Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The superconducting quasicharge qubit


The non-dissipative nonlinearity of Josephson junctions1 converts macroscopic superconducting circuits into artificial atoms2, enabling some of the best-controlled qubits today3,4. Three fundamental types of superconducting qubit are known5, each reflecting a distinct behaviour of quantum fluctuations in a Cooper pair condensate: single-charge tunnelling (charge qubit6,7), single-flux tunnelling (flux qubit8) and phase oscillations (phase qubit9 or transmon10). Yet, the dual nature of charge and flux suggests that circuit atoms must come in pairs. Here we introduce the missing superconducting qubit, ‘blochnium’, which exploits a coherent insulating response of a single Josephson junction that emerges from the extension of phase fluctuations beyond 2π (refs. 11,12,13,14). Evidence for such an effect has been found in out-of-equilibrium direct-current transport through junctions connected to high-impedance leads15,16,17,18,19, although a full consensus on the existence of extended phase fluctuations is so far absent20,21,22. We shunt a weak junction with an extremely high inductance—the key technological innovation in our experiment—and measure the radiofrequency excitation spectrum as a function of external magnetic flux through the resulting loop. The insulating character of the junction is manifested by the vanishing flux sensitivity of the qubit transition between the ground state and the first excited state, which recovers rapidly for transitions to higher-energy states. The spectrum agrees with a duality mapping of blochnium onto a transmon, which replaces the external flux by the offset charge and introduces a new collective quasicharge variable instead of the superconducting phase23,24. Our findings may motivate the exploration of macroscopic quantum dynamics in ultrahigh-impedance circuits, with potential applications in quantum computing and metrology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Blochnium artificial atom.
Fig. 2: Device implementation.
Fig. 3: Measured transitions of blochnium.
Fig. 4: Interpretation of spectroscopy data.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The codes that support the findings of this study are available from corresponding author upon reasonable request.


  1. 1.

    Josephson, B. D. Possible new effects in superconductive tunnelling. Phys. Lett. 1, 251–253 (1962).

    ADS  Article  Google Scholar 

  2. 2.

    Clarke, J., Cleland, A., Devoret, M. H., Esteve, D. & Martinis, J. Quantum mechanics of a macroscopic variable: the phase difference of a Josephson junction. Science 239, 992–997 (1988).

    ADS  CAS  Article  Google Scholar 

  3. 3.

    Devoret, M. H. & Schoelkopf, R. Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013).

    ADS  CAS  Article  Google Scholar 

  4. 4.

    Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    ADS  CAS  Article  Google Scholar 

  5. 5.

    Clarke, J. & Wilhelm, F. K. Superconducting quantum bits. Nature 453, 1031–1042 (2008).

    ADS  CAS  Article  Google Scholar 

  6. 6.

    Nakamura, Y., Pashkin, Y. A. & Tsai, J. S. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398, 786–788 (1999).

    ADS  CAS  Article  Google Scholar 

  7. 7.

    Vion, D. et al. Manipulating the quantum state of an electrical circuit. Science 296, 886–889 (2002).

    ADS  CAS  Article  Google Scholar 

  8. 8.

    Chiorescu, I., Nakamura, Y., Harmans, C. J. P. M. & Mooij, J. E. Coherent quantum dynamics of a superconducting flux qubit. Science 299, 1869–1871 (2003).

    ADS  CAS  Article  Google Scholar 

  9. 9.

    Martinis, J. M., Nam, S., Aumentado, J. & Urbina, C. Rabi oscillations in a large Josephson-junction qubit. Phys. Rev. Lett. 89, 117901 (2002).

    ADS  Article  Google Scholar 

  10. 10.

    Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

    ADS  Article  Google Scholar 

  11. 11.

    Schmid, A. Diffusion and localization in a dissipative quantum system. Phys. Rev. Lett. 51, 1506 (1983).

    ADS  Article  Google Scholar 

  12. 12.

    Bulgadaev, S. A. Phase diagram of a dissipative quantum system. JETP Lett. 39, 264–267 (1984).

    Google Scholar 

  13. 13.

    Averin, D. V., Zorin, A. B. & Likharev, K. K. Bloch oscillations in small Josephson junctions. Sov. Phys. JETP 61, 407–413 (1985).

    Google Scholar 

  14. 14.

    Schön, G. & Zaikin, A. D. Quantum coherent effects, phase transitions, and the dissipative dynamics of ultra small tunnel junctions. Phys. Rep. 198, 237–412 (1990).

    ADS  Article  Google Scholar 

  15. 15.

    Kuzmin, L. S. & Haviland, D. B. Observation of the Bloch oscillations in an ultrasmall Josephson junction. Phys. Rev. Lett. 67, 2890 (1991).

    ADS  CAS  Article  Google Scholar 

  16. 16.

    Haviland, D. B. & Delsing, P. Cooper-pair charge solitons: the electrodynamics of localized charge in a superconductor. Phys. Rev. B 54, R6857–R6860 (1996).

    ADS  CAS  Article  Google Scholar 

  17. 17.

    Penttilä, J. S., Parts, Ü., Hakonen, P. J., Paalanen, M. A. & Sonin, E. B. “Superconductor–insulator transition” in a single Josephson junction. Phys. Rev. Lett. 82, 1004 (1999).

    ADS  Article  Google Scholar 

  18. 18.

    Watanabe, M. & Haviland, D. B. Coulomb blockade and coherent single-Cooper-pair tunneling in single Josephson junctions. Phys. Rev. Lett. 86, 5120 (2001).

    ADS  CAS  Article  Google Scholar 

  19. 19.

    Corlevi, S., Guichard, W., Hekking, F. W. J. & Haviland, D. B. Phase-charge duality of a Josephson junction in a fluctuating electromagnetic environment. Phys. Rev. Lett. 97, 096802 (2006).

    ADS  CAS  Article  Google Scholar 

  20. 20.

    Ergül, A. et al. Localizing quantum phase slips in one-dimensional Josephson junction chains. New J. Phys. 15, 095014 (2013).

    ADS  Article  Google Scholar 

  21. 21.

    Cedergren, K. et al. Insulating Josephson junction chains as pinned luttinger liquids. Phys. Rev. Lett. 119, 167701 (2017).

    ADS  Article  Google Scholar 

  22. 22.

    Murani, A. et al. Absence of a dissipative quantum phase transition in Josephson junctions. Phys. Rev. X 10, 021003 (2020).

    CAS  Google Scholar 

  23. 23.

    Matveev, K. A., Larkin, A. I. & Glazman, L. I. Persistent current in superconducting nanorings. Phys. Rev. Lett. 89, 096802 (2002).

    ADS  CAS  Article  Google Scholar 

  24. 24.

    Koch, J., Manucharyan, V., Devoret, M. H. & Glazman, L. I. Charging effects in the inductively shunted Josephson junction. Phys. Rev. Lett. 103, 217004 (2009).

    ADS  Article  Google Scholar 

  25. 25.

    Manucharyan, V. E., Koch, J., Glazman, L. I. & Devoret, M. H. Fluxonium: single Cooper-pair circuit free of charge offsets. Science 326, 113–116 (2009).

    ADS  CAS  Article  Google Scholar 

  26. 26.

    Nguyen, L. B. et al. High-coherence fluxonium qubit. Phys. Rev. X 9, 041041 (2019).

    CAS  Google Scholar 

  27. 27.

    Manucharyan, V. E. et al. Evidence for coherent quantum phase slips across a Josephson junction array. Phys. Rev. B 85, 024521 (2012).

    ADS  Article  Google Scholar 

  28. 28.

    Kuzmin, R. et al. Quantum electrodynamics of a superconductor-insulator phase transition. Nat. Phys. (2019).

  29. 29.

    Kou, A. et al. Simultaneous monitoring of fluxonium qubits in a waveguide. Phys. Rev. Appl. 9, 064022 (2018).

    ADS  CAS  Article  Google Scholar 

  30. 30.

    Schuster, D. I. et al. ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. Phys. Rev. Lett. 94, 123602 (2005).

    ADS  CAS  Article  Google Scholar 

  31. 31.

    Bell, M. T., Sadovskyy, I. A., Ioffe, L. B., Kitaev, A. Y. & Gershenson, M. E. Quantum superinductor with tunable nonlinearity. Phys. Rev. Lett. 109, 137003 (2012).

    ADS  CAS  Article  Google Scholar 

  32. 32.

    Douçot, B. & Ioffe, L. B. Physical implementation of protected qubits. Rep. Prog. Phys. 75, 072001 (2012).

    ADS  MathSciNet  Article  Google Scholar 

  33. 33.

    Brooks, P., Kitaev, A. & Preskill, J. Protected gates for superconducting qubits. Phys. Rev. A 87, 052306 (2013).

    ADS  Article  Google Scholar 

  34. 34.

    Nguyen, F. et al. Current to frequency conversion in a Josephson circuit. Phys. Rev. Lett. 99, 187005 (2007).

    ADS  CAS  Article  Google Scholar 

  35. 35.

    Di Marco, A., Hekking, F. W. J. & Rastelli, G. Quantum phase-slip junction under microwave irradiation. Phys. Rev. B 91, 184512 (2015).

    ADS  Article  Google Scholar 

  36. 36.

    Dolan, G. J. Offset masks for lift-off photoprocessing. Appl. Phys. Lett. 31, 337–339 (1977).

    ADS  Article  Google Scholar 

  37. 37.

    Frunzio, L., Wallraff, A., Schuster, D., Majer, J. & Schoelkopf, R. Fabrication and characterization of superconducting circuit QED devices for quantum computation. IEEE Trans. Appl. Supercond. 15, 860–863 (2005).

    ADS  Article  Google Scholar 

  38. 38.

    Chang, F. I. et al. Gas-phase silicon micromachining with xenon difluoride. In Proc. SPIE 2641, (SPIE, 1995).

  39. 39.

    Chu, Y. et al. Suspending superconducting qubits by silicon micromachining. Appl. Phys. Lett. 109, 112601 (2016).

    ADS  Article  Google Scholar 

Download references


We acknowledge funding from NSF-CAREER (1455261), Alfred P. Sloan Foundation, NSF PFC at JQI (1430094), and the ARO-LPS HiPS programme (W911NF-18-1-0146).

Author information




R.A.M. fabricated devices and performed measurements guided by I.V.P.; I.V.P. analysed the data and co-wrote the manuscript with V.E.M.; L.B.N. and Y.-H.L. built the low-temperature microwave measurement setup; V.E.M. managed the project. All authors contributed to discussions of the results.

Corresponding author

Correspondence to Vladimir E. Manucharyan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Göran Johansson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Qubit spectroscopy.

Stitched one- and two-tone spectroscopy data as a function of the spectroscopy frequency and the normalized external flux through the loop. The fit (dashed lines) to the transition spectrum of the Hamiltonian of equation (1) is superimposed on the data. The data were collected in a patch-wise manner, with the measurement parameters optimized locally to improve the visibility of the transitions out of the ground state |0. As in Fig. 3b, nonlinear colour maps are used to assign colour to the measured signal. Note that the deviation between the fit and the data is noticeable only from the |0 → |6 transition.

Extended Data Fig. 2 Persistent current.

Persistent current in the ground state of the device 0|I|0I0 0|sin(φ − φext)|0, where I0 = 9.5 nA is the junction critical current, plotted as a function of the external flux, φext. The current is calculated using the extracted device parameters.

Extended Data Fig. 3 Flux dispersion and matrix elements.

a, Zoom-in on the lowest two states of Fig. 4a. Eigenenergies of the Hamiltonians of equation (1) (dashed lines) and equation (2) (solid lines) and of a hypothetical device without the Josephson junction (grey dotted lines) as a function of the external flux, φext. The spectra are calculated using the extracted device parameters. b, Matrix element 0|φ|1 as a function of the external flux, φext. The dashed line corresponds to EJ/h = 4.70 GHz and should be compared to the dotted line, which corresponds to EJ = 0—that is, to the hypothetical case without the Josephson junction. In both panels, EC/h = 7.07 GHz and EL/h = 66.5 MHz.

Extended Data Fig. 4 Ground-state wavefunctions of the measured device.

ah, Ground-state wavefunctions in the phase (φ) and integer-flux (m) bases (ad) and in the charge (Q) and quasicharge (q) bases (fh). a, e, Ground-state wavefunctions of the device discussed in the main text for φext = 0. The black solid line in a corresponds to the unbounded, continuous-phase φ basis and the black solid line in e to the continuous-charge Q basis, which are the natural bases for the Hamiltonian of equation (1). The stems in a correspond to the discrete integer-flux basis and the dotted grey line in e to the periodic quasicharge basis, which are the natural bases for the Hamiltonian of equation (2). EJ/h = 4.70 GHz, EC/h = 7.07 GHz and EL/h = 66.5 MHz. b, f, Same as a, e, but for a ten-times-larger inductance, that is, EL/h = 6.65 MHz. c, g, Same as a, e, but for a 100- times-larger inductance, that is, EL/h = 0.67 MHz. d, h, Cooper pair box (CPB) wavefunction in the phase φ (d) and charge Q (h) bases computed for the same values of EJ and EC used in ac and eg, EJ/EC = 0.66. A single period (−π, π] in d is highlighted in solid grey. The offset charge is set to zero.

Extended Data Fig. 5 Ground-state wavefunctions for modified device parameters.

Same as Extended Data Fig. 4, but for EJ/h = 4.70 GHz and EC/h = 1.18 GHz, so that EJ/EC = 4.0. Single periods (−e, e] in eg are highlighted in solid grey.

Extended Data Fig. 6 Energy relaxation and decoherence.

Measurement of the energy relaxation time T1 and spin-echo coherence time T2 at an external flux bias point close to the half-flux quantum. The measured time traces are fitted with decaying exponents. In the spin-echo sequence, the refocusing π rotation was applied around the axis perpendicular to the axis of the two π/2 rotations.

Extended Data Fig. 7 Dephasing limit.

Estimated dephasing time Tφ due to the first-order sensitivity of the qubit transition frequency f01 to the flux noise. Here, we use \(1/{T}_{\phi }=2{\rm{\pi }}\frac{\partial {f}_{01}}{\partial \varPhi }A\sqrt{\mathrm{ln}\,2}\), where Φ is the total magnetic flux through the loop, and assume typical flux noise amplitude26 of A ≈ 1.8 × 10−6(h/2e).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pechenezhskiy, I.V., Mencia, R.A., Nguyen, L.B. et al. The superconducting quasicharge qubit. Nature 585, 368–371 (2020).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links