Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum distance and anomalous Landau levels of flat bands

An Author Correction to this article was published on 02 August 2021

This article has been updated


Semiclassical quantization of electronic states under a magnetic field, as proposed by Onsager, describes not only the Landau level spectrum but also the geometric responses of metals under a magnetic field1,2,3,4,5. Even in graphene with relativistic energy dispersion, Onsager’s rule correctly describes the π Berry phase, as well as the unusual Landau level spectrum of Dirac particles6,7. However, it is unclear whether this semiclassical idea is valid in dispersionless flat-band systems, in which an infinite number of degenerate semiclassical orbits are allowed. Here we show that the semiclassical quantization rule breaks down for a class of dispersionless flat bands called ‘singular flat bands’8. The singular flat band has a band crossing with another dispersive band that is enforced by the band-flatness condition, and shows anomalous magnetic responses. The Landau levels of a singular flat band develop in the empty region in which no electronic states exist in the absence of a magnetic field, and exhibit an unusual 1/n dependence on the Landau level index n, which results in diverging orbital magnetic susceptibility. The total energy spread of the Landau levels of a singular flat band is determined by the quantum geometry of the relevant Bloch states, which is characterized by their Hilbert–Schmidt quantum distance. We show that there is a universal and simple relationship between the total Landau level spread of a flat band and the maximum Hilbert–Schmidt quantum distance, which can be verified in various candidate materials. The results indicate that the anomalous Landau level spectrum of flat bands is promising for the direct measurement of the quantum geometry of wavefunctions in condensed matter.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Pseudospin canting and Hilbert–Schmidt quantum distance.
Fig. 2: Generic Landau level structures of flat bands.
Fig. 3: Landau levels of the kagome lattice.
Fig. 4: Diverging orbital magnetic susceptibilities from the tight-binding model of the kagome lattice.
Fig. 5: SFBs in monolayer carbon systems.

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

The codes used to generate the data of the current study are available from the corresponding author on reasonable request.

Change history


  1. 1.

    Onsager, L. Interpretation of the de Haas–van Alphen effect. Philos. Mag. 43, 1006–1008 (1952).

    Google Scholar 

  2. 2.

    Roth, L. M. Semiclassical theory of magnetic energy levels and magnetic susceptibility of Bloch electrons. Phys. Rev. 145, 434–448 (1966).

    ADS  CAS  Google Scholar 

  3. 3.

    Mikitik, G. P. et al. Manifestation of Berry’s phase in metal physics. Phys. Rev. Lett. 82, 2147–2150 (1999).

    ADS  CAS  Google Scholar 

  4. 4.

    Gao, Y. & Niu, Q. Zero-field magnetic response functions in Landau levels. Proc. Natl Acad. Sci. USA 114, 7295–7300 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Fuchs, J.-N. et al. Landau levels, response functions and magnetic oscillations from a generalized onsager relation. SciPost Phys. 4, 024 (2018).

    ADS  Google Scholar 

  6. 6.

    Zhang, Y. et al. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Novoselov, K. S. et al. Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene. Nat. Phys. 2, 177–180 (2006).

    Google Scholar 

  8. 8.

    Rhim, J.-W. & Yang, B.-J. Classification of flat bands according to the band-crossing singularities of Bloch wave functions. Phys. Rev. B 99, 045107 (2019).

    ADS  CAS  Google Scholar 

  9. 9.

    Bužek, V. & Hillery, M. Quantum copying: beyond the no-cloning theorem. Phys. Rev. A 54, 1844–1852 (1996).

    ADS  MathSciNet  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Dodonov, V. V. et al. Hilbert–Schmidt distance and non-classicality of states in quantum optics. J. Mod. Opt. 47, 633–654 (2000).

    ADS  MathSciNet  MATH  Google Scholar 

  11. 11.

    Berry, M. V. in Geometric Phases in Physics (eds Shapere, A. & Wilczek, F.) 7–28 (World Scientific, 1989).

  12. 12.

    Haldane, F. D. M. Dirac-point models: Hilbert space geometry and topology (2010).

  13. 13.

    Neupert, T. et al. Measuring the quantum geometry of Bloch bands with current noise. Phys. Rev. B 87, 245103 (2013).

    ADS  Google Scholar 

  14. 14.

    Peotta, S. et al. Superfluidity in topologically nontrivial flat bands. Nat. Commun. 6, 8944 (2015).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Piéchon, F. et al. Geometric orbital susceptibility: quantum metric without Berry curvature. Phys. Rev. B 94, 134423 (2016).

    ADS  Google Scholar 

  16. 16.

    Gianfrate, A. et al. Measurement of the quantum geometric tensor and of the anomalous Hall drift. Nature 578, 381–385 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Ozawa T. & Goldman N. Extracting the quantum metric tensor through periodic driving. Phys. Rev. B 97, 201117 (2018).

    ADS  CAS  Google Scholar 

  18. 18.

    Park, S. & Yang, B.-J. Classification of accidental band crossings and emergent semimetals in two dimensional noncentrosymmetric systems. Phys. Rev. B 96, 125127 (2017).

    ADS  Google Scholar 

  19. 19.

    Yang, B.-J. & Nagaosa, N. Classification of stable three-dimensional Dirac semimetals with nontrivial topology. Nat. Commun. 5, 4898 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Xiao, Y. et al. Landau levels in the case of two degenerate coupled bands: kagome lattice tight-binding spectrum. Phys. Rev. B 67, 104505 (2003).

    ADS  Google Scholar 

  21. 21.

    Yamada M. G. et al. First-principles design of a half-filled flat band of the kagome lattice in two-dimensional metal–organic frameworks. Phys. Rev. B 94, 081102 (2016).

    ADS  Google Scholar 

  22. 22.

    Chen, Y. et al. Ferromagnetism and Wigner crystallization in kagome graphene and related structures. Phys. Rev. B 98, 035135 (2018).

    ADS  CAS  Google Scholar 

  23. 23.

    You, J.-Y. et al. Flat band and hole-induced ferromagnetism in a novel carbon monolayer. Sci. Rep. 9, 20116 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Lee, J. M. et al. Stable flatbands, topology, and superconductivity of magic honeycomb networks. Phys. Rev. Lett. 124, 137002 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Ye, L. et al. Massive Dirac fermions in a ferromagnetic kagome metal. Nature 555, 638–642 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Lin, Z. et al. Flatbands and emergent ferromagnetic ordering in Fe3Sn2 kagome lattices. Phys. Rev. Lett. 121, 096401 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Kang, M. et al. Dirac fermions and flat bands in the ideal kagome metal FeSn. Nat. Mater. 19, 163–169 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Kang, M. et al. Topological flat bands in frustrated kagome lattice CoSn. Preprint at (2020).

  29. 29.

    Li, Z. et al. Realization of flat band with possible nontrivial topology in electronic kagome lattice. Sci. Adv. 4, eaau4511 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Yin, J.-X. et al. Negative flat band magnetism in a spin–orbit-coupled correlated kagome magnet. Nat. Phys. 15, 443–448 (2019).

    CAS  Google Scholar 

  31. 31.

    Min, H. et al. Intrinsic and Rashba spin–orbit interactions in graphene sheets. Phys. Rev. B 74, 165310 (2006).

    ADS  Google Scholar 

  32. 32.

    Ramachandran A. et al. Chiral flat bands: existence, engineering, and stability. Phys. Rev. B 96, 161104 (2017).

    ADS  Google Scholar 

  33. 33.

    Ihn, T. Semiconductor Nanostructures: Quantum States and Electronic Transport (Oxford Univ. Press, 2010).

  34. 34.

    Terashima, T. T. et al. Magnetization process of the Kondo insulator YbB12 in ultrahigh magnetic fields. J. Phys. Soc. Jpn. 86, 054710 (2017).

    ADS  Google Scholar 

  35. 35.

    Mayorov, A. S. et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11, 2396–2399 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Stoner, E. Atomic moments in ferromagnetic metals and alloys with nonferromagnetic elements. Phil. Mag. 15, 1018–1034 (1933).

    CAS  Google Scholar 

  37. 37.

    Kopnin N. P. et al. High-temperature surface superconductivity in topological flat-band systems. Phys. Rev. B 83, 220503 (2011).

    ADS  Google Scholar 

  38. 38.

    Hanaguri T. et al. Momentum-resolved Landau-level spectroscopy of Dirac surface state in Bi2Se3. Phys. Rev. B 82, 081305 (2010).

    ADS  Google Scholar 

  39. 39.

    Sadowski, M. L. et al. Landau level spectroscopy of ultrathin graphite layers. Phys. Rev. Lett. 97, 266405 (2006).

    ADS  CAS  Google Scholar 

  40. 40.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    ADS  Google Scholar 

  41. 41.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    ADS  CAS  Google Scholar 

  42. 42.

    Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Google Scholar 

  43. 43.

    Perdew, J. P. et al. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS  CAS  Google Scholar 

  44. 44.

    Dudarev, S. L. et al. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    ADS  CAS  Google Scholar 

  45. 45.

    Po, H. C. et al. Faithful tight-binding models and fragile topology of magic-angle bilayer graphene. Phys. Rev. B 99, 195455 (2019).

    ADS  CAS  Google Scholar 

Download references


J.-W.R. was supported by the Institute for Basic Science (IBS-R009-D1). K.K. was supported by a National Research Foundation of Korea (NRF) grant (contract 2016R1D1A1B02008461) and the Internal R&D programme at KAERI (grant number 524210-20). B.-J.Y. was supported by the Institute for Basic Science (IBS-R009-D1), the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (grant number 2018R1C1B6005663) and the US Army Research Office and Asian Office of Aerospace Research & Development (AOARD) under grant number W911NF-18-1-0137.

Author information




J.-W.R. performed the theoretical analysis; K.K and J.-W.R. performed first-principles calculations; B.-J.Y. supervised the project. J.-W.R. and B.-J.Y. conceived the original ideas and wrote the manuscript.

Corresponding author

Correspondence to Bohm-Jung Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks Justin C. W. Song and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

The file consists of 18 Supplementary Sections for details on solving Landau level problems, analytic proofs for the main results, various flat-band models, disorder problems, Landau level properties of nearly flat bands, Chern number calculations, and so on. 16 Supplementary Figures and one Table are included.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rhim, JW., Kim, K. & Yang, BJ. Quantum distance and anomalous Landau levels of flat bands. Nature 584, 59–63 (2020).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing