, identifying new contributions by gender and racial or ethnic minority scholars, evidence for lower rates of recognition by majority scholars, and the resulting diversity–innovation paradox in science.

    CAS  PubMed  Google Scholar 

  74. 74.

    Martinez, L. R., Boucaud, D. W., Casadevall, A. & August, A. Factors contributing to the success of NIH-designated underrepresented minorities in academic and nonacademic research positions. CBE Life Sci. Educ. 17, ar32 (2018).

    PubMed  Google Scholar 

  75. 75.

    Schindler, D., Dai, J. & Cai, Y. Synthetic genomics: a new venture to dissect genome fundamentals and engineer new functions. Curr. Opin. Chem. Biol. 46, 56–62 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Doudna, J. A. The promise and challenge of therapeutic genome editing. Nature 578, 229–236 (2020). Review of the scientific, technical, and ethical aspects of using CRISPR technology for therapeutic applications in humans.

    CAS  PubMed  ADS  Google Scholar 

  77. 77.

    UK Biobank; (accessed 14 June 2020).

  78. 78.

    NIH. All of Us; (accessed 14 June 2020).

  79. 79.

    International HundredK+ Cohorts Consortium (IHCC). Linking cohorts, understanding biology, improving health; (accessed 14 June 2020).

  80. 80.

    Birney, E., Vamathevan, J. & Goodhand, P. Genomics in healthcare: GA4GH looks to 2022. Preprint at (2017).

  81. 81.

    Stark, Z. et al. Integrating genomics into healthcare: a global responsibility. Am. J. Hum. Genet. 104, 13–20 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Manolio, T. A. et al. Bedside back to bench: building bridges between basic and clinical genomic research. Cell 169, 6–12 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Rehm, H. L. et al. ClinGen — The clinical genome resource. N. Engl. J. Med. 372, 2235–2242 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. 84.

    Starita, L. M. et al. Variant interpretation: functional assays to the rescue. Am. J. Hum. Genet. 101, 315–325 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    International Common Disease Alliance; (accessed 24 June 2020).

  86. 86.

    Welcome to the Pan-Cancer Atlas; (accessed 19 June 2020).

  87. 87.

    Steensma, D. P. et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood 126, 9–16 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Baslan, T. & Hicks, J. Unravelling biology and shifting paradigms in cancer with single-cell sequencing. Nat. Rev. Cancer 17, 557–569 (2017).

    CAS  PubMed  Google Scholar 

  89. 89.

    D’Gama, A. M. & Walsh, C. A. Somatic mosaicism and neurodevelopmental disease. Nat. Neurosci. 21, 1504–1514 (2018).

    PubMed  Google Scholar 

  90. 90.

    Roden, D. M. et al. Pharmacogenomics. Lancet 394, 521–532 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Corbin, L. J. et al. Formalising recall by genotype as an efficient approach to detailed phenotyping and causal inference. Nat. Commun. 9, 711 (2018).

    PubMed  PubMed Central  ADS  Google Scholar 

  92. 92.

    Savatt, J. M. et al. ClinGen’s GenomeConnect registry enables patient-centered data sharing. Hum. Mutat. 39, 1668–1676 (2018).

    PubMed  PubMed Central  Google Scholar 

  93. 93.

    Eadon, M. T. et al. Implementation of a pharmacogenomics consult service to support the INGENIOUS trial. Clin. Pharmacol. Ther. 100, 63–66 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Darnell, A. J. et al. A clinical service to support the return of secondary genomic findings in human research. Am. J. Hum. Genet. 98, 435–441 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95.

    CDC. Public Health Genomics and Precision Health Knowledge Base (v6.4); (accessed 17 June 2020).

  96. 96.

    Dotson, W. D. et al. Prioritizing genomic applications for action by level of evidence: a horizon-scanning method. Clin. Pharmacol. Ther. 95, 394–402 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Hopkins, P. N. Genotype-guided diagnosis in familial hypercholesterolemia: population burden and cascade screening. Curr. Opin. Lipidol. 28, 136–143 (2017).

    CAS  PubMed  Google Scholar 

  98. 98.

    Bierne, H., Hamon, M. & Cossart, P. Epigenetics and bacterial infections. Cold Spring Harb. Perspect. Med. 2, a010272 (2012).

    PubMed  PubMed Central  Google Scholar 

  99. 99.

    Bhat, A. A. et al. Role of non-coding RNA networks in leukemia progression, metastasis and drug resistance. Mol. Cancer 19, 57 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100.

    Sparks, T. M., Harabula, I. & Pombo, A. Evolving methodologies and concepts in 4D nucleome research. Curr. Opin. Cell Biol. 64, 105–111 (2020).

    CAS  PubMed  Google Scholar 

  101. 101.

    Young, A. I., Benonisdottir, S., Przeworski, M. & Kong, A. Deconstructing the sources of genotype-phenotype associations in humans. Science 365, 1396–1400 (2019).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  102. 102.

    Mitra, K., Carvunis, A.-R., Ramesh, S. K. & Ideker, T. Integrative approaches for finding modular structure in biological networks. Nat. Rev. Genet. 14, 719–732 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Bien, S. A. et al. The future of genomic studies must be globally representative: perspectives from PAGE. Annu. Rev. Genomics Hum. Genet. 20, 181–200 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Bentley, A. R., Callier, S. L. & Rotimi, C. N. Evaluating the promise of inclusion of African ancestry populations in genomics. Genomic Med. 5, 5 (2020).

    Google Scholar 

  105. 105.

    Hindorff, L. A. et al. Prioritizing diversity in human genomics research. Nat. Rev. Genet. 19, 175–185 (2018).

    CAS  PubMed  Google Scholar 

  106. 106.

    Wojcik, G. L. et al. Genetic analyses of diverse populations improves discovery for complex traits. Nature 570, 514–518 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107.

    Landry, L. G., Ali, N., Williams, D. R., Rehm, H. L. & Bonham, V. L. Lack of diversity in genomic databases is a barrier to translating precision medicine research into practice. Health Aff. (Millwood) 37, 780–785 (2018).

    Google Scholar 

  108. 108.

    Manrai, A. K. et al. Genetic misdiagnoses and the potential for health disparities. N. Engl. J. Med. 375, 655–665 (2016). Demonstration of frequent erroneous classification of genomic variants as pathogenic among patients of African or unspecified ancestry that were subsequently re-categorized as benign, with considerable health implications of those misclassifications.

    PubMed  PubMed Central  Google Scholar 

  109. 109.

    Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 584–591 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. 110.

    Horowitz, C. R. et al. Successful recruitment and retention of diverse participants in a genomics clinical trial: a good invitation to a great party. Genet. Med. 21, 2364–2370 (2019).

    PubMed  Google Scholar 

  111. 111.

    Botkin, J. R., Mancher, M., Busta, E. R. & Downey, A. S. Returning Individual Research Results to Participants (National Academies Press, 2018).

  112. 112.

    Lázaro-Muñoz, G. et al. Issues facing us. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 180, 543–554 (2019).

    PubMed  PubMed Central  Google Scholar 

  113. 113.

    Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  114. 114.

    Hasin, Y., Seldin, M. & Lusis, A. Multi-omics approaches to disease. Genome Biol. 18, 83 (2017).

    PubMed  PubMed Central  Google Scholar 

  115. 115.

    Chambers, D. A., Feero, W. G. & Khoury, M. J. Convergence of implementation science, precision medicine, and the learning health care system: a new model for biomedical research. J. Am. Med. Assoc. 315, 1941–1942 (2016).

    CAS  Google Scholar 

  116. 116.

    Sugano, S. International code of conduct for genomic and health-related data sharing. HUGO J. 8, 1 (2014).

    PubMed  PubMed Central  Google Scholar 

  117. 117.

    Clayton, E. W., Halverson, C. M., Sathe, N. A. & Malin, B. A. A systematic literature review of individuals’ perspectives on privacy and genetic information in the United States. PLoS One 13, e0204417 (2018).

    PubMed  PubMed Central  Google Scholar 

  118. 118.

    Cavallari, L. H. et al. Multi-site investigation of strategies for the clinical implementation of CYP2D6 genotyping to guide drug prescribing. Genet. Med. 21, 2255–2263 (2019).

    PubMed  PubMed Central  Google Scholar 

  119. 119.

    Ginsburg, G. S. A global collaborative to advance genomic medicine. Am. J. Hum. Genet. 104, 407–409 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


The strategic vision described here was formulated on behalf of the NHGRI. We are grateful to the many members of the institute staff for their contributions to the associated planning process (see for details) as well as to the numerous external colleagues who provided input to the process and draft versions of this strategic vision. The National Advisory Council for Human Genome Research (current members are J. Botkin, T. Ideker, S. Plon, J. Haines, S. Fodor, R. Irizarry, P. Deverka, W. Chung, M. Craven, H. Dietz, S. Rich, H. Chang, L. Parker, L. Pennacchio, and O. Troyanskaya) ratified the strategic planning process, themes, and priorities associated with this strategic vision.

Author information




All authors contributed to the concepts, writing, and/or revisions of the manuscript.

Corresponding author

Correspondence to Eric D. Green.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Jantina de Vries, Eleftheria Zeggini and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Green, E.D., Gunter, C., Biesecker, L.G. et al. Strategic vision for improving human health at The Forefront of Genomics. Nature 586, 683–692 (2020).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing