Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Poleward and weakened westerlies during Pliocene warmth

Abstract

The prevailing mid-latitude westerly winds, known as the westerlies, are a fundamental component of the climate system because they have a crucial role in driving surface ocean circulation1 and modulating air–sea heat, momentum and carbon exchange1,2,3. Recent work suggests that westerly wind belts are migrating polewards in response to anthropogenic forcing4,5. Reconstructing the westerlies during past warm periods such as the Pliocene epoch, in which atmospheric carbon dioxide (CO2) was about 350 to 450 parts per million6 and temperatures were about 2 to 4 degrees Celsius higher than today7, can improve our understanding of changes in the position and strength of these wind systems as the climate continues to warm. Here we show that the westerlies were weaker and more poleward during the warm Pliocene than during glacial periods after the intensification of Northern Hemisphere glaciation (iNHG), which occurred around 2.73 million years ago8. Our results, which are based on dust and export productivity reconstructions, indicate that major ice sheet development during the iNHG was accompanied by substantial increases in dust fluxes in the mid-latitude North Pacific Ocean, especially compared to those in the subarctic North Pacific. Following this shift, changes in dust and productivity largely track the glacial–interglacial cycles of the late Pliocene and early Pleistocene epochs. On the basis of this pattern, we infer that shifts in the westerlies were primarily driven by variations in Plio-Pleistocene thermal gradients and ice volume. By combining this relationship with other dust records9,10,11 and climate modelling results12, we find that the proposed changes in the westerlies were globally synchronous. If the Pliocene is predictive of future warming, we posit that continued poleward movement and weakening of the present-day westerlies in both hemispheres can be expected.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Dust flux reconstructions from the Pliocene North Pacific indicate shifts in the westerlies after the iNHG.
Fig. 2: ODP 1208 SST and export productivity records support westerly wind shifts.
Fig. 3: North Pacific, Atlantic and Loess Plateau Plio-Pleistocene dust proxy fluxes display coherent increases at the iNHG.

Data availability

All data produced for this study are available at https://doi.org/10.6084/m9.figshare.12472646.v6Source data are provided with this paper.

Code availability

The code used in this study to produce all figures is available at https://doi.org/10.6084/m9.figshare.12472676.v5.

References

  1. 1.

    Russell, J. L., Dixon, K. W., Gnanadesikan, A., Stouffer, R. J. & Toggweiler, J. The Southern Hemisphere westerlies in a warming world: propping open the door to the deep ocean. J. Clim. 19, 6382–6390 (2006).

    ADS  Google Scholar 

  2. 2.

    Toggweiler, J. R., Russell, J. L. & Carson, S. R. Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography 21, PA2005 (2006).

    ADS  Google Scholar 

  3. 3.

    Anderson, R. et al. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science 323, 1443–1448 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Chen, G. & Held, I. M. Phase speed spectra and the recent poleward shift of Southern Hemisphere surface westerlies. Geophys. Res. Lett. 34, L21805 (2007).

    ADS  Google Scholar 

  5. 5.

    Yang, H. et al. Poleward shift of the major ocean gyres detected in a warming climate. Geophys. Res. Lett. 47, e2019GL085868 (2020).

    ADS  Google Scholar 

  6. 6.

    Martínez-Botí, M. et al. Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records. Nature 518, 49–54 (2015); addendum 526, 458 (2015).

    ADS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Haywood, A. M. et al. A return to large-scale features of Pliocene climate: the Pliocene Model Intercomparison Project Phase 2. Clim. Past 16, 2095–2123 (2020).

    Google Scholar 

  8. 8.

    Haug, G. H., Sigman, D. M., Tiedemann, R., Pedersen, T. F. & Sarnthein, M. Onset of permanent stratification in the subarctic Pacific Ocean. Nature 401, 779–782 (1999).

    ADS  CAS  Google Scholar 

  9. 9.

    Sun, Y. & An, Z. Late Pliocene‐Pleistocene changes in mass accumulation rates of eolian deposits on the central Chinese Loess Plateau. J. Geophys. Res. D 110, D23101 (2005).

    ADS  Google Scholar 

  10. 10.

    Naafs, B. D. A. et al. Strengthening of North American dust sources during the late Pliocene (2.7 Ma). Earth Planet. Sci. Lett. 317–318, 8–19 (2012).

    ADS  Google Scholar 

  11. 11.

    Martínez-Garcia, A. et al. Southern Ocean dust–climate coupling over the past four million years. Nature 476, 312–315 (2011).

    ADS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Li, X. et al. Mid-Pliocene westerlies from PlioMIP simulations. Adv. Atmos. Sci. 32, 909–923 (2015).

    CAS  Google Scholar 

  13. 13.

    Gillett, N. P. & Thompson, D. W. Simulation of recent Southern Hemisphere climate change. Science 302, 273–275 (2003).

    ADS  CAS  Google Scholar 

  14. 14.

    Shindell, D. T., Miller, R. L., Schmidt, G. A. & Pandolfo, L. Simulation of recent northern winter climate trends by greenhouse-gas forcing. Nature 399, 452–455 (1999).

    ADS  CAS  Google Scholar 

  15. 15.

    Chavaillaz, Y., Codron, F. & Kageyama, M. Southern westerlies in LGM and future (RCP4. 5) climates. Clim. Past Discuss. 8, 3693–3717 (2012).

    ADS  Google Scholar 

  16. 16.

    Gray, W. R. et al. Wind‐driven evolution of the North Pacific subpolar gyre over the last deglaciation. Geophys. Res. Lett. 47, e2019GL086328 (2020).

    ADS  Google Scholar 

  17. 17.

    Nagashima, K. et al. Orbital-and millennial-scale variations in Asian dust transport path to the Japan Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 247, 144–161 (2007).

    Google Scholar 

  18. 18.

    Sime, L. C. et al. Southern Hemisphere westerly wind changes during the Last Glacial Maximum: model–data comparison. Quat. Sci. Rev. 64, 104–120 (2013).

    ADS  Google Scholar 

  19. 19.

    Lora, J. M., Mitchell, J. L., Risi, C. & Tripati, A. E. North Pacific atmospheric rivers and their influence on western North America at the Last Glacial Maximum. Geophys. Res. Lett. 44, 1051–1059 (2017).

    ADS  Google Scholar 

  20. 20.

    Burke, K. et al. Pliocene and Eocene provide best analogs for near-future climates. Proc. Natl Acad. Sci. USA 115, 13288–13293 (2018).

    ADS  CAS  Google Scholar 

  21. 21.

    Lisiecki, L. E. & Raymo, M. E. A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 (2005).

    ADS  Google Scholar 

  22. 22.

    Raymo, M. E. The initiation of Northern Hemisphere glaciation. Annu. Rev. Earth Planet. Sci. 22, 353–383 (1994).

    ADS  Google Scholar 

  23. 23.

    Lawrence, K. T. et al. Time‐transgressive North Atlantic productivity changes upon Northern Hemisphere glaciation. Paleoceanography 28, 740–751 (2013).

    ADS  Google Scholar 

  24. 24.

    Tanaka, T. Y. & Chiba, M. A numerical study of the contributions of dust source regions to the global dust budget. Glob. Planet. Change 52, 88–104 (2006).

    ADS  Google Scholar 

  25. 25.

    Heermance, R. V. et al. Erg deposition and development of the ancestral Taklimakan Desert (western China) between 12.2 and 7.0 Ma. Geology 46, 919–922 (2018).

    ADS  Google Scholar 

  26. 26.

    Lang, D. C. et al. The transition on North America from the warm humid Pliocene to the glaciated Quaternary traced by eolian dust deposition at a benchmark North Atlantic Ocean drill site. Quat. Sci. Rev. 93, 125–141 (2014).

    ADS  Google Scholar 

  27. 27.

    Janecek, T. R. & Rea, D. K. Eolian deposition in the northeast Pacific Ocean: Cenozoic history of atmospheric circulation. Geol. Soc. Am. Bull. 94, 730–738 (1983).

    ADS  Google Scholar 

  28. 28.

    Rea, D. K., Snoeckx, H. & Joseph, L. H. Late Cenozoic eolian deposition in the North Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere. Paleoceanography 13, 215–224 (1998).

    ADS  Google Scholar 

  29. 29.

    Zhang, W., Chen, J., Ji, J. & Li, G. Evolving flux of Asian dust in the North Pacific Ocean since the late Oligocene. Aeolian Res. 23, 11–20 (2016).

    ADS  Google Scholar 

  30. 30.

    McGee, D. & Mukhopadhyay, S. in The Noble Gases as Geochemical Tracers 155–176 (Springer, 2013).

  31. 31.

    Dickens, G., Snoeckx, H., Arnold, E., Morley, J. & Owen, R. Composite depth scale and stratigraphy for Sites 885/886. In Proc. ODP Sci. Res. Vol. 145, 205–217 (Ocean Drilling Program, 1995).

  32. 32.

    McGee, D., Broecker, W. S. & Winckler, G. Gustiness: the driver of glacial dustiness? Quat. Sci. Rev. 29, 2340–2350 (2010).

    ADS  Google Scholar 

  33. 33.

    Mahowald, N. M. et al. Change in atmospheric mineral aerosols in response to climate: Last glacial period, preindustrial, modern, and doubled carbon dioxide climates. J. Geophys. Res. D 111, D10202 (2006).

    ADS  Google Scholar 

  34. 34.

    Albani, S. et al. Improved dust representation in the Community Atmosphere Model. J. Adv. Model. Earth Syst. 6, 541–570 (2014).

    ADS  Google Scholar 

  35. 35.

    Uno, I. et al. Asian dust transported one full circuit around the globe. Nat. Geosci. 2, 557–560 (2009).

    ADS  CAS  Google Scholar 

  36. 36.

    Jia, Y. et al. Cenozoic aridification in Northwest China evidenced by paleovegetation evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 557, 109907 (2020).

    Google Scholar 

  37. 37.

    Herbert, T. D., Peterson, L. C., Lawrence, K. T. & Liu, Z. Tropical ocean temperatures over the past 3.5 million years. Science 328, 1530–1534 (2010).

    ADS  CAS  Google Scholar 

  38. 38.

    Bauer, E. & Ganopolski, A. Aeolian dust modeling over the past four glacial cycles with CLIMBER-2. Global Planet. Change 74, 49–60 (2010).

    ADS  Google Scholar 

  39. 39.

    Li, X., Liu, X. & Zhou, H. Joint influence of surface erosion and high-latitude ice-sheet extent on Asian dust cycle during the last glacial maximum. Geol. Mag. 157, 777–789 (2020).

    ADS  Google Scholar 

  40. 40.

    Lorenz, S., Grieger, B., Helbig, P. & Herterich, K. Investigating the sensitivity of the atmospheric general circulation model ECHAM 3 to paleoclimatic boundary conditions. Geol. Rundsch. 85, 513–524 (1996).

    ADS  Google Scholar 

  41. 41.

    Kienast, S. S., Winckler, G., Lippold, J., Albani, S. & Mahowald, N. M. Tracing dust input to the global ocean using thorium isotopes in marine sediments: ThoroMap. Glob. Biogeochem. Cycles 30, 1526–1541 (2016).

    ADS  CAS  Google Scholar 

  42. 42.

    Serno, S. et al. Eolian dust input to the Subarctic North Pacific. Earth Planet. Sci. Lett. 387, 252–263 (2014).

    ADS  CAS  Google Scholar 

  43. 43.

    Costa, K. M. Geochemical Fingerprints of Paleoceanographic Variability in the Subarctic Pacific over the Last 500,000 Years. PhD thesis, Columbia Univ. (2006).

  44. 44.

    Maeda, L., Kawahata, H. & Nohara, M. Fluctuation of biogenic and abiogenic sedimentation on the Shatsky Rise in the western North Pacific during the late Quaternary. Mar. Geol. 189, 197–214 (2002).

    ADS  CAS  Google Scholar 

  45. 45.

    Venti, N. L., Billups, K. & Herbert, T. D. Increased sensitivity of the Plio-Pleistocene northwest Pacific to obliquity forcing. Earth Planet. Sci. Lett. 384, 121–131 (2013).

    ADS  CAS  Google Scholar 

  46. 46.

    Venti, N. L., Billups, K. & Herbert, T. D. Paleoproductivity in the northwestern Pacific Ocean during the Pliocene‐Pleistocene climate transition (3.0–1.8 Ma). Paleoceanography 32, 92–103 (2017).

    ADS  Google Scholar 

  47. 47.

    Brierley, C. M. et al. Greatly expanded tropical warm pool and weakened Hadley circulation in the early Pliocene. Science 323, 1714–1718 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Benxing, Z. & Rutter, N. On the problem of Quaternary glaciations, and the extent and patterns of Pleistocene ice cover in the Qinghai-Xizang (Tibet) Plateau. Quat. Int. 45–46, 109–122 (1998).

    Google Scholar 

  49. 49.

    Bolton, C. T., Lawrence, K. T., Gibbs, S. J., Wilson, P. A. & Herbert, T. D. Biotic and geochemical evidence for a global latitudinal shift in ocean biogeochemistry and export productivity during the late Pliocene. Earth Planet. Sci. Lett. 308, 200–210 (2011).

    ADS  CAS  Google Scholar 

  50. 50.

    Venti, N. L. & Billups, K. Stable-isotope stratigraphy of the Pliocene–Pleistocene climate transition in the northwestern subtropical Pacific. Palaeogeogr. Palaeoclimatol. Palaeoecol. 326–328, 54–65 (2012).

    Google Scholar 

  51. 51.

    Shipboard Scientific Party. Site 1208. In Proc. ODP Init. Rep. Vol. 198 (eds Bralower, T. J. et al.) 1–93 (Ocean Drilling Program, 2002).

  52. 52.

    Shipboard Scientific Party. Sites 885/886. In Proc. ODP Init. Rep. Vol. 145 (eds Rea, D. K. et al.) 303–334 (Ocean Drilling Program, 1993).

  53. 53.

    Evans, H. F. Magnetic Stratigraphy and Environmental Magnetism of Oceanic Sediments. PhD thesis, Univ. of Florida (2006).

  54. 54.

    Gradstein, F. M., Ogg, J. G., Schmitz, M. B. & Ogg, G. M. The Geologic Time Scale 2012 (Elsevier, 2012).

  55. 55.

    Winckler, G., Anderson, R. F. & Schlosser, P. Equatorial Pacific productivity and dust flux during the mid‐Pleistocene climate transition. Paleoceanography 20, PA4025 (2005).

    ADS  Google Scholar 

  56. 56.

    Clarke, W. B., Jenkins, W. & Top, Z. Determination of tritium by mass spectrometric measurement of 3He. Int. J. Appl. Radiat. Isot. 27, 515–522 (1976).

    CAS  Google Scholar 

  57. 57.

    Welhan, J. A. Carbon and Hydrogen Gases in Hydrothermal Systems: the Search for a Mantle Source. PhD thesis, Univ. of California, San Diego (1981).

  58. 58.

    Mamyrin, B. A. & Tolstikhin, I. N. Helium Isotopes in Nature (Elsevier, 1984).

  59. 59.

    McGee, D. et al. Tracking eolian dust with helium and thorium: impacts of grain size and provenance. Geochim. Cosmochim. Acta 175, 47–67 (2016).

    ADS  CAS  Google Scholar 

  60. 60.

    Patterson, D. B., Farley, K. & Norman, M. 4He as a tracer of continental dust: a 1.9 million year record of aeolian flux to the west equatorial Pacific Ocean. Geochim. Cosmochim. Acta 63, 615–625 (1999).

    ADS  CAS  Google Scholar 

  61. 61.

    Mukhopadhyay, S., Farley, K. & Montanari, A. A. 35 Myr record of helium in pelagic limestones from Italy: implications for interplanetary dust accretion from the early Maastrichtian to the middle Eocene. Geochim. Cosmochim. Acta 65, 653–669 (2001).

    ADS  CAS  Google Scholar 

  62. 62.

    Farley, K. A. Cenozoic variations in the flux of interplanetary dust recorded by 3He in a deep-sea sediment. Nature 376, 153–156 (1995).

    ADS  CAS  Google Scholar 

  63. 63.

    Farley, K., Love, S. & Patterson, D. B. Atmospheric entry heating and helium retentivity of interplanetary dust particles. Geochim. Cosmochim. Acta 61, 2309–2316 (1997).

    ADS  CAS  Google Scholar 

  64. 64.

    Farley, K. & Mukhopadhyay, S. An extraterrestrial impact at the Permian-Triassic boundary? Science 293, 2343 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Nier, A. & Schlutter, D. Extraction of helium from individual interplanetary dust particles by step‐heating. Meteoritics 27, 166–173 (1992).

    ADS  CAS  Google Scholar 

  66. 66.

    Ozima, M. & Podosek, F. A. Noble Gas Geochemistry (Cambridge Univ. Press, 1983).

  67. 67.

    Farley, K. & Patterson, D. A 100-kyr periodicity in the flux of extraterrestrial 3 He to the sea floor. Nature 378, 600–603 (1995).

    ADS  Google Scholar 

  68. 68.

    Marcantonio, F. et al. A comparative study of accumulation rates derived by He and Th isotope analysis of marine sediments. Earth Planet. Sci. Lett. 133, 549–555 (1995).

    ADS  CAS  Google Scholar 

  69. 69.

    Patterson, D. B. & Farley, K. Extraterrestrial 3He in seafloor sediments: evidence for correlated 100 kyr periodicity in the accretion rate of interplanetary dust, orbital parameters, and Quaternary climate. Geochim. Cosmochim. Acta 62, 3669–3682 (1998).

    ADS  CAS  Google Scholar 

  70. 70.

    Middleton, J. L., Langmuir, C. H., Mukhopadhyay, S., McManus, J. F. & Mitrovica, J. X. Hydrothermal iron flux variability following rapid sea level changes. Geophys. Res. Lett. 43, 3848–3856 (2016).

    ADS  CAS  Google Scholar 

  71. 71.

    Middleton, J. L., Mukhopadhyay, S., Langmuir, C. H., McManus, J. F. & Huybers, P. J. Millennial-scale variations in dustiness recorded in Mid-Atlantic sediments from 0 to 70 ka. Earth Planet. Sci. Lett. 482, 12–22 (2018).

    ADS  CAS  Google Scholar 

  72. 72.

    Costa, K. M. et al. 230Th normalization: New insights on an essential tool for quantifying sedimentary fluxes in the modern and Quaternary ocean. Paleoceanogr. Paleoclimatol. 35, e2019PA003820 (2020).

    Google Scholar 

  73. 73.

    Burls, N. J. et al. Active Pacific meridional overturning circulation (PMOC) during the warm Pliocene. Sci. Adv. 3, e1700156 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Fleisher, M. & Anderson, R. Assessing the collection efficiency of Ross Sea sediment traps using 230Th and 231Pa. Deep Sea Res. Part II  50, 693–712 (2003).

    ADS  CAS  Google Scholar 

  75. 75.

    Taylor, S. R. & McLennan, S. M. The geochemical evolution of the continental crust. Rev. Geophys. 33, 241–265 (1995).

    ADS  Google Scholar 

  76. 76.

    Mortlock, R. A. & Froelich, P. N. A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep-Sea Res. A 36, 1415–1426 (1989).

    ADS  CAS  Google Scholar 

  77. 77.

    Müller, P. J., Kirst, G., Ruhland, G., Von Storch, I. & Rosell-Melé, A. Calibration of the alkenone paleotemperature index U37K′ based on core-tops from the eastern South Atlantic and the global ocean (60°N-60°S). Geochim. Cosmochim. Acta 62, 1757–1772 (1998).

    ADS  Google Scholar 

  78. 78.

    Haug, G., Maslin, M., Sarnthein, M., Stax, R. & Tiedemann, R. Evolution of northwest Pacific sedimentation patterns since 6 Ma (Site 882). In Proc. ODP Sci. Res. Vol. 293 (Ocean Drilling Program, 1995).

  79. 79.

    Zhang, Q. et al. Mechanism for enhanced eolian dust flux recorded in North Pacific Ocean sediments since 4.0 Ma: aridity or humidity at dust source areas in the Asian interior? Geology 48, 77–81 (2020).

    ADS  Google Scholar 

  80. 80.

    Bailey, I. et al. Iron fertilisation and biogeochemical cycles in the sub-Arctic northwest Pacific during the late Pliocene intensification of northern hemisphere glaciation. Earth Planet. Sci. Lett. 307, 253–265 (2011).

    ADS  CAS  Google Scholar 

  81. 81.

    Andrews, J. T. Icebergs and iceberg rafted detritus (IRD) in the North Atlantic: facts and assumptions. Oceanography 13, 100–108 (2000).

    Google Scholar 

  82. 82.

    Weber, E. T. et al. Quantitative resolution of eolian continental crustal material and volcanic detritus in North Pacific surface sediment. Paleoceanography 11, 115–127 (1996).

    ADS  Google Scholar 

  83. 83.

    Lam, P. J. & Bishop, J. K. The continental margin is a key source of iron to the HNLC North Pacific Ocean. Geophys. Res. Lett. 35, L07608 (2008).

    ADS  Google Scholar 

  84. 84.

    Bigg, G., Clark, C. & Hughes, A. A last glacial ice sheet on the Pacific Russian coast and catastrophic change arising from coupled ice–volcanic interaction. Earth Planet. Sci. Lett. 265, 559–570 (2008).

    ADS  CAS  Google Scholar 

  85. 85.

    Caves, J. K., Sjostrom, D. J., Mix, H. T., Winnick, M. J. & Chamberlain, C. P. Aridification of Central Asia and uplift of the Altai and Hangay Mountains, Mongolia: stable isotope evidence. Am. J. Sci. 314, 1171–1201 (2014).

    ADS  CAS  Google Scholar 

  86. 86.

    Caves, J. K. et al. Late Miocene uplift of the Tian Shan and Altai and reorganization of Central Asia climate. GSA Today 27, 20–26 (2017).

    Google Scholar 

  87. 87.

    Guo, Z. et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature 416, 159–163 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Zan, J., Fang, X., Zhang, W., Yan, M. & Zhang, D. A new record of late Pliocene-early Pleistocene aeolian loess–red clay deposits from the western Chinese Loess Plateau and its palaeoenvironmental implications. Quat. Sci. Rev. 186, 17–26 (2018).

    ADS  Google Scholar 

  89. 89.

    Che, X. & Li, G. Binary sources of loess on the Chinese Loess Plateau revealed by U–Pb ages of zircon. Quat. Res. 80, 545–551 (2013).

    CAS  Google Scholar 

  90. 90.

    Bird, A. et al. Quaternary dust source variation across the Chinese Loess Plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol. 435, 254–264 (2015).

    Google Scholar 

  91. 91.

    Nie, J. et al. Loess plateau storage of northeastern Tibetan plateau-derived Yellow River sediment. Nat. Commun. 6, 8511 (2015); corrigendum 7, 10831 (2016).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  92. 92.

    Qian, W., Quan, L. & Shi, S. Variations of the dust storm in China and its climatic control. J. Clim. 15, 1216–1229 (2002).

    ADS  Google Scholar 

  93. 93.

    Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E. & Gill, T. E. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys. 40, 1002 (2002).

    ADS  Google Scholar 

  94. 94.

    Bory, A. J., Biscaye, P. E. & Grousset, F. E. Two distinct seasonal Asian source regions for mineral dust deposited in Greenland (NorthGRIP). Geophys. Res. Lett. 30, 1167 (2003).

    ADS  Google Scholar 

  95. 95.

    Sun, Y. et al. Tracing the provenance of fine‐grained dust deposited on the central Chinese Loess Plateau. Geophys. Res. Lett. 35, L01804 (2008).

    ADS  Google Scholar 

  96. 96.

    Kapp, P. et al. Wind erosion in the Qaidam basin, central Asia: implications for tectonics, paleoclimate, and the source of the Loess Plateau. GSA Today 21, 4–10 (2011).

    Google Scholar 

  97. 97.

    Pullen, A. et al. Qaidam Basin and northern Tibetan Plateau as dust sources for the Chinese Loess Plateau and paleoclimatic implications. Geology 39, 1031–1034 (2011).

    ADS  CAS  Google Scholar 

  98. 98.

    Licht, A., Pullen, A., Kapp, P., Abell, J. & Giesler, N. Eolian cannibalism: reworked loess and fluvial sediment as the main sources of the Chinese Loess Plateau. Geol. Soc. Am. Bull. 128, 944–956 (2016).

    ADS  CAS  Google Scholar 

  99. 99.

    Sun, J., Zhang, Z. & Zhang, L. New evidence on the age of the Taklimakan Desert. Geology 37, 159–162 (2009).

    ADS  Google Scholar 

  100. 100.

    Zheng, H. et al. Late oligocene–early miocene birth of the Taklimakan Desert. Proc. Natl Acad. Sci. USA 112, 7662–7667 (2015).

    ADS  CAS  Google Scholar 

  101. 101.

    Heermance, R. V. et al. Climatic and tectonic controls on sedimentation and erosion during the Pliocene–Quaternary in the Qaidam Basin (China). Geol. Soc. Am. Bull. 125, 833–856 (2013).

    ADS  Google Scholar 

  102. 102.

    Luo, Z. et al. Orbital forcing of Plio-Pleistocene climate variation in a Qaidam Basin lake based on paleomagnetic and evaporite mineralogic analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 510, 31–39 (2018).

    Google Scholar 

  103. 103.

    Jijun, L. et al. Geomorphological and environmental evolution in the upper reaches of the Yellow River during the late Cenozoic. Sci. China Ser. D 39, 380–390 (1996).

    Google Scholar 

  104. 104.

    Teng, Z. & Li, L. Loess stratum and an analysis on the environment of Pleistocene in south bank of the Yellow River between Zhengzhou and Luoyang. J. Northw. Univ. 28, 153–156 (1997).

    Google Scholar 

  105. 105.

    Yue, L. P., Lei, X. Y. & Qu, H. J. The age of terrace development in the middle reaches of the Yellow River. Geol. Rev. 43, 186–192 (1997).

    Google Scholar 

  106. 106.

    Craddock, W. H. et al. Rapid fluvial incision along the Yellow River during headward basin integration. Nat. Geosci. 3, 209–213 (2010).

    ADS  CAS  Google Scholar 

  107. 107.

    Molnar, P., England, P. & Martinod, J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. Rev. Geophys. 31, 357–396 (1993).

    ADS  Google Scholar 

  108. 108.

    Bird, A. et al. A constant Chinese Loess Plateau dust source since the late Miocene. Quat. Sci. Rev. 227, 106042 (2020).

    Google Scholar 

  109. 109.

    Li, Z. et al. Chronology studies of a drill core in the central Tengger Desert of China and its implication for Asian desertification. Quat. Sci. Rev. 85, 85–98 (2014).

    ADS  Google Scholar 

  110. 110.

    Wang, F. et al. Formation and evolution of the Badain Jaran Desert, North China, as revealed by a drill core from the desert centre and by geological survey. Palaeogeogr. Palaeoclimatol. Palaeoecol. 426, 139–158 (2015).

    Google Scholar 

  111. 111.

    Rea, D. K. The paleoclimatic record provided by eolian deposition in the deep sea: the geologic history of wind. Rev. Geophys. 32, 159–195 (1994).

    ADS  Google Scholar 

  112. 112.

    Wu, F. et al. Plio–Quaternary stepwise drying of Asia: evidence from a 3-Ma pollen record from the Chinese Loess Plateau. Earth Planet. Sci. Lett. 257, 160–169 (2007).

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Pavia, J. Middleton, M. Ting, M. Raymo, J. Schaefer, S. Rahimi, T. Weiss and J. Bridges for discussions that greatly improved the research and manuscript. Support at the Lamont-Doherty Earth Observatory laboratories was provided by R. Schwartz, M. Fleisher, L. Bolge, L. Baker, J. Hansen and C. Chang. ODP 1208 and ODP 885/886 core samples were provided by the Integrated Ocean Drilling Program (IODP). IODP is sponsored by the US National Science Foundation (NSF) and participating countries under the management of Joint Oceanographic Institutions, Inc. We acknowledge the NSF-PIRE project (PIRE: DUST) that supported the work through funding to G.W., R.F.A. and T.D.H., and a Climate Center Grant from Lamont-Doherty Earth Observatory.

Author information

Affiliations

Authors

Contributions

J.T.A. and G.W. designed the project and developed the conceptual framework. J.T.A. collected all isotope, major and trace element, and opal data; T.D.H. collected alkenone data. J.T.A. and G.W. analysed data. J.T.A. and G.W. wrote the manuscript, and all authors provided comments and revisions.

Corresponding author

Correspondence to Jordan T. Abell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Modelled dust flux ratios show little zonal dust variability between the LGM and today.

Contours represent the ratio of annual average LGM and modern dust deposition rates to the North Pacific. The model output is from the C4fn and C4fn-lgm simulations of ref. 34.

Extended Data Fig. 2 SST, dust and export productivity records from ODP 1208 for the period ~2.5–4.5 Ma.

a, Benthic oxygen isotope stack from ref. 21 and ODP 1208 from ref. 50. b, Alkenone-derived SSTs. The record is a combination of data produced in this study and those from ref. 45. c, Dust fluxes determined from Th concentrations and 3HeET -derived sediment fluxes. Blue filled circles indicate samples with measured 3HeET. d, C37total fluxes. The record is a combination of data produced in this study and those from ref. 46. e, Baxs fluxes. Purple filled circles indicate samples with measured 3HeET. f, Opal fluxes. Light blue filled circles indicate samples with measured 3HeET. All error bars or ‘clouds’ for dust and export production proxies represent propagated analytical errors on concentrations, as well as analytical and statistical uncertainties for the 3HeET -derived MARs (1σ).

Extended Data Fig. 3 Fractional differences for helium isotope replicates.

a, Frequency of ODP 1208 fractional differences between replicate samples for 3HeET (blue, top) and 4Heterr (red, bottom). b, Same as a, except for ODP 885/886. c, Combined data for both cores. Fractional differences are calculated by dividing the absolute value of the maximum difference between replicates samples (if more than one replicate is run) by the average.

Extended Data Fig. 4 Comparison of 3HeET sediment fluxes and age-model-derived MARs/LSRs.

a, ODP 1208. b, ODP 885/886. Both CFP records use the Quaternary constant flux of 3HeET (0.8 pcc cm-2 kyr-1). Error bars represent propagated uncertainties on analytical and statistical uncertainties for the 3HeET-derived MARs (1σ). The LSRs/MARs for ODP 1208 are based on the age models of refs. 50,53 and dry bulk densities. The higher-resolution MARs between astronomically tuned reversal tie-points for the period of ~3.7–4.5 Ma at site 1208 are calculated using samples for which densities are provided from shipboard measurements. In the later portion of the ODP 1208 record, for which oxygen isotope stratigraphy is available (~2.5–3.7 Ma), densities are interpolated to samples with oxygen isotope data for determination of MARs. LSRs/MARs for ODP 885/886 are based on the age model of ref. 31 and dry bulk densities. The higher-resolution MARs between magnetic reversal stratigraphy tie-points at site 885/886 are calculated using the provided shipboard measurements of density interpolated to sample depths used in this study, which have higher resolution.

Extended Data Fig. 5 Comparison of dust proxy concentrations for ODP 1208 and 885/886.

ad, 4Heterr (a), Al (b), Fe (c) and Ti (d) are plotted against Th for ODP 1208. eh, Same as ad, but for ODP 885/886. Black lines denote the UCC relationships of the elements59,75 (see Methods). All error bars denote analytical uncertainties on measured concentrations (1σ), except for 4Heterr, where the error bars incorporate the additional statistical uncertainty associated with replicates (1σ) (see Methods).

Extended Data Fig. 6 ODP 1208 and 885/886 dust fluxes derived from all five dust proxies used in this study.

a, 4Heterr-derived dust fluxes for ODP 1208. b, Th-derived dust fluxes for ODP 1208. c, Al-derived dust fluxes for ODP 1208. d, Fe-derived dust fluxes for ODP 1208. e, Ti-derived dust fluxes for ODP 1208. fj, Same as ae, but for ODP 885/886. Error bars include propagated analytical uncertainties on concentrations as well as analytical and statistical uncertainties for the 3HeET-derived MARs (1σ). The much lower 4Heterr-derived dust fluxes are probably a result of the large uncertainty in the terrestrial endmember59.

Extended Data Fig. 7 Compilation of dust flux reconstructions from the open-ocean Pliocene North Pacific.

a, LR04 benthic oxygen isotope stack21. b, Th- and 3HeET-derived dust fluxes from ODP 1208. c, Siliciclastic (>2 μm) fluxes from ODP 88278. d, Th- and 3HeET-derived dust flux data from ODP 885/886. e, Aeolian flux from ODP 885/88628. f, Flux of relative Hm+Gt from ODP 885/88679. Error bars for records in this study represent propagated analytical uncertainties on concentrations, as well as analytical and statistical uncertainties for the 3HeET-derived MARs (1σ).

Extended Data Fig. 8 ODP 885/886 dust concentrations and fluxes derived from various methods.

a, Aeolian percentages (grey curve) from ref. 28 are determined using a sequential leaching procedure to removed opal and Fe-Mn (oxy)hydroxides. Dust concentrations from this study are calculated using Th concentrations. Error bars represent analytical uncertainties on element concentration measurements (1σ). b, Aeolian fluxes (black curve) from ref. 28 are based on aeolian percentages and age-model-derived MARs. Dust fluxes from this study are calculated using Th concentrations and 3HeET-derived MARs. Error bars represent propagated analytical uncertainties on concentrations, as well as analytical and statistical uncertainties for the 3HeET-derived MARs (1σ).

Supplementary information

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abell, J.T., Winckler, G., Anderson, R.F. et al. Poleward and weakened westerlies during Pliocene warmth. Nature 589, 70–75 (2021). https://doi.org/10.1038/s41586-020-03062-1

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links