Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Antarctica’s wilderness fails to capture continent’s biodiversity

Abstract

Recent assessments of Earth’s dwindling wilderness have emphasized that Antarctica is a crucial wilderness in need of protection1,2. Yet human impacts on the continent are widespread3,4,5, the extent of its wilderness unquantified2 and the importance thereof for biodiversity conservation unknown. Here we assemble a comprehensive record of human activity (approximately 2.7 million records, spanning 200 years) and use it to quantify the extent of Antarctica’s wilderness and its representation of biodiversity. We show that 99.6% of the continent’s area can still be considered wilderness, but this area captures few biodiversity features. Pristine areas, free from human interference, cover a much smaller area (less than 32% of Antarctica) and are declining as human activity escalates6. Urgent expansion of Antarctica’s network of specially protected areas7 can both reverse this trend and secure the continent’s biodiversity8,9,10.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Antarctic wilderness areas.
Fig. 2: Inviolate Antarctic Wilderness areas (definition 5).
Fig. 3: Biodiversity Relevant Antarctic Wilderness.

Data availability

The wilderness areas and historical human activity data are available at https://doi.org/10.26180/5c32bf1b041ea. The other spatial data can be obtained from their creators18,28,53,68.

Code availability

Computer code is available at https://doi.org/10.26180/5c32bf1b041ea.

References

  1. 1.

    Mittermeier, R. A. et al. Wilderness and biodiversity conservation. Proc. Natl. Acad. Sci. USA 100, 10309–10313 (2003).

    ADS  CAS  PubMed  Google Scholar 

  2. 2.

    Watson, J. E. M. et al. Protect the last of the wild. Nature 563, 27–30 (2018).

    ADS  CAS  PubMed  Google Scholar 

  3. 3.

    Chown, S. L. et al. The changing form of Antarctic biodiversity. Nature 522, 431–438 (2015).

    ADS  CAS  PubMed  Google Scholar 

  4. 4.

    Rintoul, S. R. et al. Choosing the future of Antarctica. Nature 558, 233–241 (2018).

    ADS  CAS  PubMed  Google Scholar 

  5. 5.

    Pertierra, L. R., Hughes, K. A., Vega, G. C. & Olalla-Tárraga, M. Á. High resolution spatial mapping of human footprint across Antarctica and its implications for the strategic conservation of avifauna. PLoS One 12, e0168280 (2017).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Hughes, K. A., Fretwell, P., Rae, J., Holmes, K. & Fleming, A. Untouched Antarctica: mapping a finite and diminishing environmental resource. Antarct. Sci. 23, 537–548 (2011).

    ADS  Google Scholar 

  7. 7.

    Secretariat of the Antarctic Treaty. Protocol on Environmental Protection to the Antarctic Treaty https://www.ats.aq/e/protocol.html (Antarctic Treaty Secretariat, 1991).

  8. 8.

    Coetzee, B. W. T., Convey, P. & Chown, S. L. Expanding the protected area network in Antarctica is urgent and readily achievable. Conserv. Lett. 10, 670–680 (2017).

    Google Scholar 

  9. 9.

    Keys, H. Towards Additional Protection of Antarctic Wilderness Areas https://documents.ats.aq/ATCM23/ip/ATCM23_ip080_e.doc (submitted by the Government of New Zealand, Doc. IP80, ATCM XXIII, 1999).

  10. 10.

    Summerson, R. & Tin, T. Twenty years of protection of wilderness values in Antarctica. Polar J. 8, 265–288 (2018).

    Google Scholar 

  11. 11.

    Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. M. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).

    ADS  PubMed  Google Scholar 

  12. 12.

    Cole, D. N. & Landres, P. B. Threats to wilderness ecosystems: impacts and research needs. Ecol. Appl. 6, 168–184 (1996).

    Google Scholar 

  13. 13.

    Watson, J. E. M. et al. Catastrophic declines in wilderness areas undermine global environment targets. Curr. Biol. 26, 2929–2934 (2016).

    CAS  PubMed  Google Scholar 

  14. 14.

    Lim, E. et al. Australian hot and dry extremes induced by weakenings of the stratospheric polar vortex. Nat. Geosci. 12, 896–901 (2019).

    ADS  CAS  Google Scholar 

  15. 15.

    Summerson, R. & Riddle, M. J. in Antarctic Ecosystems: Models for Wider Ecological Understanding (eds Davison, W. et al.) 303–307 (New Zealand Natural Sciences, Christchurch, 2000).

  16. 16.

    Bastmeijer, K. & van Hengel, S. The role of the protected area concept in protecting the world’s largest natural reserve: Antarctica. Utrecht Law Rev. 5, 61–79 (2009).

    Google Scholar 

  17. 17.

    Chown, S. L. et al. Antarctica and the strategic plan for biodiversity. PLoS Biol. 15, e2001656 (2017).

    PubMed  PubMed Central  Google Scholar 

  18. 18.

    Brooks, S. T., Jabour, J., van den Hoff, J. & Bergstrom, D. M. Our footprint on Antarctica competes with nature for rare ice-free land. Nat. Sustain. 2, 185–190 (2019).

    Google Scholar 

  19. 19.

    Hughes, K. A. et al. Human-mediated dispersal of terrestrial species between Antarctic biogeographic regions: a preliminary risk assessment. J. Environ. Manage. 232, 73–89 (2019).

    PubMed  Google Scholar 

  20. 20.

    Lee, J. R. et al. Climate change drives expansion of Antarctic ice-free habitat. Nature 547, 49–54 (2017).

    ADS  CAS  PubMed  Google Scholar 

  21. 21.

    Hughes, K. A., Cowan, D. A. & Wilmotte, A. Protection of Antarctic microbial communities—‘out of sight, out of mind’. Front. Microbiol. 6, 151 (2015).

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Hughes, K. A. et al. Pristine Antarctica: threats and protection. Antarct. Sci. 25, 1 (2013).

    ADS  Google Scholar 

  23. 23.

    Shaw, J. D., Terauds, A., Riddle, M. J., Possingham, H. P. & Chown, S. L. Antarctica’s protected areas are inadequate, unrepresentative, and at risk. PLoS Biol. 12, e1001888 (2014).

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Secretariat of the Antarctic Treaty. Antarctic Protected Areas Database https://www.ats.aq/devph/en/apa-database (2019).

  25. 25.

    Committee for Environmental Protection (CEP). Understanding Concepts of Footprint and Wilderness Related to Protection of the Antarctic Environment https://documents.ats.aq/ATCM34/wp/ATCM34_wp035_e.doc (submitted by the Government of New Zealand, Doc. WP35, ATCM XXXIV, 2011).

  26. 26.

    Committee for Environmental Protection (CEP). Annex V Inviolate and Reference Areas: Current Management Practices https://documents.ats.aq/ATCM35/ip/ATCM35_ip049_e.doc (submitted by ASOC, IP 49, ATCM XXXV, 2012).

  27. 27.

    Committee for Environmental Protection (CEP). Report of the Twenty-second Meeting of the Committee for Environmental Protection https://documents.ats.aq/ATCM42/fr/ATCM42_fr001_e.pdf (CEP, 2019).

  28. 28.

    Terauds, A. & Lee, J. R. Antarctic biogeography revisited: updating the Antarctic Conservation Biogeographic Regions. Divers. Distrib. 22, 836–840 (2016).

    Google Scholar 

  29. 29.

    Council of Managers of National Antarctic Programs. Antarctic Facilities Operated by National Antarctic Programs in the Antarctic Treaty Area (South of 60° Latitude South) version 3.0.1 https://www.comnap.aq (COMNAP, accessed 8 August 2018).

  30. 30.

    Tin, T., Liggett, D., Maher, P. T. & Lamers, M. (eds) Antarctic Futures: Human Engagement with the Antarctic Environment (Springer, Dordrecht, 2014).

  31. 31.

    Dingwall, P. R. (ed.) Antarctica in the Environmental Era (Department of Conservation, Wellington, 1998).

  32. 32.

    Summerson, R. in Protection of the Three Poles (ed. Huettmann, F.) 77–109 (Springer, Tokyo, 2012).

  33. 33.

    Brooks, S. T., Tejedo, P. & O’Neill, T. A. Insights on the environmental impacts associated with visible disturbance of ice-free ground in Antarctica. Antarct. Sci. 31, 304–314 (2019).

    ADS  Google Scholar 

  34. 34.

    O’Neill, T. A., Balks, M. R. & López-Martínez, J. Visual recovery of desert pavement surfaces following impacts from vehicle and foot traffic in the Ross Sea region of Antarctica. Antarct. Sci. 25, 514–530 (2013).

    ADS  Google Scholar 

  35. 35.

    Convey, P. The influence of environmental characteristics on life history attributes of Antarctic terrestrial biota. Biol. Rev. Camb. Philos. Soc. 71, 191–225 (1996).

    Google Scholar 

  36. 36.

    Ayres, E. et al. Effects of human trampling on populations of soil fauna in the McMurdo Dry Valleys, Antarctica. Conserv. Biol. 22, 1544–1551 (2008).

    PubMed  Google Scholar 

  37. 37.

    Convey, P., Hughes, K. A. & Tin, T. Continental governance and environmental management mechanisms under the Antarctic Treaty System: sufficient for the biodiversity challenges of this century? Biodiversity (Nepean) 13, 234–248 (2012).

    Google Scholar 

  38. 38.

    Chown, S. L. & Brooks, C. M. The state and future of Antarctic environments in a global context. Annu. Rev. Environ. Res. 44, 1–30 (2019).

    Google Scholar 

  39. 39.

    Brooks, C. M. et al. Science-based management in decline in the Southern Ocean. Science 354, 185–187 (2016).

    CAS  PubMed  Google Scholar 

  40. 40.

    Secretariat of the Antarctic Treaty. Revised Guidelines for Environmental Impact Assessment in Antarctica https://documents.ats.aq/recatt/Att605_e.pdf (Antarctic Treaty Secretariat, Buenos Aires, 2016).

  41. 41.

    Agence Nationale Recherche. East Antarctic International Ice Sheet Traverse (DS0101) https://anr.fr/Project-ANR-16-CE01-0011 (ANR, France, 2016).

  42. 42.

    Harris, C. M. et al. Important Bird Areas in Antarctica 2015 (BirdLife International and Environmental Research & Assessment Ltd., Cambridge, 2015).

  43. 43.

    Cowan, D. A. et al. Non-indigenous microorganisms in the Antarctic: assessing the risks. Trends Microbiol. 19, 540–548 (2011).

    CAS  PubMed  Google Scholar 

  44. 44.

    Montross, S. et al. Debris-rich basal ice as a microbial habitat, Taylor Glacier, Antarctica. Geomicrobiol. J. 31, 76–81 (2014).

    Google Scholar 

  45. 45.

    Archer, S. D. J. et al. Airborne microbial transport limitation to isolated Antarctic soil habitats. Nat. Microbiol. 4, 925–932 (2019).

    CAS  PubMed  Google Scholar 

  46. 46.

    Fretwell, P. T., Convey, P., Fleming, A. H., Peat, H. J. & Hughes, K. A. Detecting and mapping vegetation distribution on the Antarctic Peninsula from remote sensing data. Polar Biol. 34, 273–281 (2011).

    Google Scholar 

  47. 47.

    Schwaller, M. R., Lynch, H. J., Tarroux, A. & Prehn, B. A continent-wide search for Antarctic petrel breeding sites with satellite remote sensing. Remote Sens. Environ. 210, 444–451 (2018).

    ADS  Google Scholar 

  48. 48.

    Duffy, G. A. et al. Barriers to globally invasive species are weakening across the Antarctic. Divers. Distrib. 23, 982–996 (2017).

    Google Scholar 

  49. 49.

    Consultative Parties to the Antarctic Treaty. Santiago Declaration https://www.ats.aq/documents/ATCM39/ad/atcm39_ad003_e.pdf (Antarctic Treaty Secretariat, Buenos Aires, 2016).

    Google Scholar 

  50. 50.

    Pebesma, E. J. & Bivand, R. S. Classes and methods for spatial data in R. R News 5, 9–13 (2005).

    Google Scholar 

  51. 51.

    R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, 2017).

  52. 52.

    Environmental Systems Research Institute (ESRI). ArcGIS Desktop, release 10.6 (Environmental Systems Research Institute, Redlands, CA, 2011).

  53. 53.

    Scientific Committee on Antarctic Research (SCAR). Antarctic Digital Database version 7 https://www.add.scar.org/ (2018).

  54. 54.

    Headland, R. K. Chronological List of Antarctic Expeditions and Related Historical Events (Cambridge Univ. Press, Cambridge, 1989).

    Google Scholar 

  55. 55.

    Scientific Committee on Antarctic Research. Composite Gazetteer of Antarctica https://data.aad.gov.au/aadc/gaz/scar/ (GCMD Metadata, 1992, updated 2014).

  56. 56.

    Evans, J. S. spatialEco. R package version 0.0.1-7 https://CRAN.R-project.org/package=spatialEco (2017).

  57. 57.

    Hijmans, R. J. raster: geographic data analysis and modeling. R package version 2.6-7 https://CRAN.R-project.org/package=raster (2017).

  58. 58.

    Hughes, K. A. How committed are we to monitoring human impacts in Antarctica? Environ. Res. Lett. 5, 041001 (2010).

    ADS  Google Scholar 

  59. 59.

    Bivand, R., Keitt, T. & Rowlingson, B. rgdal: bindings for the ‘geospatial’ data abstraction library. R package version 1.3-4 https://CRAN.R-project.org/package=rgdal (2018).

  60. 60.

    International Association of Antarctica Tour Operators (IAATO). 2017–2018 Tourism Statistics http://iaato.org/tourism-statistics (IAATO, accessed 29 October 2018).

  61. 61.

    United States Antarctic Program (USAP). USAP Science Planning Summaries 2003–2016 https://www.usap.gov/sciencesupport/2179/ (USAP, 2019).

  62. 62.

    Bargagli, R. Antarctic Ecosystems: Environmental Contamination, Climate Change, and Human Impact (Springer, Berlin, 2005).

  63. 63.

    Hughes, K. A. & Convey, P. The protection of Antarctic terrestrial ecosystems from inter- and intra-continental transfer of non-indigenous species by human activities: a review of current systems and practices. Glob. Environ. Change 20, 96–112 (2010).

    Google Scholar 

  64. 64.

    Campbell, I. B., Claridge, G. G. C. & Balks, M. R. Short-and long-term impacts of human disturbances on snow-free surfaces in Antarctica. Polar Rec. (Gr. Brit.) 34, 15–24 (1998).

    Google Scholar 

  65. 65.

    Tejedo, P. et al. Soil trampling in an Antarctic Specially Protected Area: tools to assess levels of human impact. Antarct. Sci. 21, 229–236 (2009).

    ADS  Google Scholar 

  66. 66.

    Chown, S. L. et al. Continent-wide risk assessment for the establishment of nonindigenous species in Antarctica. Proc. Natl. Acad. Sci. USA 109, 4938–4943 (2012).

    ADS  CAS  PubMed  Google Scholar 

  67. 67.

    Duffy, G. A. & Lee, J. R. Ice-free area expansion compounds the non-native species threat to Antarctic terrestrial biodiversity. Biol. Conserv. 232, 253–257 (2019).

    Google Scholar 

  68. 68.

    Antarctica New Zealand. McMurdo Dry Valleys ASMA Manual 4th edn (Christchurch, New Zealand, 2015).

  69. 69.

    BirdLife International. Antarctic Important Bird Areas http://datazone.birdlife.org/home (BirdLife International, Cambridge, 2018).

  70. 70.

    Terauds, A. Antarctic Terrestrial Biodiversity Database (Australian Antarctic Data Centre, 2019).

  71. 71.

    Casanovas, P., Black, M., Fretwell, P. & Convey, P. Mapping lichen distribution on the Antarctic Peninsula using remote sensing, lichen spectra and photographic documentation by citizen scientists. Polar Res. 34, 25633 (2015).

    Google Scholar 

  72. 72.

    Fretwell, P. T. et al. An emperor penguin population estimate: the first global, synoptic survey of a species from space. PLoS One 7, e33751 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. 73.

    Wauchope, H. S., Shaw, J. D. & Terauds, A. A snapshot of biodiversity protection in Antarctica. Nat. Commun. 10, 946 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Lynch, H. J., Naveen, R. & Fagan, W. F. Censuses of penguin, blue-eyed shag Phalacrocorax atriceps and southern giant petrel Macronectes giganteus populations on the Antarctic Peninsula, 2001-2007. Mar. Ornithol. 36, 83–97 (2008).

    Google Scholar 

  75. 75.

    Burton-Johnson, A., Black, M., Fretwell, P. & Kaluza-Gilbert, J. An automated methodology for differentiating rock from snow, clouds and sea in Antarctica from Landsat 8 imagery: a new rock outcrop map and area estimation for the entire Antarctic continent. Cryosphere 10, 1665–1677 (2016).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank K. Close, G. A. Duffy, R. Harvey, K. A. Hughes, T. Robertson and D. Smith for their assistance in identifying activity data and M. A. McGeoch, H. P. Baird, J. R. Lee, L. Chapman and A. Clarke for reading a previous version of this manuscript. This research was supported by Australian Antarctic Science (AAS) grant 4482 and a Sir James McNeill Foundation Postgraduate Research Scholarship to R.I.L. F.M. was supported by a New Zealand Ministry of Business, Innovation and Employment grant (CO9X1413). A.T. was supported by AAS grant 4296.

Author information

Affiliations

Authors

Contributions

S.L.C., B.W.T.C. and R.I.L. conceived the study. R.I.L., B.W.T.C., F.M., B.R., J.D.S. and A.T. collected the human activity data. R.I.L. conducted the analyses. R.I.L., K.B. and S.L.C. drafted the initial manuscript. All authors contributed to the final manuscript.

Corresponding author

Correspondence to Steven L. Chown.

Ethics declarations

Competing interests

S.L.C. is the President of the Scientific Committee on Antarctic Research.

Additional information

Peer review information Nature thanks Andrew Clarke and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Cumulative impact of human visitation across Antarctica.

a, Weighted relative impact (WRI) scores of the number of independent historical human visitation records per 25-km2 grid cell, weighted by the proportion of ice-free area in each cell and the eight adjacent cells. Visitation to sites with WRI scores ≤20 is likely to have had a negligible impact. Cells without WRI scores (grey) have no historical visitation record in the data set and are considered here as unvisited. b, WRI scores for the McMurdo Dry Valleys region. c, Location of 18 field camps (points) in the McMurdo Dry Valleys, used to validate the WRI scores (Extended Data Table 2). d, Frequency distribution of 1,999 bootstrapped binomial generalized linear model regression coefficients for the relationship between WRI scores and the presence/absence of field camps in the McMurdo Dry Valleys (b, c; n = 252 grid cells). The dashed line indicates the regression coefficient (0.0023) for the model fit to the original sample.

Extended Data Fig. 2 Historical human visitation record density.

a, b, Number of historical human activity records (a) and number of independent historical human activity records (b) per 50 × 50 km cell across Antarctica from 1819 to 2018 (n = 2,698,429 records). Dark purple lines (a) indicate the routes of recent overland traverses (for example, 2007–2008 Norwegian–US Scientific Traverse of East Antarctica), where geo-positioning data were collected automatically at high temporal resolutions (~10 min), resulting in many records for relatively transitory site visits. To standardize sampling frequencies across different data sources, independent records (b) count only one record per cell per data set for data sets describing a single event (for example, a traverse).

Extended Data Fig. 3 Sampling completeness and scale dependency of visitation records.

a, Relationship between the number of visitation records and percentage of land area visited across Antarctica at a 25-km2 grid resolution, modelled using a power-law model (f(x) = 0.78x0.39; r2 = 0.99). The visitation accumulation curve is extrapolated (dashed line) to predict the percentage land area expected to be identified as visited if twice the number of visitation records (5.4 million records) were available in the data set. Points indicate the percentage of visited land, calculated using 20 random subsamples of the complete visitation records for each interval (n = 240 subsamples); shaded blue area indicates 95% confidence interval. b, Relationship between grid cell resolution and the percentage of land area across Antarctica with no visitation records (that is, unvisited areas), modelled using an exponential model (f(x) = 91.78e(–0.01x); r2 = 0.95; n = 15 grids). In this study, visitation was modelled at a 5-km (25-km2) resolution (square).

Extended Data Table 1 Place-name record categories
Extended Data Table 2 Weighted Relative Impact score validation
Extended Data Table 3 Inviolate and Negligibly Impacted Antarctic Wilderness areas
Extended Data Table 4 Biodiversity representation in wilderness areas

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leihy, R.I., Coetzee, B.W.T., Morgan, F. et al. Antarctica’s wilderness fails to capture continent’s biodiversity. Nature 583, 567–571 (2020). https://doi.org/10.1038/s41586-020-2506-3

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing